New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Synthesis of Polymers and Film Formation
2.3. Analytical Methods
2.3.1. Analysis of Structure and Thermal Properties
2.3.2. Physical and Mechanical Tests and Assessment of Self-Healing Efficiency
3. Results and Discussion
3.1. Structure and Composition of Copolymers
3.1.1. Elemental Analysis
3.1.2. IR- and UV-Vis-Spectrometry
3.1.3. X-ray Studies
3.1.4. Thermal Properties of Polymers
3.2. Mechanical and Self-Healing Properties of Metallopolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platonova, E.; Ponomareva, P.; Lokiaeva, Z.; Pavlov, A.; Nelyub, V.; Polezhaev, A. New Building Blocks for Self-Healing Polymers. Polymers 2022, 14, 5394. [Google Scholar] [CrossRef] [PubMed]
- Irzhak, V.I.; Uflyand, I.E.; Dzhardimalieva, G.I. Self-Healing of Polymers and Polymer Composites. Polymers 2022, 14, 5404. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Yadav, B.C.; Singh, S.; Uflyand, I.E. Self-Healing and Shape Memory Metallopolymers: State-of-the-Art and Future Perspectives. Dalton Trans. 2020, 49, 3042–3087. [Google Scholar] [CrossRef]
- Hager, M.D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U.S. Self-Healing Materials. Adv. Mater. 2010, 22, 5424–5430. [Google Scholar] [CrossRef] [PubMed]
- Billiet, S.; Hillewaere, X.K.D.; Teixeira, R.F.A.; Du Prez, F.E. Chemistry of Crosslinking Processes for Self-Healing Polymers. Macromol. Rapid Commun. 2013, 34, 290–309. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Rong, M.Z.; Zhang, M.Q. Self-Healing Polymeric Materials Based on Microencapsulated Healing Agents: From Design to Preparation. Prog. Polym. Sci. 2015, 49, 175–220. [Google Scholar] [CrossRef]
- Zhang, Q.; Duan, J.; Guo, Q.; Zhang, J.; Zheng, D.; Yi, F.; Yang, X.; Duan, Y.; Tang, Q. Thermal-Triggered Dynamic Disulfide Bond Self-Heals Inorganic Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202116632. [Google Scholar] [CrossRef]
- Yilmaz, D.; Lansade, D.; Lewandowski, S.; Perraud, S.; Llevot, A.; Carlotti, S. Combination of Permanent Hydrosilylation and Reversible Diels–Alder Reactions for Self-Healing Poly(Dimethylsiloxane) Materials with Enhanced Ageing Properties. Mater. Today Chem. 2022, 24, 100860. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, M.; Jiang, C.; Zhu, P.; Sun, B.; Gao, Q.; Gao, C.; Liu, R. Highly Adhesive and Self-Healing γ-PGA/PEDOT:PSS Conductive Hydrogels Enabled by Multiple Hydrogen Bonding for Wearable Electronics. Nano Energy 2022, 95, 106991. [Google Scholar] [CrossRef]
- Yang, Y.; Urban, M.W. Self-Healing of Glucose-Modified Polyurethane Networks Facilitated by Damage-Induced Primary Amines. Polym. Chem. 2017, 8, 303–309. [Google Scholar] [CrossRef]
- Yan, B.; He, C.; Chen, S.; Xiang, L.; Gong, L.; Gu, Y.; Zeng, H. Nanoconfining Cation-π Interactions as a Modular Strategy to Construct Injectable Self-Healing Hydrogel. CCS Chem. 2022, 4, 2724–2737. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Liu, R.; Liang, Z.; Yang, J.; Zhang, R.; Zhou, Z.; Nie, Y. Design of Self-Healing Rubber by Introducing Ionic Interaction to Construct a Network Composed of Ionic and Covalent Cross-Linking. Ind. Eng. Chem. Res. 2019, 58, 14848–14858. [Google Scholar] [CrossRef]
