Contributing Factors of Uneven Climatic Aging for Polymeric Composite Materials: Methods and Modelling
Abstract
:1. Introduction
2. The Role of the Main Factors on the Uneven Aging of PCM
2.1. Influence of Diurnal and Seasonal Thermal Cycles
2.2. Influence of Moisture
2.3. Influence of Oxidation and Physical Aging
2.4. Combined Influence of Environmental Factors with the Ultraviolet Component of Solar Radiation
2.5. Influence of Moisture in a Cold Climate
3. Modeling Uneven Aging of PCMs
4. Conclusions
- 1.
- The dominant cause of the uneven aging of PCMs is the effect of water. When swelling with moisture, internal hygrothermal stresses arise which are distributed unevenly over the thickness of the plates. The maximum internal stresses are maximum on the surface of the PCM plates at the initial moments of moisture sorption and desorption. Therefore, the probability of the formation of microcracks in the surface layers increases. The unevenness of aging depends on changes in air temperature and humidity, and increases with daily and seasonal transitions from sorption to desorption.
- 2.
- Progressive oxidation of PCM polymer matrices under open climatic conditions in combination with the action of UV radiation is one of the probable reasons for the formation of mechanical strength gradients across the thickness of the plates.
- 3.
- Physical and chemical transformations in PCM polymer matrices activated by temperature, moisture, and solar radiation promote the capillary condensation of moisture, which can turn into a solid phase at temperatures below 0 °C, be a source of additional internal stresses that cause the formation of new damage in the surface layers, and be the reason for the decrease in the strength of PCMs.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kablov, E.N. Innovative developments of FSUE “Russian Research Institute of Aviation Materials” SSC RF to implement the “Strategic directions of development of materials and technologies of their processing for the period up to 2030”. Aviac. Mater. Tekhnologii 2015, 1, 3–33. [Google Scholar]
- Chursova, L.V. Structural Composite Materials; Kablov, E.N., Ed.; Federal State Unitary Enterprise “Russian Research Institute of Aviation Materials” State Scientific Center of the Russian Federation: Moscow, Russia, 2012. [Google Scholar]
- Pochiraju, K.V.; Tandon, G.P.; Schoeppner, G.A. Long-Term Durability of Polymeric Matrix Composites; Springer: New York, NY, USA, 2011. [Google Scholar]
- White, C.C.; White, K.M.; Pickett, L.E. Service Life Prediction of Polymers and Plastics Exposed to Outdoor Weathering; William Andrew: Norwich, NY, USA, 2017. [Google Scholar]
- Startsev, V.O. Climatic Resistance of Polymeric Composite Materials and Protective Coatings in a Moderately Warm Climate. Ph.D. Thesis, All-Russian Scientific Research Institute of Aviation Materials, Moscow, Russia, 2018. [Google Scholar]
- Dexter, H.B. Long-Term Environmental Effects and Flight Service Evaluation of Composite Materials. 1987. Available online: https://ntrs.nasa.gov/citations/19870008425 (accessed on 25 December 2022).
- Hoffman, D.J.; Bielawski, W.J. Environmental Exposure Effects on Composite Materials for Commercial Aircraft. 1990. Available online: https://archive.org/details/NASA_NTRS_Archive_19910015045 (accessed on 25 December 2022).
- Baker, D.J. Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program. 1994. Available online: https://ntrs.nasa.gov/citations/19950005944 (accessed on 25 December 2022).
