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Abstract: Pullulan is a biodegradable, renewable, and environmentally friendly hydrogel biopolymer,
with potential uses in food, medicine, and cosmetics. New endophytic Aureobasidium pullulans (acces-
sion number; OP924554) was used for the biosynthesis of pullulan. Innovatively, the fermentation
process was optimized using both Taguchi’s approach and the decision tree learning algorithm for
the determination of important variables for pullulan biosynthesis. The relative importance of the
seven tested variables that were obtained by Taguchi and the decision tree model was accurate
and followed each other’s, confirming the accuracy of the experimental design. The decision tree
model was more economical by reducing the quantity of medium sucrose content by 33% without
a negative reduction in the biosynthesis of pullulan. The optimum nutritional conditions (g/L)
were sucrose (60 or 40), K2HPO4 (6.0), NaCl (1.5), MgSO4 (0.3), and yeast extract (1.0) at pH 5.5, and
short incubation time (48 h), yielding 7.23% pullulan. The spectroscopic characterization (FT-IR and
1H-NMR spectroscopy) confirmed the structure of the obtained pullulan. This is the first report on
using Taguchi and the decision tree for pullulan production by a new endophyte. Further research is
encouraged for additional studies on using artificial intelligence to maximize fermentation conditions.

Keywords: biopolymer; fungal polymer; exopolysaccharide; optimization; fermentation; modeling;
signal to noise ratio

1. Introduction

The ubiquitous yeast-like fungus, Aureobasidium pullulans (de Bary) G. Arnaud (1918),
is found in various conditions, especially in the phyllosphere, as an endophyte or epiphyte
of a broad extent of plants, without producing disease symptoms. Biotechnologically, A. pul-
lulans is regarded as a highly important fungus in the production of various biomolecules,
e.g., siderophore, and enzymes [1–4]. The fungus is polymorphic and generally regarded as
non-toxigenic and non-pathogenic [5]. The biosynthesis of pullulan (poly-α-1,6-maltotriose)
by A. pullulans is the main spot [6,7].

The genus Aureobasidium is an ascomycetous yeast-like fungus that comprises 27 taxa
(14 species and two varieties). Among these species, A. pullulans (de Bary) G. Arnaud is
the most studied [6]. A. pullulans is a widely distributed black, yeast-like fungus that can
naturally exist in various environments, including the phyllosphere [1,3]. It can be found as
an epiphyte and/or endophyte of a vast array of plants (e.g., apple, cucumber, green beans,
grape, stored barley grain cabbage, and coconut water) without developing diseases [1,2,4].

Pullulan is a biodegradable polymer derived from natural resources and can be
considered a renewable resource and environmentally friendly material; it has potential
uses in various industries, food packaging, medical devices, and cosmetics [6]. Pullulan
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is an unbranched extracellular polymer, which is neutral (like dextran, cellulose), water-
soluble, and viscous polysaccharide. The alpha-glucan consists of units of glucose with
arranged in a linear structure, i.e., three units of glucose molecules are linked by α-1,4
glycosidic bond to form maltotriose units, which are repeatedly polymerized by α-1,6
glycosidic bond on the terminal glucose, thus pullulan known as α-1,4-; α-1,6-glucan [8,9].

Pullulan helps cells withstand dehydration and predator, and also allows for an easier
exchange of substances in and out of the cell [10]. Low concentrations of pullulan form
high-viscosity solutions and can be made into fibers and films, making it ideal for coating
food and pharmaceuticals. It is available commercially as a tasteless polymer, used in food
and non-food industries as an additive, processing aid, thickener, stabilizer, emulsifier, and
gelling agent. Additionally, pullulan is used in various applications, including edible films
for breath fresheners, pharmaceuticals like retard tablets, capsules, and microcapsules, and
industries such as cosmetics, textiles, and paper [6–8,10].

Several attempts are being done to manipulate pullulan biosynthesis through genetic
engineering. For instance, overexpression of the gene encoding for the pullulan synthase en-
zyme has been reported to increase pullulan production [11]. However, genetic engineering
methods can be time-consuming and expensive, and the stability of the modified strains can
be a limitation. Optimization of the medium composition, as well as the different process
parameters (e.g., temperature, pH, and agitation) for pullulan production by varying the
level of each variable, can be challenging and have conflicting effects; this is due to the
biosynthesis process needs an accurate balance of the fermentation conditions and very
sensitive to the interactions among components [12–14].

Because of the drawbacks of genetic engineering, and alteration of the medium com-
ponents (that may lead to an inconstant supply of pullulan due to uncontrolled factors),
Taguchi’s experimental design can deal with such issues. Taguchi’s method is a robust
statistical design that optimizes process performance and quality using fractional factorial
design and multi-parameter optimization. It is a straightforward and organized approach
for finding the optimal level of each factor while maximizing the response with a limited
number of experimental runs on multiple variables [15,16]. The Taguchi method originated
from expanded factorial and Latin squares (L) designs, known as orthogonal arrays, which
are matrices where every pair of columns contains the same number of each possible pair
of factors [16,17].

The goal of orthogonal arrays is to optimize the signal-to-noise (S/N) ratio of responses
rather than the responses themselves, reducing process variability [18]. The S/N ratio
calculates the response’s deviation from the target. It represents the mean value as signal
and the standard deviation as noise. The objective is to minimize variability by amplifying
the S/N ratio. This is what differentiates the Taguchi method from traditional statistical
techniques. Taguchi categorizes the S/N ratio into three types, i.e., nominal is better,
larger is better, and smaller is better, depending on the desired response [15,17]. The S/N
ratio replaces the response in determining the optimal control factor levels and disregards
variations caused by uncontrollable conditions [15]. To our knowledge, none of the previous
attempts at pullulan biosynthesis used Taguchi’s approach.

A decision tree (DT) is a supervised machine learning and data mining algorithm
represented as a tree-like structure. Each node represents a feature, branches represent
decision rules, and leaves represent outcomes. The aim is to predict the target variable by
learning decision rules from data features. The tree is constructed by starting at the root
node and then recursively partitioning the data into subsets based on the values of the
input features. The result is a tree where each leaf node represents a class label, and each
internal node represents a test of one of the input features. Decision trees can also be used
for other tasks, such as regression and clustering. They are commonly used in decision
support systems and operations research. It is essential to have proper data collection and
annotation to use a decision tree. The DT can also be used to predict the optimal process
parameters for new conditions, such as changes in the composition of the inoculum or
changes in the configuration of the substrate [19,20]. It is worth noting that the specific
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details of the implementation can vary depending on the specific application and dataset.
Also, the optimization should be done with caution and validation, as the decision tree can
be affected by overfitting and other issues. No previous attempts applied the DT approach
in pullulan biosynthesis.

Herein, we report a novel incorporation of both Taguchi’s approach and the machine
learning algorithm of DT to optimize the fermentation process parameters for maximization
of pullulan biosynthesis using the new endophytic candidate, A. pullulans. Furthermore,
A. pullulans were molecularly identified, and the spectroscopic characterization of the
resulting pullulan was investigated.