- Sinawang, G.; Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Supramolecular Self-Healing Materials from Non-Covalent Cross-Linking Host–Guest Interactions. Chem. Commun. 2020, 56, 4381–4395. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tan, J.; Guan, Z.; Zhang, Q. A Three-Armed Polymer with Tunable Self-Assembly and Self-Healing Properties Based on Benzene-1,3,5-tricarboxamide and Metal–Ligand Interactions. Macromol. Rapid Commun. 2019, 40, 1800909. [Google Scholar] [CrossRef]
- Roy, N.; Bruchmann, B.; Lehn, J.-M. DYNAMERS: Dynamic Polymers as Self-Healing Materials. Chem. Soc. Rev. 2015, 44, 3786–3807. [Google Scholar] [CrossRef] [Green Version]
- de Espinosa, L.M.; Fiore, G.L.; Weder, C.; Johan Foster, E.; Simon, Y.C. Healable Supramolecular Polymer Solids. Prog. Polym. Sci. 2015, 49, 60–78. [Google Scholar] [CrossRef] [Green Version]
- Dzhardimalieva, G.I.; Uflyand, I.E. Molecular design of supramolecular polymers with chelated units and their application as functional materials. J. Coord. Chem. 2018, 71, 1272–1356. [Google Scholar] [CrossRef]
- Mauro, M. Dynamic Metal–Ligand Bonds as Scaffolds for Autonomously Healing Multi-Responsive Materials. Eur. J. Inorg. Chem. 2018, 2018, 2090–2100. [Google Scholar] [CrossRef]
- Bentz, K.C.; Cohen, S.M. Supramolecular Metallopolymers: From Linear Materials to Infinite Networks. Angew. Chem. Int. Ed. 2018, 57, 14992–15001. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Feinstein, R.; Diesendruck, C.E. Mechanical Unfolding and Thermal Refolding of Single-Chain Nanoparticles Using Ligand–Metal Bonds. J. Am. Chem. Soc. 2019, 141, 7256–7260. [Google Scholar] [CrossRef]
- Arnedo-Sánchez, L.; Nonappa, N.; Bhowmik, S.; Hietala, S.; Puttreddy, R.; Lahtinen, M.; De Cola, L.; Rissanen, K. Rapid Self-Healing and Anion Selectivity in Metallosupramolecular Gels Assisted by Fluorine–Fluorine Interactions. Dalton Trans. 2017, 46, 7309–7316. [Google Scholar] [CrossRef] [Green Version]
- Herkert, L.; Sampedro, A.; Fernández, G. Cooperative Self-Assembly of Discrete Metal Complexes. CrystEngComm 2016, 18, 8813–8822. [Google Scholar] [CrossRef]
- Kartha, K.K.; Allampally, N.K.; Politi, A.T.; Prabhu, D.D.; Ouchi, H.; Albuquerque, R.Q.; Yagai, S.; Fernández, G. Influence of Metal Coordination and Light Irradiation on Hierarchical Self-Assembly Processes. Chem. Sci. 2019, 10, 752–760. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Choi, E.J.; Varga, I.; Claesson, P.M.; Yun, S.-H.; Song, C. Terpyridine-Functionalized Stimuli-Responsive Microgels and Their Assembly through Metal–Ligand Interactions. Polym. Chem. 2018, 9, 1032–1039. [Google Scholar] [CrossRef]
- Greenfield, J.L.; Di Nuzzo, D.; Evans, E.W.; Senanayak, S.P.; Schott, S.; Deacon, J.T.; Peugeot, A.; Myers, W.K.; Sirringhaus, H.; Friend, R.H.; et al. Electrically Induced Mixed Valence Increases the Conductivity of Copper Helical Metallopolymers. Adv. Mater. 2021, 33, 2100403. [Google Scholar] [CrossRef]
