Effect of Vulcanization on the Electro-Mechanical Sensing Characteristics of Multi-Walled Carbon Nanotube/Silicone Rubber Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the MWCNT/VMQ Composites
2.3. Characterization
3. Results and Discussion
3.1. MWCNT Dispersion Analysis and Interface Effect of the Two Composites
3.2. Mechanical Properties and Conductivity Properties of the Two Composites
3.3. Resistance–Strain Response Characteristics of the Composites
3.3.1. Strain Response under Static Loads
3.3.2. Resistance–Strain Response under Cyclic Load
3.3.3. Strain-Sensing Mechanism
4. Conclusions
- (1)
- The MWCNT/VMQ-DCP and VMQ-DBPMH composites had 2.51 wt% and 2.64 wt% percolation thresholds, respectively. Both composites had MWCNT three-dimensional tunneling conductive networks;
- (2)
- Under the synergistic effects of MWCNT and SiO2, the DCP high activity increased the VMQ cross-linking and the composites’ mechanical characteristics;
- (3)
- Compared to the DBPMH-vulcanized composites, the DCP-vulcanized composites had high resistance–strain response sensitivities and excellent response signal stabilities. This makes them better materials for strain-monitoring and sensing materials;
- (4)
- The analytical model of the composites’ resistance–strain responses described the quantitative connection between resistance and strain during the tensile and unloading phases, which will guide large-strain-monitoring and the analysis of seismic isolation structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Yao, X.; Zheng, Z.; Gong, L.; Yuan, L.; Yuan, Y.; Liu, Y. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing. Compos. Sci. Technol. 2018, 167, 371–378. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, X.; Huang, H.; Wang, Y.; Yu, J.; Hu, Z. Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor. J. Mater. Sci. 2020, 56, 2296–2310. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Gao, S.; Yue, W.; Li, Y.; Shen, G. Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Adv. Funct. Mater. 2021, 31, 2104288. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Liu, F.; Zhao, L.; Ling, Q.; Gu, H. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host–Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. ACS Appl. Mater. Interfaces 2021, 13, 14612–14622. [Google Scholar] [CrossRef]
- Oh, S.; Kim, J.; Chang, S.T. Highly sensitive metal-grid strain sensors via water-based solution processing. RSC Adv. 2018, 8, 42153–42159. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Gao, Y.; Liu, Y.; Xu, M.; Yang, S.; Li, K.; Zhao, S.; Cao, D.; Ahn, J.H. Biomimetic metal–organic framework-derived porous carbon welded carbon nanotube networks for strain sensors with high sensitivity and wide sensing range. Appl. Surf. Sci. 2022, 593, 153417. [Google Scholar] [CrossRef]
- Christ, J.F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater. Design. 2017, 131, 394–401. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S. Polymer/carbon nanotube nano composite fibers—A review. ACS Appl. Mater. Interfaces 2014, 6, 6069–6087. [Google Scholar] [CrossRef]
- Yan, J.; Malakooti, M.H.; Lu, Z.; Wang, Z.; Kazem, N.; Pan, C.; Bockstaller, M.R.; Majidi, C.; Matyjaszewski, K. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 2019, 14, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Min, S.H.; Lee, G.Y.; Ahn, S.H. Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites. Compos. Part B Eng. 2019, 161, 395–401. [Google Scholar] [CrossRef]
- Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X.; Kim, J.G.; Yoo, S.J.; Uher, C.; Kotov, N.A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Sam-Daliri, O.; Faller, L.-M.; Farahani, M.; Roshanghias, A.; Araee, A.; Baniassadi, M.; Oberlercher, H.; Zangl, H. Impedance analysis for condition monitoring of single lap CNT-epoxy adhesive joint. Int. J. Adhes. Adhes. 2019, 88, 59–65. [Google Scholar] [CrossRef]