2. Materials and Methods
2.1. Isolation of Endophytic Yeast-like Fungus

The endophytic yeast-like fungus A. pullulans were isolated from common bean seeds.
Ten healthy seed samples were collected from various Saudi Arabia provinces (Riyadh,
Al-Qaseem, Al-Ahsaa, and Ha’il), lie within 23◦27′ N and 27◦52′ N (latitudes), and 41◦72′ E
and 49◦58′ E (longitudes). The collected common bean pods were stored at 4 ◦C after
labeling. Isolation of the endophytic seed-borne yeast-like fungus from seed samples was
carried out following the technique proposed by Rashad et al. [21]. First, the surface was
sterilized with 70% ethanol for 1 min, then 2% sodium hypochlorite for 90 s, then with 100%
ethanol for 30 s, and finally, rinsed with distilled water for 10 min before drying under
laminar airflow, utilizing sterilized filter paper. Potato sucrose agar (PSA) medium was
used to plate 10 seeds and incubated at 25 ± 2 ◦C in the dark. After 4 days, colonies around
each seed were picked and purified by respreading on PSA plates. The single pure colonies
were obtained, which were subcultured regularly on PSA slants.

2.2. Identification
2.2.1. Morphological Characteristics

For the morphological identification of A. pullulans colonies, daily observation of
colony characteristics was done. Furthermore, a slide culture was made from the grown
colony on PSA, which was smeared with methylene blue and observed by wet mounting
using bright field microscopy. Identification of the Aureobasidium strain was done following
the previously reported features [22–24].

2.2.2. Molecular Identification

A. pullulans was identified through molecular methods. DNA was separated and
amplified using polymerase chain reaction (PCR) with DNeasy Tissue Kits (from QIAGEN,
Hilden, Germany). DNA concentration was determined by comparing it with a lambda
DNA standard on a 1% agarose gel. The product was diluted to 20 ng DNA/µL and stored
at −20 ◦C.

The ITS region was amplified and sequenced. The PCR reaction mixture contained 1x
buffer (Promega, Madison, WI, USA), 1.5 mM MgCl2, 1 U Taq DNA polymerase (GoTaq,
Promega), 0.2 mM dNTPs, 30 picomoles of each primer of ITS5-F (5′-GGAAGTAAAAGTCG
TAACAAGG-3′) and ITS4-R (5′-TCCTCCGCTTATTGATATGC-3′), 30 ng of genomic DNA
and ultra-pure water. The total volume was made up to 50 µL. The thermal cycling was
performed using the Perkin-Elmer/GeneAmp® PCR System 9700 (PE Applied Biosystems,
Waltham, MA, USA) with 40 cycles of 30 s each (after an initial denaturation cycle of
5 min at 94 ◦C), annealing (45 ◦C for 30 s), and elongation (72 ◦C for 30 s), with a final
extension of 7 min at 72 ◦C. The PCR products were purified using the Montage PCR
Clean-up kit (Millipore, Burlington, MA, USA) to eliminate unincorporated primers and
dNTPs. Nucleotide sequence analysis was performed using NCBI BLASTn online tool
(http://ncbi.nlm.nih.gov/BLAST/, accessed on 1 January 2023) and aligned utilizing Align
Sequences Nucleotide BLAST with the nr/nt database.

The taxa’s evolutionary relationships were compared utilizing the Neighbor-Joining
procedure [25]. The percentage of replicate trees (1000 replicates) was compared [26]. The
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pairwise evolutionary distance was calculated using pairwise deletion. The ambiguous
sites were excluded, and the evolutionary analyses were carried out [27].

2.3. Fermentation Medium and Cultural Conditions

The synthesis of pullulan was performed using the medium of Singh et al. [28] with
modifications, which contained (g/L) sucrose (50), K2HPO4 (5.0), NaCl (1.0), MgSO4·7H2O
(0.2), yeast extract (2.0), and pH 6.5. This medium was used for maintenance, inoculum
preparation, and production of exopolysaccharide.

The inoculum of A. pullulans was prepared by scraping culture slant into a 250 mL
Erlenmeyer flask containing 50 mL of the sterilized medium, then incubated at 30 ◦C,
200 rpm. After three days, this inoculum was utilized to inoculate 100 mL of the biosynthesis
medium in a 500 mL Erlenmeyer flask at the rate of 10% (v/v).

Unless otherwise stated, the production conditions of pullulan were performed by
incubating the Erlenmeyer flasks at 30 ◦C on a rotary shaker at 200 rpm for up to 7 days.
After the fermentation time, the cells were removed by centrifugation at 2500× g for 15 min.

2.4. Determination of Pullulan

Pullulan content was separated and determined following the method of Singh
et al. [28]. Briefly, the cells were separated from the culture by centrifugation (1400× g
for 15 min). The pullulan in the supernatant was separated by adding two volumes of
ice-chilled isopropyl alcohol whilst stirring. The mix was kept overnight at 4 ◦C and then
centrifuged (2500× g for 15 min) to separate the polysaccharide, which was redissolved in
deionized water, reprecipitated again with isopropyl alcohol, and washed with acetone,
then deionized water, this process repeated thrice to ensure the purity of pullulan. The
obtained pullulan was dried (80 ◦C to constant weight). The pullulan content (%) was
expressed as the weight of dry pullulan produced in deciliter fermented broth.

2.5. Taguchi Experimental Design

Experiments of pullulan biosynthesis using A. pullulans were performed in 100 mL
batch fermentation conditions. For optimization of the biosynthesis process, seven inde-
pendent factors were assessed, representing the medium variables reported above (sucrose,
K2HPO4, NaCl, MgSO4, yeast extract, pH, and incubation period). The Taguchi orthogonal
array was employed to find the ideal conditions for pullulan biosynthesis. The design was
structured with the minimum number of runs, i.e., 3ˆ7. Thus 27 runs were generated for the
design array by utilizing seven factors with three (high, middle, low) levels (L27). A generic
signal-to-noise (S/N) ratio was employed to measure experimental variation, aiming to
enhance pullulan biosynthesis quality through decreased mean squared deviation. The
type of function applied (larger is better) that maximize pullulan biosynthesis the next
Equation (1) was used:

S/N ratio = −10× log
(

Σ
(

1/Y2
)

/n
)

(1)

where S/N is the signal-to-noise, n is the number of observations, and Y is the observed data.
Taguchi’s design was experimentally performed and repeated in three different runs.

ANOVA was estimated to identify the significant parameters. Both the S/N ratio and
ANOVA analysis allow the forecast of the most favorable process parameter combinations.
A confirmation experiment was carried out to confirm the obtained optimal conditions
based on the parameter design.

2.6. Decision Tree Learning Algorithm

A parametric learning classification and regression tree was devoted to exploring the
possible solutions for improving pullulan biosynthesis using the set of tested variables. The
seven fermentation parameters were the input continuous predictor variables that were



Polymers 2023, 15, 1419 5 of 23

used to alleviate the noise resulting from the experimental procedures. The biosynthesis of
pullulan was the target variable (response).

The decision tree learning algorithm with pullulan biosynthesis was created by a group
of rules based on the continuous predictor in the data set using least squared errors as a
node-splitting method (i.e., choosing the variable for the smallest mean squared error (MSE)
and root mean squared error (RMSE) upon regression), and maximum R2 for selecting
the optimal tree. To evaluate the prediction precision and avoid over-fitting, validation
with a test set was performed at a random fraction of 0.3, where 70% of data was applied
for training and the other 30% was used for testing (70/30% training/test sets) a total of
81 runs, representing three replications of the Taguchi experimental design with 27 each.
The nodes continued to split until the terminal nodes could not be divided further. Deeper
trees tend to have more accurate predictions, so the deepness of the DT was fixed when
further changes did not decrease the mean squared error.