- Vodicka, R. Environmental Exposure of Boron-Epoxy Composite Material; Defence Science and Technology Organisation Melbourne: Melbourn, Australia, 2000. [Google Scholar]
- Martin, R. Ageing of Composites; Martin, R., Ed.; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Nishizaki, I.; Sakurada, H.; Tomiyama, T. Durability of pultruded GFRP through ten-year outdoor exposure test. Polymers 2015, 7, 2494–2503. [Google Scholar] [CrossRef] [Green Version]
- Kablov, E.N.; Startsev, V.O. Systematical analysis of the climatic effect on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviac. Mater. Tekhnologii 2018, 2, 47–58. [Google Scholar]
- Kablov, E.N.; Startsev, V.O. Climatic aging of aviation polymer composite materials: 1. Influence of significant factors. Russ. Metall. 2020, 2020, 364–372. [Google Scholar] [CrossRef]
- Kablov, E.N.; Startsev, V.O. Climatic aging of aviation polymer composite materials: 2. Development of methods for studying the early stages of aging. Russ. Metall. (Met.) 2020, 2020, 1088–1094. [Google Scholar] [CrossRef]
- Raskutin, A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviac. Mater. Tekhnologii 2017, 10, 349–367. [Google Scholar] [CrossRef]
- Irving, P.; Soutis, C. Polymer Composites in the Aerospace Industry, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Kolobkov, A.S. Polymer composite materials for various aircraft structures (review). Tr. VIAM 2020, 6–7, 38–44. [Google Scholar] [CrossRef]
- Nugraha, A.D.; Nuryanta, M.I.; Sean, L.; Budiman, K.; Kusni, M.; Muflikhun, M.A. Recent Progress on Natural Fibers Mixed with CFRP and GFRP: Properties, Characteristics, and Failure Behaviour. Polymers 2022, 14, 5138. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Fiedler, B. Failure Prediction and Surface Characterization of GFRP Laminates: A Study of Stepwise Loading. Polymers 2022, 14, 4322. [Google Scholar] [CrossRef]
- Startsev, O.V.; Lebedev, M.P.; Kychkin, A.K. Ageing of basalt plastics in open climatic conditions. Polym. Sci. Ser. D 2022, 15, 101–109. [Google Scholar] [CrossRef]
- Tibayan, E.B.; Muflikhun, M.A.; Villagracia Al, R.C.; Kumar, V.; Santos, G.N.C. Structures and UV resistance of Ag/SnO2 nanocomposite materials synthesized by horizontal vapor phase growth for coating applications. J. Mater. Res. Technol. 2020, 9, 4806–4816. [Google Scholar] [CrossRef]
- Tibayan, E.B.; Muflikhun, M.A.; Kumar, V.; Fisher, C.; Villagracia Al, R.C.; Santos, G.N.C. Performance evaluation of Ag/SnO2 nanocomposite materials as coating material with high capability on antibacterial activity. Ain Shams Eng. J. 2019, 11, 767–776. [Google Scholar] [CrossRef]
- Fang, M.; Zhang, N.; Huang, M.; Lu, B.; Lamnawar, K.; Liu, C.; Shen, C. Effects of Hydrothermal Aging of Carbon Fiber Reinforced Polycarbonate Composites on Mechanical Performance and Sand Erosion Resistance. Polymers 2020, 12, 2453. [Google Scholar] [CrossRef] [PubMed]
- Startsev, V.O. Across-the-thickness gradient of the interlaminar shear strength of a CFRP after its long-term exposure to a marine climate. Mech. Compos. Mater. 2016, 52, 171–176. [Google Scholar] [CrossRef]
- Roylance, D.; Roylance, M. Weathering of fiber-reinforced epoxy composites. Polym. Eng. Sci. 1978, 18, 249–254. [Google Scholar] [CrossRef]
- Tian, J.; Li, C.; Qi, X.; Xian, G. Hygrothermal aging behavior and mechanism of multi-filler reinforced epoxy composites for steel structure coatings. Eur. Polym. J. 2022, 184, 111780. [Google Scholar] [CrossRef]
- Belec, L.; Nguyen, T.H.; Nguyen, D.L.; Chailan, J.F. Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale. Compos. Part A 2015, 68, 235–241. [Google Scholar] [CrossRef]
- de Bruijn, J.C.M.; Meijer, H.D.F. The design and application of a microfoil tensile test apparatus for monitoring the degree of ultraviolet degradation of polymers. Rev. Sci. Instrum. 1991, 62, 1620–1623. [Google Scholar] [CrossRef]