- Ahmed, S.; Schumacher, T.; Thostenson, E.T.; McConnell, J. Performance Evaluation of a Carbon Nanotube Sensor for Fatigue Crack Monitoring of Metal Structures. Sensors 2020, 20, 204383. [Google Scholar] [CrossRef]
- Lim, A.S.; Melrose, Z.R.; Thostenson, E.T.; Chou, T.-W. Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes. Compos. Sci. Technol. 2011, 71, 1183–1189. [Google Scholar]
- Sam-Daliri, O.; Faller, L.-M.; Farahani, M.H.; Zangl. Structural health monitoring of adhesive joints under pure mode I loading using the electrical impedance measurement. Eng. Fract. Mech. 2021, 245, 107585. [Google Scholar] [CrossRef]
- Xu, B.; Ye, F.; Chen, R.; Luo, X.; Chang, G.; Li, R. A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram. Int. 2022, 48, 10220–10226. [Google Scholar] [CrossRef]
- Li, L.; Du, Z.; Sun, B.; Li, W.; Jiang, L.; Zhou, Y.; Ma, J.; Chen, S.; Zhou, F.L. Fabrication of electrically conductive poly(styrene-b-ethylene-ran-butylene-b-styrene)/multi-walled carbon nanotubes composite fiber and its application in ultra-stretchable strain sensor. Eur. Polym. J. 2022, 169, 111121. [Google Scholar] [CrossRef]
- Liu, X.; Guo, R.; Lin, Z.; Yang, Y.; Xia, H.; Yao, Z. Resistance-strain sensitive rubber composites filled by multiwalled carbon nanotubes for structuraldeformation monitoring. Nanomater. Nanotechnol. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Yang, H.; Yao, X.F.; Yan, H.; Yuan, Y.N.; Dong, Y.F.; Liu, Y.H. Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites. Compos. Struct. 2017, 187, 116–121. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Y.; Meng, M.; Tang, A.; Li, Y. The role of water transport in the failure of silicone rubber coating for implantable electronic devices. Prog. Org. Coat. 2021, 159, 106419. [Google Scholar] [CrossRef]
- Azizkhani, M.B.; Rastgordani, S.; Anaraki, A.P.; Kadkhodapour, J.; Hadavand, B.S. Highly sensitive and stretchable strain sensors based on chopped carbon fibers sandwiched between silicone rubber layers for human motion detections. J. Compos. Mater. 2020, 54, 423–434. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, B. Effect of Electrical Conductivity and Physical Performance about Vulcanization System in Conductive Silicon Rubber. Appl. Mech. Mater. 2014, 577, 39–43. [Google Scholar] [CrossRef]
- Chatterjee, T.; Wiessner, S.; Naskar, K.; Heinrich, G. Exploring a novel cyclic monofunctional peroxide for curing of silicone rubber at elevated temperature. Polym. Eng. Sci. 2016, 90, 60–88. [Google Scholar] [CrossRef]
- Hudec, I.; Sýkora, R.; Kruželák, J. Vulcanization of Rubber Compounds with Peroxide Curing Systems. Rubber Chem. Technol. 2017, 90, 60–88. [Google Scholar]
- Chatterjee, T.; Wiessner, S.; Naskar, K.; Heinrich, G. Novel thermoplastic vulcanizates (TPVs) based on silicone rubber and polyamide exploring peroxide cross-linking. Express Polym. Lett. 2014, 8, 220–231. [Google Scholar] [CrossRef]
- Liu, X.; Chen, C.; Yang, Y. Preparation and Performance of Silicone Rubber Composite Filled with Carbon Black. Material 2012, 45, 15–18. [Google Scholar]
- Ma, D.; Tan, J.; Li, Y.; Bian, C.; Wang, G.; Feng, S. Curing characteristics, morphology, thermal stability, mechanical properties, and irradiation resistance of methylethylsilicone/methylphenylsilicone rubber blends. J. Appl. Polym. Sci. 2014, 131, 40529. [Google Scholar] [CrossRef]
- Lin, Y.; Yin, F.; Liu, Y.; Wang, L.; Wu, K. Influence of vulcanization factors on UV-A resistance of silicone rubber for outdoor insulators. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 296–304. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, H.; Liu, J.; Liu, Y.; Zhao, J.; Liu, P.; Wang, J.; Liang, H.; Huang, Y.; Song, A. Electrical percolation of silicone rubber filled by carbon black and carbon nanotubes researched by the Monte Carlo simulation. J. Appl. Polym. Sci. 2019, 136, 48222. [Google Scholar] [CrossRef]