2.7. Validation of Taguchi and DT Models

The designed model was validated experimentally using three repetitions of different
combinations of the seven factors created by the two models. The observed and predicted
values were compared to assess the model’s accuracy in maximizing pullulan biosynthesis.

2.8. Spectroscopic Characterization

The isolated pullulan samples were scanned by Fourier-transform infrared spec-
troscopy (FT-IR) analysis with the potassium bromide pellet method [29,30]. Infrared
spectra were documented on a Bruker FT-IR spectrometer (Bruker Corporation, Vienna,
Austria), OPUS version 7.5, from 4000 to 350 cm−1 of scale with sensitivity > 20.0%, and
the data were recorded as wavenumbers (ν, cm−1).

The sample was prepared for the proton nuclear magnetic resonance (1H-NMR) anal-
ysis by dissolving 15 mg of the obtained pullulan in 0.5 mL DMSO-d6, and drops of
D2O solvent were added, in which tetramethylsilane (TMS) was applied as an internal
standard [24]. The 1H-NMR spectrum was run on Bruker AVANCE III 400 MHz NMR
Spectrometer (Bruker Corporation, Vienna, Austria). The chemical shifts δ were recorded
in ppm downfield from TMS, utilizing the tolerating deuterated signals of the used sol-
vents as an internal reference (DMSO-d6/D2O: δH = 2.516, and 4.184 ppm). 1H-NMR
(DMSO-d6/D2O) (δ, ppm): 3.135 (s, 1H, CH), 3.302–3.323 (d, 1H, CH), 3.390 (d, 2H, CH2),
3.553–3.701 (d, 1H, CH), 3.767–3.797 (d.d., 2H, CH2), 4.694 (s, 1H, CH), 5.027–5.061 (d,
1H, CH).

2.9. Software and Statistical protocol

The data of the pullulan biosynthesis by A. pullulans are the mean of three trials
with standard deviation (±SD) values. Taguchi orthogonal array, the supervised learning
algorithm of the decision tree, and the mathematical analysis were performed using Minitab
software (version 21, Minitab Inc., State College, PA, USA).

3. Results and Discussion
3.1. Isolation and Morphological Identification of A. pullulans

The current trial revealed the isolation of A. pullulans AKW from common bean seeds
as an endophytic fungus and morphologically identified. On PSA, the fungus optimally
grows at 30 ◦C, within a temperature range of 10–35 ◦C. The isolated fungus produced
smooth, faintly pink, yeast-like colonies enclosed with a slimy mass of spores. As time
passed, the colonies turned black because of chlamydospore production. The colonies were
flat, smooth, moist, yeast-like, slimy, shiny, and leathery in appearance. The surface is cream
at the beginning and becomes black with time, with a grayish fringe by aging. Examination
of the cell morphology of the isolate (Figure 1) by bright field light microscopy showed
two types of conidia are produced. The primary conidia are smooth, hyaline, ellipsoidal,
one-celled, and variable in shape and size, whereas the secondary conidia are smaller.
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Conidiophores can be indistinguishable, occur in between cells, or arise from short lateral
branches. Endoconidia is generated within an intercalary cell and moves to a neighboring
empty cell. Hyphae are clear (hyaline), smooth, thin-walled, and have transverse septa. The
microscopic examination also showed the typical A. pullulans polymorphology with hyphae,
blastospores, and chlamydospores. Both colony features and microscopic morphology
were in line with the A. pullulans descriptions by Barnett and Barry [22], Domsch et al. [23],
and Hermanides-Nijhof [24].
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Figure 1. Macro- and microphotographs of A. pullulans AKW: the colony on PSA after 7 days at 30 ◦C
(A), microscopic images of melanized hyphae with melanized conidia at 400× (B,C), conidiogenesis at
1000× ((D,E), arrowed), hyaline and melanized blastoconidia (F), and dark brown chlamydoconidia
and chains of arthroconidia at 1000× ((G,H), arrowed).
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3.2. Molecular Identification of A. pullulans

A. pullulans AKW was molecularly identified based on ITS. The method compares the
sequence of the 18S rRNA gene after it has been amplified by PCR. From BLAST results,
the endophytic A. pullulans AKW displayed high similarity with the previously similar
strains on the GenBank. The phylogenetic tree (Figure 2) shows the fungus as A. pullu-
lans AKW, which was in agreement with the morphological identification. The fungal
strain was registered on GenBank with accession number OP924554. A. pullulans AKW
belongs to Eukaryota; Fungi; Dikarya; Ascomycota; Pezizomycotina; Dothideomycetes;
Dothideomycetidae; Dothideales; Saccotheciaceae; and Aureobasidium.
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Figure 2. Agarose gel electrophoresis of the amplified bands of PCR product (A) and molecular
phylogenetic tree based on partial ITS sequence (B) of A. pullulans AKW (OP924554), marked by a
red dot.

Molecular identification, due to its high accuracy, is commonly used to quickly identify
filamentous fungi in different taxonomic categories. This technique involves amplifying
and comparing the sequence of the 18s rRNA gene through the ITS region using PCR. The
uniform fragment size of the ITS in many fungal clusters makes nucleotide sequencing of
ITS essential for detecting interspecific and sometimes intraspecific variation [31].

The well-known sequence, used for constructing phylogenies, is accurately labeled
and demonstrates a strong connection to similar fungal strains in the GenBank. The ITS
sequence is consistent across a broad range of fungal groups, making it valuable in detecting
interspecific and sometimes intraspecific differences among organisms [32]. Additionally,
the sequences of the non-functional ITS region are frequently highly diverse among fungal
species, making it sufficient for identifying fungi at the species level [31,33]. Technically,
the rDNA’s repeated nature makes the ITS regions easy to amplify from a small DNA
sample [31]. Thus, ITS’s nucleotide sequencing is considered a fast and highly accurate
identification approach compared to other markers. This approach can also be used for
barcoding a wide range of fungal species [34,35].

3.3. Pullulan Biosynthesis Using Taguchi Approach

The pullulan biosynthesis process by A. pullulans was scaled up utilizing the Taguchi
archetype by testing seven continuous variables that influence the biosorption process at
three levels each (37). The Taguchi orthogonal array (L27) generated 27 trials. The actual
levels of the seven tested factors, together with the orthogonal array of L27, are presented
in Table 1.
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Table 1. Orthogonal array and predicted values of Taguchi’s L27 (37) for optimization of pullulan
biosynthesis by A. pullulans, as well as the predicted and residual values and terminal nodes of the
decision tree learning algorithm at each data point. The experiment was repeated in three separate
runs denoted by different colors.