- Wild, A.; Winter, A.; Schlütter, F.; Schubert, U.S. Advances in the Field of π-Conjugated 2,2′:6′,2″-Terpyridines. Chem. Soc. Rev. 2011, 40, 1459–1511. [Google Scholar] [CrossRef] [PubMed]
- Malarz, K.; Zych, D.; Gawecki, R.; Kuczak, M.; Musioł, R.; Mrozek-Wilczkiewicz, A. New Derivatives of 4′-Phenyl-2,2’:6′,2″-Terpyridine as Promising Anticancer Agents. Eur. J. Med. Chem. 2021, 212, 113032. [Google Scholar] [CrossRef]
- Eryazici, I.; Newkome, G.R. Construction of Hexanuclear Macrocycles by a Coupling Strategy from Polyfunctionalized Bis(Terpyridines). New J. Chem. 2009, 33, 345–357. [Google Scholar] [CrossRef]
- Schubert, U.; Newkome, G.R.; Manners, I. (Eds.) Metal-Containing and Metallosupramolecular Polymers and Materials; ACS Symposium Series; American Chemical Society; Distributed by Oxford University Press: Washington, DC, USA, 2006; ISBN 978-0-8412-3929-6. [Google Scholar]
- Wang, X.; McHale, R. Metal-Containing Polymers: Building Blocks for Functional (Nano)Materials. Macromol. Rapid Commun. 2010, 31, 331–350. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Yan, Y.; Liu, S.; Li, Z.; Wang, Y.; Li, H. Highly Stretchable and Fast Self-Healing Luminescent Materials. ACS Appl. Mater. Interfaces 2020, 12, 13239–13247. [Google Scholar] [CrossRef] [PubMed]
- Schulze, B.; Winter, A.; Friebe, C.; Birckner, E.; Schubert, U.S. Soluble PtII-Containing Polymers Based on a 2,6-Bis(1H-1,2,3-Triazol-4-yl)-4-ethynylpyridine Ligand. ACS Macro Lett. 2017, 6, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Li, H.; Li, Y.; Lv, Z.; Wu, M.; Zhao, C. A Photoresponsive Azopyridine-Based Supramolecular Elastomer for Self-Healing Strain Sensors. Chem. Eng. J. 2020, 395, 125079. [Google Scholar] [CrossRef]
- Mugemana, C.; Grysan, P.; Dieden, R.; Ruch, D.; Bruns, N.; Dubois, P. Self-Healing Metallo-Supramolecular Amphiphilic Polymer Conetworks. Macromol. Chem. Phys. 2020, 221, 1900432. [Google Scholar] [CrossRef]
- Ahner, J.; Pretzel, D.; Enke, M.; Geitner, R.; Zechel, S.; Popp, J.; Schubert, U.S.; Hager, M.D. Conjugated Oligomers as Fluorescence Marker for the Determination of the Self-Healing Efficiency in Mussel-Inspired Polymers. Chem. Mater. 2018, 30, 2791–2799. [Google Scholar] [CrossRef]
- Handique, J.; Gogoi, J.; Dolui, S.K. Development of Self-healing Star Metallopolymers by Metal–Ligand Crosslinking. J. Appl. Polym. Sci. 2020, 137, 48527. [Google Scholar] [CrossRef]
- Wu, J.; Cai, L.-H.; Weitz, D.A. Self-Healing Materials: Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. Adv. Mater. 2017, 29, 1702616. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhang, W.; Sun, L.; Wang, X.; Jiang, W.; Zhu, Z.; Zhang, H.; Yang, C.; Tang, J. Highly Stretchable and Compressible Self-Healing P(AA-Co-AAm)/CoCl 2 Hydrogel Electrolyte for Flexible Supercapacitors. ChemElectroChem 2019, 6, 467–472. [Google Scholar] [CrossRef]