- Huang, J.-C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 2002, 21, 299–313. [Google Scholar] [CrossRef]
- Surve, M.; Pryamitsyn, V.; Ganesan, V. Universality in Structure and Elasticity of Polymer-Nanoparticle Gels. Phys. Rev. Lett. 2006, 96, 177805. [Google Scholar] [CrossRef] [PubMed]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Deng, H.; Bilotti, E.; Zhang, R.; Loos, J.; Peijs, T. Effect of thermal annealing on the electrical conductivity of high-strength bicomponent polymer tapes containing carbon nanofillers. Synth. Met. 2010, 160, 337–344. [Google Scholar] [CrossRef]
- Wu, C.; Gao, Y.; Liang, X.; Gubanski, S.M.; Wang, Q.; Bao, W.; Li, S. Manifestation of Interactions of Nano-Silica in Silicone Rubber Investigated by Low-Frequency Dielectric Spectroscopy and Mechanical Tests. Polymers 2019, 11, 717. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Liu, G.; Yao, H.; Li, X.; Li, G.; Qing, L.; Yang, Y. Mechanical, dielectric, and thermal properties of fluorosilicone rubber composites filled with silica/multiwall carbon nanotube hybrid fillers. J. Appl. Polym. Sci. 2020, 137, 49574. [Google Scholar] [CrossRef]
- Baquey, G.; Moine, L.; Degueil-Castaing, M.; Lartigue, J.C.; Maillard, B. Decomposition of Di-tert-butyl Peroxide in Siloxane: An Approach of the Free Radical Cross-Linking of Silicones. Macromolecules 2010, 38, 9571–9583. [Google Scholar] [CrossRef]
- Kong, J.; Tong, Y.; Sun, J.; Wei, Y.; Thitsartarn, W.; Jayven, C.C.Y.; Muiruri, J.K.; Wong, S.Y.; He, C. Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Compos. Sci. Technol. 2018, 159, 208–215. [Google Scholar] [CrossRef]
- Rui, Z.; Baxendale, M.; Peijs, T. Universal resistivity–strain dependence of carbon nanotube/polymer composites. Phys. Rev. B 2007, 76, 195433. [Google Scholar]
- Fan, Z.; Guo, R.; Yang, Z.; Yang, Y.; Liu, X. The Effect of the Co-Blending Process on the Sensing Characteristics of Conductive Chloroprene Rubber/Natural Rubber Composites. Polymers 2022, 14, 3326. [Google Scholar] [CrossRef]
Materials | Content |
---|---|
VMQ | 100 |
MWCNT | Variable X (X = 0,1,2,3,4,5,6) |
SiO2 | 40 |
HPMS | 4 |
DCP | 1 |
DBPMH | 1 |
MWCNT Content | ||||||
---|---|---|---|---|---|---|
4 wt% | 11.11 | 8.32 | ||||
5 wt% | 2.94 | |||||
6 wt% | 2.35 | 40,451.6 |
MWCNT Content | ||||||
---|---|---|---|---|---|---|
4 wt% | 7.79 | |||||
5 wt% | 4.44 | |||||
6 wt% | 2.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, B.; Yang, Y.; Guo, R.; Fan, Z.; Deng, P.; Zhang, S. Effect of Vulcanization on the Electro-Mechanical Sensing Characteristics of Multi-Walled Carbon Nanotube/Silicone Rubber Composites. Polymers 2023, 15, 1412. https://doi.org/10.3390/polym15061412
Wan B, Yang Y, Guo R, Fan Z, Deng P, Zhang S. Effect of Vulcanization on the Electro-Mechanical Sensing Characteristics of Multi-Walled Carbon Nanotube/Silicone Rubber Composites. Polymers. 2023; 15(6):1412. https://doi.org/10.3390/polym15061412
Chicago/Turabian StyleWan, Bangwei, Yang Yang, Rongxin Guo, Zhengming Fan, Peng Deng, and Shibo Zhang. 2023. "Effect of Vulcanization on the Electro-Mechanical Sensing Characteristics of Multi-Walled Carbon Nanotube/Silicone Rubber Composites" Polymers 15, no. 6: 1412. https://doi.org/10.3390/polym15061412
APA StyleWan, B., Yang, Y., Guo, R., Fan, Z., Deng, P., & Zhang, S. (2023). Effect of Vulcanization on the Electro-Mechanical Sensing Characteristics of Multi-Walled Carbon Nanotube/Silicone Rubber Composites. Polymers, 15(6), 1412. https://doi.org/10.3390/polym15061412