Run
Tested Variable Pullulan Biosynthesis (%)

Nutritional Component (g/L) Taguchi Decision Tree
Run

Sucrose K2HPO4 NaCl MgSO4
Yeast

Extract

pH Incubation
(h) Mean S/N

Ratio Fitted Type Fitted Residual Terminal
Node

L1 40 4 0.5 0.1 1 5.5 48 3.81 ± 0.23 11.59 3.70 Test 2.95 1.04 1
L2 40 4 0.5 0.1 2 6.5 72 3.12 ± 0.10 9.86 3.12 Test 2.95 0.16 1
L3 40 4 0.5 0.1 3 7.5 96 2.32 ± 0.01 7.30 2.43 Training 2.95 −0.62 1
L4 40 5 1.0 0.2 1 5.5 48 5.37 ± 0.07 14.60 5.53 Test 5.24 0.19 4
L5 40 5 1.0 0.2 2 6.5 72 4.94 ± 0.05 13.88 4.94 Training 5.24 −0.25 4
L6 40 5 1.0 0.2 3 7.5 96 4.41 ± 0.10 12.88 4.26 Test 4.65 −0.19 5
L7 40 6 1.5 0.3 1 5.5 48 7.23 ± 0.09 17.18 7.19 Training 6.98 0.35 7
L8 40 6 1.5 0.3 2 6.5 72 6.60 ± 0.17 16.39 6.61 Test 6.98 −0.57 7
L9 40 6 1.5 0.3 3 7.5 96 5.88 ± 0.09 15.39 5.92 Training 5.76 0.15 9

L10 50 4 1.0 0.3 1 6.5 96 5.43 ± 0.11 14.69 5.50 Training 5.76 −0.26 9
L11 50 4 1.0 0.3 2 7.5 48 5.84 ± 0.08 15.33 5.83 Training 6.01 −0.26 8
L12 50 4 1.0 0.3 3 5.5 72 6.19 ± 0.05 15.84 6.14 Test 6.01 0.13 8
L13 50 5 1.5 0.1 1 6.5 96 4.74 ± 0.06 13.51 4.63 Test 4.76 −0.09 2
L14 50 5 1.5 0.1 2 7.5 48 4.91 ± 0.07 13.81 4.96 Training 5.13 −0.21 3
L15 50 5 1.5 0.1 3 5.5 72 5.22 ± 0.04 14.35 5.27 Training 5.13 0.12 3
L16 50 6 0.5 0.2 1 6.5 96 4.83 ± 0.06 13.67 4.87 Training 4.65 0.23 5
L17 50 6 0.5 0.2 2 7.5 48 5.24 ± 0.05 14.39 5.20 Training 5.24 0.04 4
L18 50 6 0.5 0.2 3 5.5 72 5.51 ± 0.09 14.82 5.51 Training 5.24 0.19 4
L19 60 4 1.5 0.2 1 7.5 72 5.52 ± 0.05 14.84 5.42 Training 5.80 −0.31 6
L20 60 4 1.5 0.2 2 5.5 96 5.54 ± 0.06 14.86 5.67 Test 5.80 −0.32 6
L21 60 4 1.5 0.2 3 6.5 48 6.18 ± 0.12 15.81 6.15 Training 5.80 0.32 6
L22 60 5 0.5 0.3 1 7.5 72 5.53 ± 0.14 14.85 5.56 Test 6.01 −0.63 8
L23 60 5 0.5 0.3 2 5.5 96 5.80 ± 0.12 15.27 5.81 Test 5.76 −0.06 9
L24 60 5 0.5 0.3 3 6.5 48 6.32 ± 0.10 16.01 6.28 Test 6.01 0.29 8
L25 60 6 1.0 0.1 1 7.5 72 4.72 ± 0.08 13.48 4.81 Training 4.76 −0.06 2
L26 60 6 1.0 0.1 2 5.5 96 5.21 ± 0.10 14.34 5.07 Test 5.13 0.07 3
L27 60 6 1.0 0.1 3 6.5 48 5.48 ± 0.15 14.76 5.54 Training 5.13 0.31 3
L1 40 4 0.5 0.1 1 5.5 48 Training 2.95 0.95 1
L2 40 4 0.5 0.1 2 6.5 72 Training 2.95 0.27 1
L3 40 4 0.5 0.1 3 7.5 96 Training 2.95 −0.64 1
L4 40 5 1.0 0.2 1 5.5 48 Test 5.24 0.14 4
L5 40 5 1.0 0.2 2 6.5 72 Test 5.24 −0.35 4
L6 40 5 1.0 0.2 3 7.5 96 Training 4.65 −0.18 5
L7 40 6 1.5 0.3 1 5.5 48 Test 6.98 0.19 7
L8 40 6 1.5 0.3 2 6.5 72 Training 6.98 −0.33 7
L9 40 6 1.5 0.3 3 7.5 96 Training 5.76 0.02 9

L10 50 4 1.0 0.3 1 6.5 96 Training 5.76 −0.28 9
L11 50 4 1.0 0.3 2 7.5 48 Test 6.01 −0.12 8
L12 50 4 1.0 0.3 3 5.5 72 Training 6.01 0.19 8
L13 50 5 1.5 0.1 1 6.5 96 Training 4.76 −0.01 2
L14 50 5 1.5 0.1 2 7.5 48 Training 5.13 −0.30 3
L15 50 5 1.5 0.1 3 5.5 72 Test 5.13 0.11 3
L16 50 6 0.5 0.2 1 6.5 96 Training 4.65 0.18 5
L17 50 6 0.5 0.2 2 7.5 48 Training 5.24 −0.05 4
L18 50 6 0.5 0.2 3 5.5 72 Test 5.24 0.26 4
L19 60 4 1.5 0.2 1 7.5 72 Training 5.80 −0.30 6
L20 60 4 1.5 0.2 2 5.5 96 Training 5.80 −0.27 6
L21 60 4 1.5 0.2 3 6.5 48 Training 5.80 0.30 6
L22 60 5 0.5 0.3 1 7.5 72 Training 6.01 −0.44 8
L23 60 5 0.5 0.3 2 5.5 96 Training 5.76 0.17 9
L24 60 5 0.5 0.3 3 6.5 48 Training 6.01 0.22 8
L25 60 6 1.0 0.1 1 7.5 72 Training 4.76 0.05 2
L26 60 6 1.0 0.1 2 5.5 96 Training 5.13 0.19 3
L27 60 6 1.0 0.1 3 6.5 48 Test 5.13 0.51 3
L1 40 4 0.5 0.1 1 5.5 48 Test 2.95 0.60 1
L2 40 4 0.5 0.1 2 6.5 72 Training 2.95 0.06 1
L3 40 4 0.5 0.1 3 7.5 96 Test 2.95 −0.64 1
L4 40 5 1.0 0.2 1 5.5 48 Test 5.24 0.06 4
L5 40 5 1.0 0.2 2 6.5 72 Training 5.24 −0.30 4
L6 40 5 1.0 0.2 3 7.5 96 Training 4.65 −0.35 5
L7 40 6 1.5 0.3 1 5.5 48 Training 6.98 0.21 7
L8 40 6 1.5 0.3 2 6.5 72 Training 6.98 −0.23 7
L9 40 6 1.5 0.3 3 7.5 96 Training 5.76 0.19 9

L10 50 4 1.0 0.3 1 6.5 96 Test 5.76 −0.46 9
L11 50 4 1.0 0.3 2 7.5 48 Training 6.01 −0.12 8
L12 50 4 1.0 0.3 3 5.5 72 Test 6.01 0.23 8
L13 50 5 1.5 0.1 1 6.5 96 Training 4.76 0.03 2
L14 50 5 1.5 0.1 2 7.5 48 Training 5.13 −0.16 3
L15 50 5 1.5 0.1 3 5.5 72 Training 5.13 0.04 3
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Table 1. Cont.