- de Bruijn, J.C.M. Degradation profiles of thick high-density polyethylene samples after outdoor and artificial weathering. In Polymer Durability: Degradation, Stabilization, and Lifetime Prediction; Clough, L., Billingham, N.C., Gillen, K.T., Eds.; ACS Publications: Washington, DC, USA, 1996; pp. 599–620. [Google Scholar]
- Sookay, N.K.; Klemperer, C.J.; Verijenko, V.E. Environmental testing of advanced epoxy composites. Compos. Struct. 2003, 62, 429–433. [Google Scholar] [CrossRef]
- Gu, X.; Dickens, B.; Stanley, D.; Byrd, W.E.; Nguyen, T.; Vaca-Trigo, I.; Meeker, W.Q.; Chin, J.; Martin, J.W. Linking Accelerating Laboratory Test with Outdoor Performance Results for a Model Epoxy Coating System; Statistics Preprints. Paper 30; Iowa State University: Ames, IA, USA, 2008; pp. 1–47. [Google Scholar]
- Startsev, V.O.; Lebedev, M.P.; Khrulev, K.A.; Molokov, M.V.; Frolov, A.S.; Nizina, T.A. Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers. Polym. Test. 2018, 65, 281–296. [Google Scholar] [CrossRef]
- Starstev, V.O.; Plotnikov, V.I.; Antipov, J.V. Reversible effects of moisture in determining mechanical properties of PCM under climatic exposure. Tr. VIAM 2018, 5, 110–118. [Google Scholar]
- Bouadi, H.; Sun, C.T. Hygrothermal effects on the stress field of laminated composites. J. Reinf. Plast. Compos. 1989, 8, 40–54. [Google Scholar] [CrossRef]
- Startsev, V.O.; Molokov, M.V.; Lebedev, M.P.; Nizin, D.R. The gradient of dynamic mechanical characteristics across the thickness of epoxy polymers during environmental exposure. Polym. Sci. Ser. D 2019, 12, 381–391. [Google Scholar] [CrossRef]
- Idrisi, A.H.; Mourad, A.-H.I.; Sherif, M.M. Impact of prolonged exposure of eleven years to hot seawater on the degradation of a thermoset composite. Polymers 2021, 13, 2154. [Google Scholar] [CrossRef] [PubMed]
- Krauklis, A.E.; Karl, C.W.; Rocha, I.B.C.M.; Burlakovs, J.; Ozola-Davidane, R.; Gagani, A.I.; Starkova, O. Modelling of environmental ageing of polymers and polymer composites—Modular and multiscale methods. Polymers 2022, 14, 216. [Google Scholar] [CrossRef]
- Startsev, O.; Krotov, A.; Mashinskaya, G. Climatic ageing of organic fiber reinforced plastics: Water effect. Int. J. Polym. Mater. Polym. Biomater. 1997, 37, 161–171. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Ji, J.; Yang, Y.; Shen, J.; Ye, M. The hygrothermal aging process and mechanism of the novolac epoxy resin. Compos. Part B Eng. 2016, 107, 1–8. [Google Scholar] [CrossRef]
- Kong, E.S.-W. Physical aging in epoxy matrices and composites. Adv. Polym. Sci. 1986, 80, 125–171. [Google Scholar]
- Odegard, G.M.; Bandyopadhyay, A. Physical ageing of epoxy polymers and their composites. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1695–1716. [Google Scholar] [CrossRef]
- Kablov, E.N.; Startsev, V.O. The influence of internal stresses on the ageing of polymer composite materials: A review. Mech. Compos. Mater. 2021, 57, 565–576. [Google Scholar] [CrossRef]
- Lebedev, M.P.; Starstev, O.V.; Petrov, M.G.; Kopyrin, M.M. Obrazovanie mikrotreshhin pri klimaticheskom starenii polimernyh kompozicionnyh materialov [Formation of microcracks during climatic ageing of polymer composite materials]. Vse materialy. Entsiklopedicheskiy Spravochnik 2022, 4, 2–11. [Google Scholar]
- Hahn, H.T. Residual stresses in polymer matrix composite laminates. J. Compos. Mater. 1976, 10, 266–278. [Google Scholar] [CrossRef]
- Nairn, J.A. Matrix microcracking in composites. In Polymer Matrix Composites; Talreja, R., Manson, J.A., Eds.; USE: Salt Lake City, UT, USA, 2000; Volume 2, pp. 403–432. [Google Scholar]
- Peterson, E.C.; Patil, R.R.; Kallmeyer, A.R.; Kellogg, K.G. A Micromechanical damage model for carbon fiber composites at reduced temperatures. J. Compos. Mater. 2008, 42, 2063–2082. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Ma, J.; Liu, B. Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer–matrix composites. Comput. Mater. Sci. 2013, 68, 255–262. [Google Scholar] [CrossRef]