- Nesrinne, S.; Djamel, A. Synthesis, Characterization and Rheological Behavior of PH Sensitive Poly(Acrylamide-Co-Acrylic Acid) Hydrogels. Arab. J. Chem. 2017, 10, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.Y.; Ding, H.; Qian, J.; Yin, J.; Wu, Z.L.; Song, Y.; Zheng, Q. Metal-Coordination Complexes Mediated Physical Hydrogels with High Toughness, Stick–Slip Tearing Behavior, and Good Processability. Macromolecules 2016, 49, 9637–9646. [Google Scholar] [CrossRef]
- Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305–28318. [Google Scholar] [CrossRef]
- Bode, S.; Zedler, L.; Schacher, F.H.; Dietzek, B.; Schmitt, M.; Popp, J.; Hager, M.D.; Schubert, U.S. Self-Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers. Adv. Mater. 2013, 25, 1634–1638. [Google Scholar] [CrossRef] [PubMed]
- Baimuratova, R.K.; Dzhardimalieva, G.I.; Vaganov, E.V.; Lesnichaya, V.A.; Kugabaeva, G.D.; Kydralieva, K.A.; Zhinzhilo, V.A.; Uflyand, I.E. Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2,2′:6′,2″-Terpyridine Ligand: Kinetic Studies and Mechanical Properties. Polymers 2021, 13, 1760. [Google Scholar] [CrossRef] [PubMed]
- Sorin, E.S.; Baimuratova, R.K.; Chernyayev, D.A.; Korchagin, D.V.; Uflyand, I.E.; Dzhardimalieva, G.I. New Mixed-Ligand Metal-Containing Monomer Based on Cobalt Acrylate and 4-Phenyl-2,2’:6’,2″-Terpyridine Ligand: Synthesis, Characteristics and Thermal Properties. KEM 2021, 899, 37–44. [Google Scholar] [CrossRef]
- May, J.R.; Gentilini, C.; Clarke, D.E.; Odarchenko, Y.I.; Anokhin, D.V.; Ivanov, D.A.; Feldman, K.; Smith, P.; Stevens, M.M. Tailoring of Mechanical Properties of Derivatized Natural Polyamino Acids through Esterification and Tensile Deformation. RSC Adv. 2014, 4, 2096–2102. [Google Scholar] [CrossRef]
- Odarchenko, Y.I.; Sijbrandi, N.J.; Rosenthal, M.; Kimenai, A.J.; Mes, E.P.C.; Broos, R.; Bar, G.; Dijkstra, P.J.; Feijen, J.; Ivanov, D.A. Structure formation and hydrogen bonding in all-aliphatic segmented copolymers with uniform hard segments. Acta Biomater. 2013, 9, 6143–6149. [Google Scholar] [CrossRef] [PubMed]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: New York, NY, USA, 2008; ISBN 978-0-521-86571-5. [Google Scholar]
- Huang, Y.; Zeng, M.; Ren, J.; Wang, J.; Fan, L.; Xu, Q. Preparation and Swelling Properties of Graphene Oxide/Poly(Acrylic Acid-Co-Acrylamide) Super-Absorbent Hydrogel Nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2012, 401, 97–106. [Google Scholar] [CrossRef]
- Futaba, D.N.; Yamada, T.; Kobashi, K.; Yumura, M.; Hata, K. Macroscopic Wall Number Analysis of Single-Walled, Double-Walled, and Few-Walled Carbon Nanotubes by X-ray Diffraction. J. Am. Chem. Soc. 2011, 133, 5716–5719. [Google Scholar] [CrossRef]
- Phadke, A.; Zhang, C.; Arman, B.; Hsu, C.-C.; Mashelkar, R.A.; Lele, A.K.; Tauber, M.J.; Arya, G.; Varghese, S. Rapid Self-Healing Hydrogels. Proc. Natl. Acad. Sci. USA 2012, 109, 4383–4388. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Urban, M.W. Self-Healing Polymeric Materials. Chem. Soc. Rev. 2013, 42, 7446–7467. [Google Scholar] [CrossRef]
- Mugemana, C.; Guillet, P.; Hoeppener, S.; Schubert, U.S.; Fustin, C.-A.; Gohy, J.-F. Metallo-Supramolecular Diblock Copolymers Based on Heteroleptic Cobalt(III) and Nickel(II) Bis-Terpyridine Complexes. Chem. Commun. 2010, 46, 1296–1298. [Google Scholar] [CrossRef]