Run
Tested Variable Pullulan Biosynthesis (%)

Nutritional Component (g/L) Taguchi Decision Tree
Run

Sucrose K2HPO4 NaCl MgSO4
Yeast

Extract

pH Incubation
(h) Mean S/N

Ratio Fitted Type Fitted Residual Terminal
Node

L16 50 6 0.5 0.2 1 6.5 96 Training 4.65 0.12 5
L17 50 6 0.5 0.2 2 7.5 48 Training 5.24 0.02 4
L18 50 6 0.5 0.2 3 5.5 72 Training 5.24 0.36 4
L19 60 4 1.5 0.2 1 7.5 72 Training 5.80 −0.22 6
L20 60 4 1.5 0.2 2 5.5 96 Test 5.80 −0.20 6
L21 60 4 1.5 0.2 3 6.5 48 Training 5.80 0.51 6
L22 60 5 0.5 0.3 1 7.5 72 Test 6.01 −0.36 8
L23 60 5 0.5 0.3 2 5.5 96 Training 5.76 0.02 9
L24 60 5 0.5 0.3 3 6.5 48 Training 6.01 0.41 8
L25 60 6 1.0 0.1 1 7.5 72 Test 4.76 −0.10 2
L26 60 6 1.0 0.1 2 5.5 96 Training 5.13 −0.01 3
L27 60 6 1.0 0.1 3 6.5 48 Test 5.13 0.22 3

The Taguchi method was utilized to find the best conditions to enhance the pullulan
biosynthesis process. Its orthogonal array design allowed for the efficient development
of optimal conditions using the lowest number of trials, thereby saving both time and
effort [15,17]. The orthogonal arrays of the seven control factors and the corresponding
pullulan biosynthesis laboratory data of the 27 trials are presented in Table 1. As it ap-
peared, the experiment was repeated in three separate runs; then, the data were statistically
analyzed to estimate the mean of pullulan biosynthesis and S/N ratio.

The calculated SD values were very small, indicating the accuracy of the repeated runs.
Normally, Taguchi analysis often begins with the calculation of the S/N ratio to identify
the control factor(s) that reduces variability, the S/N ratio was optimized based on the
larger-is-better role, which is used to amplify the pullulan biosynthesis process, thus the
level of control factor(s) that maximize pullulan biosynthesis and have no or small impact
on the S/N ratio is determined. Accordingly, the highest pullulan biosynthesis and the S/N
ratio (17.18) were achieved by trial L7 (7.23%).

3.3.1. Determination of Significant Factors

Firstly, the Taguchi model was utilized to calculate the fitted (predicted) values of
pullulan biosynthesis. The fitted values were so adjacent to those of the actual ones; thus,
the errors (residuals) were low, evidencing the model’s accuracy. Secondly, the overall
design aptness was tested by measuring the determination coefficient (R2) and adjusted
R2, being 0.9937 and 0.9863, respectively. Both are used for the model assessment. The
present R2 and adjusted R2 values are close to one, being, concluding the accuracy of the
Taguchi model.

It is already known that both kinds of R2 range from 0 to 1, and the closer to 1, the
accuracy of the modeling capability [36]. If their values are ≥0.9, the model is adequately
significant; in any case, R2 should not be <0.75 [37,38]. The R2 value assesses how much
the response of pullulan biosynthesis varies based on changes in the amount of the tested
factors. Adding more factors leads to a constant increase in R2, but this doesn’t account
for the significance of the factors. The adjusted R2 solves this problem by considering
the number of factors in the model. Unlike R2, adjusted R2 adjusts sensibly when adding
significant factors only to the model, making it a better indicator of the model’s goodness
of fit.

The ANOVA was performed on data from the Taguchi matrix to determine which of the
seven medium variables has a significant influence on pullulan biosynthesis by A. pullulans
(Table 2). Initially, the null hypothesis assumes that all terms have an equal effect and there
is no relationship between the tested variables and the pullulan biosynthesis process.
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Table 2. ANOVA of means of pullulan biosynthesis by A. pullulans as affected by the seven investi-
gated factors.

Source Freedom
Degree

Sum of
Square

Mean
Square F-Value p-Value

Sucrose 2 2.50 1.25 87.62 0.000
K2HPO4 2 2.53 1.27 88.94 0.000

NaCl 2 4.86 2.43 170.44 0.000
MgSO4 2 13.04 6.52 457.60 0.000

Yeast extract 2 0.01 0.00 0.24 0.793
pH 2 1.70 0.85 59.83 0.000

Incubation time 2 2.15 1.08 75.47 0.000
Residual Error 12 0.17 0.01

Total 26 26.96
The determination coefficient (R2) 0.9937

Adjusted-R2 0.9863

The probability value was considered as a diagnosis tool for rating the significance. If
the p-value < 0.05, the variable is considered significant in the pullulan biosynthesis process.
On this basis, the seven investigated control factors had a significant effect on pullulan
biosynthesis, except yeast extract, which recorded a p-value equal to 0.793 [38].

3.3.2. Assignment of the Optimum Factors’ Levels

Following the determination of significant factors, the next step was to assign the ideal
value to each factor. To resolve this point, The S/N ratio was estimated for each factor level
(Figure 3). The goal of optimizing process parameters was to improve the S/N ratio for
better outcomes. The optimal level for each control factor that reduces noise variability and
maximizes pullulan biosynthesis by A. pullulans was determined. The peak S/N ratio for
each control factor was at the highest level of four factors, i.e., sucrose (60 g/L), K2HPO4
(6 g/L), NaCl (1.5 g/L), and MgSO4 (0.3 g/L), whereas at the lowest level of yeast extract
(1 g/L), pH (5.5), and incubation time (48 h).
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A. pullulans.
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The Taguchi method is used to evaluate the mean output of each run in the inner set
and determine the variability using the S/N ratio, which varies accordingly. The S/N ratio
gauges the output’s variation in relation to the target value under varying noise conditions.
Taguchi’s design is robust and can easily pinpoint the control factors (7 in this instance) that
minimize variability in a process by reducing the impact of uncontrollable noise factors.
Taguchi’s design philosophy involves inducing variability by manipulating noise factors
during experimentation, making it easier to identify control factor settings that increase
process resilience to noise factor variation. A higher S/N ratio signifies optimal control
factor settings in reducing the impact of noise (non-controlled) factors [16,39,40].

The S/N ratio response of pullulan biosynthesis for each level of each control factor
was calculated, then the delta (a measure of the range between the uppermost and lower-
most average response values) for each factor was estimated. Accordingly, the rank was
determined, and the highest delta value designates the relative importance of the factor on
the S/N ratio (Table 3).

Table 3. Response analysis of S/N ratio and means of Taguchi array of pullulan biosynthesis by
A. pullulans.