- Adams, D.S.; Bowles, D.E.; Heracovich, C.T. Thermally induced transvers cracking in graphite-epoxy cross-ply laminates. J. Reinf. Plast. Compos. 1986, 5, 152–169. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Ouyang, Y.; Xu, W.; Liu, Y. Hygrothermal aging behavior and mechanical degradation of ramie/carbon fiber reinforced thermoplastic polymer hybrid composites. Ind. Crops Prod. 2023, 193, 116212. [Google Scholar] [CrossRef]
- Browning, C.E. The mechanisms of elevated temperature property losses in high performance structural epoxy resin matrix materials after exposures to high humidity environments. Polym. Eng. Sci. 1978, 18, 16–24. [Google Scholar] [CrossRef]
- Boualem, N.; Serier, Z. Accelerated ageing of unidirectional hybrid composites under the long-term elevated temperature and moisture concentration. Theor. Appl. Fract. Mech. 2011, 55, 68–75. [Google Scholar] [CrossRef]
- Colin, X.; Mavel, A.; Marais, C.; Verdu, J. Interaction between cracking and oxidation in organic matrix composites. J. Compos. Mater. 2005, 39, 1371–1389. [Google Scholar] [CrossRef]
- Decelle, J.; Huet, N.; Bellinger, V. Oxidation induced shrinkage for thermally aged epoxy networks. Polym. Degrad. Stab. 2003, 81, 239–248. [Google Scholar] [CrossRef]
- Pecora, M.; Pannier, Y.; Lafarie-Frenot, M.-C.; Gigliotti, M.; Guigon, C. Effect of thermo-oxidation on the failure properties of an epoxy resin. Polym. Test. 2016, 52, 209–217. [Google Scholar] [CrossRef]
- Toscano, A.; Pitarresi, G.; Scafidi, M.; Di Filippo, M.; Spadaro, G.; Alessi, S. Water diffusion and swelling stresses in highly crosslinked epoxy matrices. Polym. Degrad. Stab. 2016, 133, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Harper, B.D.; Weitsman, Y. On the effects of environmental conditioning on residual stresses in composite laminates. Int. J. Solids Struct. 1985, 21, 907–926. [Google Scholar] [CrossRef]
- Zainuddin, S.; Hosur, M.V.; Barua, R.; Kumar, A.; Jeelani, S. Effects of ultraviolet radiation and condensation on static and dynamic compression behavior of neat and nanoclay infused epoxy/glass composites. J. Compos. Mater. 2011, 45, 1901–1918. [Google Scholar] [CrossRef]
- Kumar, B.G.; Singh, R.P.; Nakamura, T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. J. Compos. Mater. 2002, 36, 2713–2732. [Google Scholar] [CrossRef]
- Nakamura, T.; Singh, R.P.; Vaddadi, P. Effects of environmental degradation on flexural failure strength of fiber reinforced composites. Exp. Mech. 2006, 46, 257–268. [Google Scholar] [CrossRef]
- Lu, T.; Solis-Ramos, E.; Yi, Y.-B.; Kumosa, M. Synergistic environmental degradation of glass reinforced polymer composites. Polym. Degrad. Stab. 2016, 131, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Solis-Ramos, E.; Yi, Y.-B.; Kumosa, M. UV degradation model for polymers and polymer matrix composites. Polym. Degrad. Stab. 2018, 154, 203–210. [Google Scholar] [CrossRef]
- Barbosa, A.P.C.; Fulco, A.P.P.; Guerra, E.S.S.; Arakaki, F.K.; Tosatto, M.; Costa, M.C.B.; Melo, J.D.D. Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B 2017, 110, 298–306. [Google Scholar] [CrossRef]
- Shi, Z.; Zou, C.; Zhou, F.; Zhao, J. Analysis of the mechanical properties and damage mechanism of carbon fiber/epoxy composites under UV aging. Materials 2022, 15, 2919. [Google Scholar] [CrossRef]
- Awaja, F.; Zhang, S.; Tripathi, M.; Nikiforov, A.; Pugno, N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Prog. Mater. Sci. 2016, 83, 536–573. [Google Scholar] [CrossRef]
- Ghabezi, P.; Harrison, N.M. Indentation characterization of glass/epoxy and carbon/epoxy composite samples aged in artificial salt water at elevated temperature. Polym. Test. 2022, 110, 107588. [Google Scholar] [CrossRef]
- Lim, S.G.; Hong, C.S. Effect of transverse cracks on the thermomechanical properties of cross-ply laminated composites. Compos. Sci. Technol. 1989, 34, 145–162. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, W.J.; Choi, C.H.; Choi, H.S. An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption. Compos. Struct. 2019, 207, 81–92. [Google Scholar] [CrossRef]