- Indumathy, R.; Radhika, S.; Kanthimathi, M.; Weyhermuller, T.; Unni Nair, B. Cobalt Complexes of Terpyridine Ligand: Crystal Structure and Photocleavage of DNA. J. Inorg. Biochem. 2007, 101, 434–443. [Google Scholar] [CrossRef] [PubMed]
Sample | Initial Weight, g | Ratios (%/%/%) | pH | ||||
---|---|---|---|---|---|---|---|
H2O | AAc | AAm | KPS | CoAcr2PhTpy | AAm/AAc/CoAcr2PhTpy | ||
Copolymer 1 | 20 | 2.9 | 16.9 | 0.2 | 0.2 | 84.5/14.5/1 | 2.5 |
Copolymer 2 | 20 | 9.9 | 9.9 | 0.2 | 0.2 | 49.5/49.5/1 | 1.9 |
Copolymer 3 | 20 | 16.9 | 2.9 | 0.2 | 0.2 | 14.5/84.5/1 | 1.4 |
Sample | Content of Elements (%) | Ratios (%/%/%) AAm/AAc/MCM/Water ** | ||||
---|---|---|---|---|---|---|
C | H | N | Co | Copolymers | Copolymers ** | |
Copolymer 1 | 43.33 | 7.56 | 13.77 | 0.04 | 90.2/9.3/0.5 | 69.7/7.2/0.4/22.7 |
Copolymer 2 | 44.66 | 7.08 | 9.38 | 0.02 | 53.2/46.6/0.2 | 47.5/41.6/0.2/10.7 |
Copolymer 3 * | 44.59 | 6.64 | 3.37 | 0.03 | 19.0/80.7/0.3 | 16.9/71.9/0.3/10.9 |
Sample | TGA Data | Residue at 600 °C (wt.%) | ||||
---|---|---|---|---|---|---|
T5% (°C) | T10% (°C) | T20% (°C) | T30% (°C) | Tmax (°C) | ||
Copolymer 1 | 182 | 210 | 277 | 349 | 201; 229; 374 | 25.67 |
Copolymer 2 | 144 | 193 | 273 | 355 | 206; 291; 375 | 22.24 |
Copolymer 3 | 142 | 191 | 273 | 313 | 199; 279; 368 | 17.36 |
Sample | Maximum Strength of the Original Sample, MPa | Maximum Strength of the Healed Sample, MPa | Healing Efficiency, % |
---|---|---|---|
Copolymer 1 | 122 | 35 | 29 |
Copolymer 2 | 50 | 31 | 62 |
Copolymer 3 | 41 | 10 | 25 |
Sample | Modulus of Elasticity of the Original Sample, GPa | Modulus of Elasticity of the Healed Sample, GPa | Healing Efficiency, % |
---|---|---|---|
Copolymer 1 | 4.3 | 3.9 | 90 |
Copolymer 2 | 3.4 | 2.2 | 65 |
Copolymer 3 | 2 | 0.5 | 25 |
Sample | Maximum Strength of the Original Sample, MPa | Maximum Strength of the Healed Sample, MPa | Healing Efficiency, % |
---|---|---|---|
AAm:AAc = 50:50 | 74 | 5.7 | 8% |
AAm:AAc = 15:85 | 53 | 4.7 | 9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorin, E.S.; Baimuratova, R.K.; Uflyand, I.E.; Perepelitsina, E.O.; Anokhin, D.V.; Ivanov, D.A.; Dzhardimalieva, G.I. New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine. Polymers 2023, 15, 1472. https://doi.org/10.3390/polym15061472
Sorin ES, Baimuratova RK, Uflyand IE, Perepelitsina EO, Anokhin DV, Ivanov DA, Dzhardimalieva GI. New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine. Polymers. 2023; 15(6):1472. https://doi.org/10.3390/polym15061472
Chicago/Turabian StyleSorin, Evgeny S., Rose K. Baimuratova, Igor E. Uflyand, Evgeniya O. Perepelitsina, Denis V. Anokhin, Dmitry A. Ivanov, and Gulzhian I. Dzhardimalieva. 2023. "New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine" Polymers 15, no. 6: 1472. https://doi.org/10.3390/polym15061472
APA StyleSorin, E. S., Baimuratova, R. K., Uflyand, I. E., Perepelitsina, E. O., Anokhin, D. V., Ivanov, D. A., & Dzhardimalieva, G. I. (2023). New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine. Polymers, 15(6), 1472. https://doi.org/10.3390/polym15061472