S/N Ratio Response Analysis

Level Sucrose K2HPO4 NaCl MgSO4 Yeast Extract Initial pH Incubation
Time

1 13.23 13.35 13.09 12.56 14.27 14.76 14.83
2 14.49 14.35 14.42 14.42 14.24 14.29 14.26
3 14.92 14.94 15.13 15.66 14.13 13.59 13.55

Delta 1.69 1.59 2.04 3.11 0.14 1.17 1.29
Rank 3 4 2 1 7 6 5

MeanResponse Analysis

1 4.854 4.883 4.720 4.391 5.243 5.543 5.597
2 5.324 5.249 5.289 5.282 5.245 5.292 5.263
3 5.589 5.634 5.757 6.093 5.278 4.931 4.906

Delta 0.736 0.750 1.037 1.702 0.035 0.612 0.691
Rank 4 3 2 1 7 6 5

The results show that MgSO4 (delta 3.11, rank 1) has the major effect on the S/N ratio,
followed by NaCl (delta 2.04, rank 2), sucrose (delta 1.69, rank 3), K2HPO4, (delta 1.59,
rank 4), incubation time (delta 1.29, rank 5), initial pH (delta 1.17, rank 6), and finally yeast
extract (delta 0.14, rank 7). The average mean response of the seven tested factors came in
line with the S/N ratio, with an exception in the order or rank of both sucrose and K2HPO4.
Such mathematical calculations concluded satisfactory accuracy of both the S/N ratio and
mean analysis of the seven tested input variables.

Eventually, Taguchi orthogonal array was utilized to determine the optimal operating
conditions of the parameters with the greatest impact on the target output. Further, the
optimum level of each variable was also assigned. Before approving these results, the
residual analysis is usually explored.

3.3.3. Residual Analysis

Residuals (errors) represent the discrepancy between the predicted output from a
model and the actual measured output. Thus, residuals represent the portion of the
validation data not explained by the model. Residuals were estimated to determine whether
they are negatively affecting the Taguchi model and to verify whether the model meets
the assumptions of the data analysis of pullulan biosynthesis. Four residual analyses were
depicted (Figure 4).
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The normality of residuals was assessed (Figure 4A) to verify the normal distribution
of the residuals. As shown, the normal probability plot of the residuals follows a straight
line without outlier points, confirming the non-normality. Residual vs. fit values (Figure 4B)
show the random distribution of the residuals and further have constant variance i.e.,
distributed eventually on both sides of 0 with no identifiable arrangement. Another,
depicting the histogram of residuals frequency (Figure 4C), revealed no skewness or
outliers of the residuals. Finally, when residuals are displayed in time order, i.e., plotting the
residuals vs. order of run (Figure 4D), the pattern verifies that the residuals are independent
and randomly fall around the center line with no specific pattern or tendencies. All previous
residual analyses supported the normality of the errors (residuals) and the appropriateness
of the Taguchi design in modeling pullulan biosynthesis by A. pullulans.

Taguchi’s experimental design is a robust approach that forms the cornerstone of the
Taguchi method, enabling accurate prediction of multi-variable processes with minimal
experimental trials [16,39,40]. This work demonstrates the effectiveness of using the Taguchi
method to identify the optimal combination of seven variables to maximize pullulan. Based
on Taguchi data, the seven examined variables exhibited various degrees of significance
and importance. Thus, the null hypothesis was disproven since the alternative hypothesis
indicates the existence of significant variation caused by the parameters studied.

3.4. Decision Tree Learning Algorithm

The data from Taguchi experimental design (Table 1) were used for further investiga-
tion using the DT learning algorithm. The data were split 70/30% training/test sets. Upon
performing the decision tree learning process, the fitted and residual values were estimated
together with the terminal nodes.

The DT is a possible solution to a problem based on given conditions. It starts with
a single box and ends up in numerous branches and roots, i.e., numerous solutions. It
is a type of supervised learning algorithm that has target variables. To select solutions,
DT creates classifications, which are applied to both categorical and continuous variables.
Using a DT, the population or samples can be split into two or more homogeneous sets.
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These homogeneous sets are constructed based on the most significant differentiator on
input variables [19,20].

Little or no information is available about the application of DT in the fermentation
processes for the determination of important factors. However, herein DT was used to
optimize the process parameters of the fermentation medium by analyzing the relationship
between the process parameters and the pullulan yield. This was done by training the DT to
predict which of the seven process parameters is optimal for fermentation conditions. The
DT was trained using the obtained data collected from pullulan production. The decision
tree was used to identify the most important process parameters and identify the optimal
range of values for these parameters.

3.4.1. Decision Tree Selection

The R2 vis number of the terminal node was plotted (Figure 5) to find out the smallest
regression tree that maximizes the R2 value. The R2 values for nine trees and nine terminal
nodes were generated from the validation samples. The R2 values of the validation samples
typically level off (plateau) and eventually start to decline as the tree grows larger. The
optimal regression tree that maximizes the R2 value is 91.51 (for training) and 86.15% (for
testing). The tree is optimal as the selection criterion was to create the smallest tree with an
R2 value within a standard deviation of 1 of the maximum R2 value.
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Figure 5. The R2 vis number of terminal nodes plot generated by a decision tree for pullulan
production by A. pullulans.

Because the chart shows that the R2 values are relatively increased (more than a
standard deviation of 1) up to the end of the 9th node; therefore, there is no need to look at
the performance of some of the smaller trees that are like the optimal tree. Typically, a tree
with fewer terminal nodes (such as the current nine-terminal node tree) provides a clearer
understanding of how each predictor variable influences the response values. Additionally,
a smaller tree simplifies identifying a few key predictors for additional research.
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The tree was constructed and investigated for the distinction of terminal nodes on the
diagram (Figure 6). The tree diagram shows all 81 cases from the full data set. The target
was to find the largest mean with the lowest standard deviations.
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Figure 6. The decision tree with a depth of four of the pullulan biosynthesis using A. pullulans. A
total of 81 data sets from Taguchi’s experimental design were employed in the decision tree learning
algorithm to predict pullulan yield. The data used for node selection are introduced in the squares.
The squares involved in the paths of the best variable mixtures for pullulan biosynthesis were
predicted with the decision tree.

The first node used 53 cases and is split at two levels of MgSO4, i.e., ≤0.15 and
>0.15 g/L. Node 2 has 17 cases where the mean for the node (4.40 g/L pullulan) is less
than the overall mean (5.28 g/L pullulan), with a standard deviation of 1.01, which is
>the overall standard deviation. Node 4 has 36 cases with a low standard deviation,
0.68, which is < the overall standard deviation because a split yields a purer node. The
mean (5.70 g/L pullulan) for the node is more than the overall mean. This node split
MgSO4 into two levels at <0.25 and >0.25 g/L. Node 7 used 17 cases and showed further
improvement in the mean and standard deviation. This node was split based on incubation
time into ≤84 and >84 h. Node 8 used 10 cases and also showed improvement and split
into two terminal nodes (7 and 8) based on sucrose concentration. Terminal node 7 has
the highest mean, with only four cases. Accordingly, terminal node 7 showed the highest
mean value of pullulan (6.98 ± 0.29 g/L). The node rules were sucrose ≤ 45, MgSO4 > 0.25,
and incubation time ≤ 84; these rules were achieved in run no. L7, which also acts as a
terminal node in the decision tree. On the other side, terminal node 1 has the smallest mean
(2.95 g/L), suggesting that the data in terminal node 1 are probably skewed.
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The error statistics of the decision tree learning model were calculated. The accuracy
of the resulting tree was indicated with low MSE, being 0.0850 and 0.1397, and RMSE being
0.2916 and 0.37380.3738, for training and testing processes, respectively.