- Salnikov, V.G.; Startsev, O.V.; Lebedev, M.P.; Kopyrin, M.M.; Vapirov, J.M. Influence of daily and seasonal changes in relative humidity and temperature on moisture saturation of carbon fiber in natural climatic conditions. All Mater. Encycl. Ref. Book 2022, 5, 2–10. [Google Scholar]
- Tsotsis, T.K. Effects of Sub-Freezing Temperatures on Graphite/Epoxy Composite Materials. J. Eng. Mater. Technol. 1989, 111, 438439. [Google Scholar] [CrossRef]
- Bansil, R.; Wiafe-Akenten, J.; Taaffe, J.L. Raman spectroscopy of supercooled water. J. Chem. Phys. 1982, 76, 2221–2226. [Google Scholar] [CrossRef]
- D’Arrigo, G.; Maisano, G.; Mallamace, F.; Migliardo, P.; Wanderlingh, F. Raman scattering and structure of normal and supercooled water. J. Chem. Phys. 1981, 75, 4264–4270. [Google Scholar] [CrossRef]
- Morishige, K.; Yasunaga, H.; Matsutani, Y. Effect of pore shape on freezing and melting temperatures of water. J. Phys. Chem. 2010, 114, 4028–4035. [Google Scholar] [CrossRef]
- Sokova, S.D. Choice of electro-insulating repair materials with regard to their compatibility and characteristics of operation. Vestn. MGSU 2010, 4, 151–156. [Google Scholar]
- Abdelmola, F.; Carlsson, L.A. State of water in void-free and void- containing epoxy specimens. J. Reinf. Plast. Compos. 2019, 26, 556–566. [Google Scholar] [CrossRef]
- Lopez-Anido, R.; Michael, A.P.; Sandford, T.C. Freeze-thaw resistance of fiber-reinforced polymer composites adhesive bonds with underwater curing epoxy. J. Mater. Civ. Eng. 2004, 16, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Karbhari, V.M. Response of fiber reinforced polymer confined concrete exposed to freeze and freeze-thaw regimes. J. Compos. Constr. 2002, 6, 35–40. [Google Scholar] [CrossRef]
- Heshmati, M.; Haghani, R.; Al-Emrani, M. Durability of CFRP/steele goints under cyclic wet-dry and freeze-thau conditions. Compos. Part B 2017, 126, 211–226. [Google Scholar] [CrossRef]
- Jedidi, J.; Jacquemin, F.; Vautrin, A. Accelerated hygrothermal cyclical tests for carbon/epoxy laminates. Compos. Part A 2006, 37, 636–645. [Google Scholar] [CrossRef] [Green Version]
- Lependin, A.A.; Polyakov, V.V.; Salita, D.S. The evolution of statistical characteristics of acoustic emission upon fiberglass destruction. Tech. Phys. Lett. 2015, 9, 411–413. [Google Scholar] [CrossRef]
- Sukhanov, V.V.; Startsev, O.V. Diffusion model of thermomoisture aging of fiberglass. Issues of aviation science and technology. Series “Aviation materials”. Moscow 1990, 86–91. (In Russian) [Google Scholar]
- Sevostianov, I.; Sookay, N.K.; von Klemperer, C.J.; Verijenko, V.E. Environmental degradation using functionally graded material approach. Compos. Struct. 2003, 62, 417–421. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, M.P.; Startsev, O.V.; Kychkin, A.K.; Petrov, M.G.; Kopyrin, M.M. Contributing Factors of Uneven Climatic Aging for Polymeric Composite Materials: Methods and Modelling. Polymers 2023, 15, 1458. https://doi.org/10.3390/polym15061458
Lebedev MP, Startsev OV, Kychkin AK, Petrov MG, Kopyrin MM. Contributing Factors of Uneven Climatic Aging for Polymeric Composite Materials: Methods and Modelling. Polymers. 2023; 15(6):1458. https://doi.org/10.3390/polym15061458
Chicago/Turabian StyleLebedev, Mikhail P., Oleg V. Startsev, Anatoly K. Kychkin, Mark G. Petrov, and Michail M. Kopyrin. 2023. "Contributing Factors of Uneven Climatic Aging for Polymeric Composite Materials: Methods and Modelling" Polymers 15, no. 6: 1458. https://doi.org/10.3390/polym15061458
APA StyleLebedev, M. P., Startsev, O. V., Kychkin, A. K., Petrov, M. G., & Kopyrin, M. M. (2023). Contributing Factors of Uneven Climatic Aging for Polymeric Composite Materials: Methods and Modelling. Polymers, 15(6), 1458. https://doi.org/10.3390/polym15061458