3.4.2. The Relative Variable Importance

The relative variable importance is quantified as the increasing percentage relative to
the leading predictor (variable). The leading predictor has a relative importance of 100%,
thus, the other variables are standardized relative to the leading predictor; accordingly,
the importance of each variable could be easily interpreted. The chart (Figure 7) of the
relative variable importance was used to detect which predictor is the most important to
the tree. The most important (leading) variable is determined as the one with the highest
score of improvement (and thus considered 100% important), and the rest of the variables
are ranked accordingly. Variables that are considered important are primary or surrogate
splitters in a decision tree. The most vital variable always has 100% relative importance
(MgSO4 in the current study). The non-important variable does not appear in the tree.
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As MgSO4 was the most important predictor variable with a 100% contribution in
pullulan biosynthesis, the other variables were compared to MgSO4 to determine their
relative importance. Consequently, NaCl (82.0%), sucrose (79.6%), and K2HPO4 (78.2%)
showed higher relative importance than incubation time (21.7%) and pH (11.9%); the yeast
extract was the lowest variable.

Although the positive importance of the seven variables, the relative ranking informs
about the number of variables to regulate or keep track of in pullulan production. Signifi-
cant decreases in the relative importance values between variables can assist in determining
which variables should be regulated or monitored. In this connection, four variables have
the highest relative important values that are relatively close together before a drop to 21.7%
in relative importance for the incubation time. It is worth mentioning that the relative
variable importance is in harmony with that obtained by Taguchi’s experimental data,
confirming the accuracy of the experimental design and the obtained data.

3.5. Validation of Taguchi and DT Models

The prediction level of each of the seven tested factors was determined by both
models (Table 4). The laboratory confirmation experiments were conducted in triplicate to
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verify the optimal process conditions calculated from both design models. The obtained
experimental data confirmed and verified the fitness of both models when compared with
predicted values.

Table 4. The predicted fermentation conditions were estimated based on the Taguchi and DT models
as well as the predicted and actual values of pullulan biosynthesis by A. pullulans.

Model

Nutritional Component (g/L)
pH Incubation

(h)

Pullulan, %
S/N

Ratio
Terminal

NodeSucrose K2HPO4 NaCl MgSO4
Yeast

Extract Predicted Actual

Taguchi 60 4 1.5 0.3 1 5.5 48 7.17 7.23 ±
0.13 17.64 -

Decision
tree 40 4 1.5 0.3 1 5.5 48 6.98 7.11 ±

0.07 - 7

The maximum pullulan biosynthesis by A. pullulans at the speculative values of
the optimal levels of the seven tested variables was 7.17%, with a S/N ratio of 17.64.
Under laboratory experimental conditions, these estimated values were evaluated. The
experimental value of pullulan biosynthesis was obtained at 7.23 ± 0.13%. Similarly, to
check the forecast capacity of the DT model, the actual value was calculated to be 7.11 ± 0.07
compared with the predicted one. This value was separated at the seventh node of the DT.

The actual values showed accuracy and were very close and obey to the predicted
value by both models. However, from the economic point of view, the performance of
the DT model was better than the Taguchi model since it takes only 40 g/L of sucrose
compared to 60 g/L in the case of Taguchi to yield a similar yield of pullulan.

The relative importance and optimum level for each of the investigated variables
varied accordingly. However, each variable plays a distinct role in pullulan biosynthesis.
The most important one is magnesium sulfate, which is essential for the growth and
survival of fungi. It acts as a source of magnesium involved in many metabolic processes,
including energy production and DNA synthesis. Its sulfur moiety provides sulfur, which
is an important component of amino acids and coenzymes [41,42]. Magnesium sulfate
is commonly used as a co-factor in pullulan production. It acts as a key ionic activator
in the formation of pullulan polysaccharides by the enzyme pullulanase. Additionally,
magnesium sulfate can help regulate the osmotic pressure and pH in the reaction mixture,
leading to improved pullulan yield and quality [43].

Sodium chloride came next in terms of relative importance. The rates of both specific
glucose consumption and, consequently, the specific pullulan production rate improved
due to the presence of NaCl, causing greater pullulan yield. Moreover, NaCl stimulates
glucosyltransferase and α-phosphoglucose mutase (involved in pullulan biosynthesis) and
also stimulates α-amylase (the degraded pullulan), upregulates the transcriptional levels of
fks, pgm1, and amy2 genes, enhances the driving force for ATP supply, and helps to maintain
intracellular uridine diphosphate-glucose at a high level in the fungal cells [44,45]. However,
NaCl is essential for fungal growth, as it helps regulate the osmotic pressure of the growth
medium. Fungi require an appropriate balance of solutes, including sodium and chloride
ions, to maintain cellular turgor and facilitate the proper uptake of nutrients. Sodium
ions play a role in regulating fungal osmotic pressure, while chloride ions are involved
in metabolic processes and in maintaining the stability of cell membranes. However, too
much NaCl can be toxic to fungi and inhibit their growth, so it is important to regulate its
concentration in the growth medium [46,47].

Sucrose was the third important factor. An earlier study reported that the minimum
response of pullulan production happened at the lowest level of sucrose; as the sucrose
concentration increased, a considerable increment in pullulan biosynthesis occurred, indi-
cating the significant influence of sucrose concentration on pullulan production. However,
a higher concentration of sucrose led to a decrease in pullulan production due to low water
activity and the osmotic impact caused by elevated sucrose levels [28].
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Dipotassium hydrogen phosphate is used as a food additive and has been approved
as generally recognized as safe. Besides acting as a crucial nutrient of potassium and
phosphorus source for fungal growth, cell division, and metabolic processes, it also acts
as a pH buffer to regulate and stabilize the medium pH, helping to maintain a stable pH
environment for optimal fungal growth [48].

Incubation time is a determinant and key factor in pullulan production, as it affects
the growth and metabolic activity of the microorganisms and the synthesis of pullulan.
Obviously, our endophytic A. pullulans strain showed a relatively short incubation period
(48 h) compared with the previously stated time [28,49]. In addition, the optimal incuba-
tion time varies depending on the microorganism and the conditions of the reaction, but
generally, longer incubation times lead to increased pullulan yields. However, excessively
long incubation times can result in reduced pullulan yields due to substrate depletion and
the accumulation of inhibitory substances. It is, therefore, important to carefully control
the incubation time to obtain optimal pullulan yields [45].

The degree of pH plays a crucial role in pullulan production, affecting both the
growth of the microorganisms and the production of pullulan. Optimal pH conditions can
vary depending on the specific microorganisms used, but generally, a slightly acidic to
neutral pH (6.0–7.0) is favored. This range of pH values provides the microorganisms with
the necessary conditions to carry out their metabolic activities, leading to the synthesis
and accumulation of pullulan. Additionally, controlling pH can also help regulate other
factors, such as osmotic pressure and the availability of essential ions for the production of
pullulan [45].

Although yeast extract was ranked last in terms of relative importance, it is a common
ingredient in the production of pullulan, serving as a source of essential nutrients (amino
acids, vitamins, and trace elements) for the pullulan-producing microorganisms, thus plays
an important role in promoting the growth and metabolic activity of the fungus, ultimately
leading to the synthesis and accumulation of pullulan [45].

3.6. The Structure Characterization of Pullulan

The structure of the purified pullulan isolated from A. pullulans was interpreted
in this work through the spectroscopic analysis involving the usage of two distinctive
spectroscopic performances (FT-IR and 1H-NMR spectra).

3.6.1. The FT-IR Spectroscopy

FT-IR spectroscopy is a type of infrared spectroscopy that uses Fourier-transform
techniques to analyze the infrared light absorbed or emitted by a sample. It is used to
identify chemical compounds and analyze the molecular structure of materials.

The FT-IR spectral analysis was implemented to investigate the structural elucidation
of the produced pullulan skeleton. Generally, the spectral data that was recorded (Figure 8
and Table 5) well-established the pullulan structure. As shown, the FT-IR spectral data
(KBr, ν cm−1) revealed a sharp absorption band at 3309 cm−1 attributed to the stretching
vibration of bonded and non-bonded OH groups, which are ascribed to the alcoholic or
aliphatic hydroxyl chains. The absorption band that was recorded at 2924 cm−1 is attributed
to medium C-H stretching owing to the presence of the sp3 C-H bond. Additionally, the
absorption band situated at 1642 cm−1 is ascribed to the weak stretching vibration of O-C-O
groups, which verified the presence of aliphatic ether moiety in the structural skeleton.
Nevertheless, this result is well-matched with that reported study, which specified the
value of the characteristic stretching vibration of O-C-O groups at 1636 cm−1 [50]. The
absorption band that appeared at 1417 cm−1 is attributed to the medium C-H bending
of the alkane chain of the sp3 C-H bond. Also, a medium absorption band due to the
C-O-H group appeared at 1360 cm−1, signifying the presence of aliphatic ether moiety.
Other types of pullulan were correspondingly perceived in the spectra comprising the
C-O-C stretching absorption band at 1148 cm−1 and the C-O stretching absorption bands
at 1077 and 995 cm−1. The strong absorption band due to the C-O-C group that appeared
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at 1148 cm−1 is typically well-matched with several previous data of FT-IR spectra [50–52].
In particular, a weak band that appeared in the FT-IR chart at 850 cm−1 supported the
α-configuration of α-D-glucopyranose fragments in the pullulan skeleton. Additionally,
the basic linkage of glucopyranose units to construct the pullulan framework appeared
in the recorded data at 706, 755, and 930 cm−1—these values estimated the linkage of the
units was accomplished through α-(1,4) and α-(1,6)-D-glycosidic bonds [53].
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Table 5. The FT-IR spectroscopic data of A. pullulans AKW pullulan.

Absorption
(cm−1) Appearance Functional

Group
Compound

Class
Relative
Intensity

3309 sharp O-H stretching Alcohol 0.250
2924 medium C-H stretching Alkane 0.066
1642 weak O-C-O stretching Aliphatic ether 0.073
1417 medium C-H bending Alkane 0.001
1360 medium C-O-H Aliphatic ether 0.097
1148 strong C-O-C stretching Aliphatic ether 0.047
1077 strong C-O stretching Alcohol 0.047
995 strong C-O stretching primary alcohol 0.034
930 strong C-H bending trisubstituted 0.034
755 strong C-H bending disubstituted 0.012
706 strong C-H bending disubstituted 0.012

3.6.2. The 1H-NMR Spectroscopy

The 1H-NMR is a type of nuclear magnetic resonance spectroscopy that specifically
measures the magnetic properties of hydrogen nuclei (protons) in a sample. It is used to
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determine the molecular structure of organic compounds and to study the properties of
molecules in solution. The 1H-NMR spectrum provides information about the number of
hydrogen atoms, their chemical environment, and their relative orientation in the molecule.

The 1H-NMR spectrum was performed for pullulan to characterize the structural
framework. The protons of hydroxyl groups are exchangeable with D2O owing to dis-
solving the pullulan sample in a mixture of DMSO-d6/D2O to improve the solubility. A
one-dimensional 1H-NMR spectrum was applied for the tested sample, which verified
signals for the total nine protons for each glucose unit, excluding the exchangeable hydroxyl
protons with D2O. The data of the 1H-NMR spectrum (Figures 9 and 10) demonstrated that
the signal attributed to the CH proton at the C4 position appeared at δ = 3.135 ppm. The
recorded signals appeared in the downfield region (aliphatic region) between δ = 3.135 to
5.027 ppm deducing the protons on carbon atoms adjacent to high electronegative atoms
verified the distinctive chemical location of a carbohydrate core. Consequently, the total
integrated protons from the 1H-NMR chart indicated the presence of carbohydrate polymer
chains with three units of the sugar moiety. The signals at δ = 5.027–5.061 ppm supported
the α-1,6 and α-1,4 glycosidic bonds at the C1 position of the sugar moiety, as well as
the formation of (1→4) and (1→6) linkages. The data verified the presence of two singlet
signals at δ = 3.135 and 4.694 ppm attributed to the protons attached to the C4, and C2
positions, respectively. Correspondingly, the CH and CH2 protons appeared at 3.302–3.323,
3.553–3.701, and 3.767–3.797 ppm as a doublet or doublet of doublet signals are attributed
to the protons attached to the C3, C5, and C6 carbons. The methine proton at the C1 position
appeared more de-shielded at 5.061–5.027 ppm owing to the impact of the two adjacent
oxygen atoms (high electronegative atom) to the carbon atom at the C1 position.
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In comparison to the studies [53–55] that previously reported on the chemical struc-
ture elucidation of pullulan by 1H-NMR spectroscopy, typical data were recorded herein,
excluding the signals due to the hydroxyl groups exchanged with D2O. In addition, the
comparison of our data with commercial pullulan spectra [29,49] confirmed the structure
of the current pullulan.

Several investigations have been conducted on pullulan production by A. pullulans.
Overall, the results of previous studies have varied depending on the conditions used.
However, these studies have provided valuable insights into the optimization of pullulan
production by A. pullulans and the potential use of alternative nutritional and fermentation
conditions for pullulan production [56]. One earlier study reported that the optimal
conditions for pullulan biosynthesis by A. pullulans were at 28 ◦C and an agitation rate of
200 rpm. Under these conditions, the yield of pullulan was 40.1 g/L [12]. In addition, the
statistical optimization of the central composite design was applied for using molasses as a
carbon source for pullulan production by A. pullulans, with a yield of 45 g/L [13]. A more
recent study investigated the use of soybean meal hydrolysate as a nitrogen source and
found that pullulan production by A. pullulans reached 59.8 g/L [14].

Our study, on the other hand, represents the state-of-the-art for the biosynthesis of
pullulan by the endophytic strain that is capable of producing 72.3 g/L, representing about
a 1.5-fold increase over most of the previous investigation. This may also be due to the
novel application of Taguchi’s design and the DT learning algorithm.

4. Conclusions

In sum, our results provide a concise and insightful description of applying both the
Taguchi and DT learning algorithm paradigms in the biosynthesis process of pullulan by
the new endophytic candidate, A. pullulans AKW. Another important conclusion that can
be drawn is the relatively short fermentation period compared with previous studies on a
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more simplified medium. However, further research is encouraged for additional studies
on using artificial intelligence to optimize the fermentation conditions for the maximization
of pullulan biosynthesis. Other studies are also encouraged to focus on its biosynthesis
regulation under the current fermentation circumstances.
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