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Abstract: Coagulative nucleation in the copolymerization of methyl methacrylate–butyl acrylate
(MMA-BA) via semicontinuous emulsion heterophase polymerization (SEHP) under monomer-
starved conditions in latexes with high solid content (50.0 wt %) and low concentrations of surfactant
is reported. The SEHP technique allows the obtention of latex with high colloidal stability and has
potential industrial application in polymer synthesis. High instantaneous conversions (>90%) and a
high-ratio polymerization rate/addition rate (Rp/Ra) ≥ 0.9 were obtained at low times until the final
copolymerization, which confirmed the starved conditions in the systems at the highest surfactant
concentrations. The particle size exhibited a linear size increment at conversions between 0 and
40% induced by homogeneous nucleation, a transition region between 40 and 50%, and non-linear
behavior at higher conversions by coagulative nucleation. These three behaviors were also observed
in the particle surfactant coverage area (Sc), Z-potential, particle coagulation rate (dNp/dt) by the
Smoluchowski model, final particle size (Dpz), and number particle (Np) through the reaction. By
means of transmission electron microscopy (TEM) images, the onset of coagulation was observed from
50% of conversion until the end of the reaction. In addition, in both processes of copolymerization,
tacticity was displayed (mainly syndiotacticity).

Keywords: monomer-starved conditions; homogeneous nucleation; coagulative nucleation; methyl
methacrylate; butyl acrylate

1. Introduction

Polymeric particle formation mechanisms have been widely studied in emulsion-
polymerization-modifying reaction factors such as the surfactant and initiator concentra-
tion [1–3], solid content [4,5], and monomer addition rate [2,6–8]. Several models have been
proposed for the particle formation during the nucleation stage such as homogeneous nu-
cleation, micellar nucleation, and coagulative nucleation. The synthesis mechanism can be
tailored to a particular polymeric reaction system by adjusting the reaction factors enlisted
previously. The semicontinuous emulsion heterophase polymerization (SEHP) process
under monomer-starved conditions involves the continuously controlled feeding of the
monomer or the comonomer into a monomer-free surfactant and initiator aqueous solution.
In this polymerization process, monomer molecules are first in contact with the continuous
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medium, which is rich in radicals that produce oligomeric chains once in contact with
monomer molecules. When oligomers gain sufficient weight, they are quickly stabilized
by surfactant molecules to form new particles. The already-formed polymer–monomer
particles continue to grow until there are no more reacted radicals or oligomers [9]. Oth-
erwise, when the monomer is added at the same rate applied in a system under starved
conditions but a low surfactant concentration is present, particle formation can occur under
flooded conditions because there is not sufficient surfactant or micelles to encapsulate the
oligomers [10]. SEHP yields high-solid-content latexes with a small particle size by using
low surfactant content, while the batch emulsion polymerization (BEP) process produces
large particles due to the usual high monomer concentrations from an early stage of the
polymerization reaction [1,4,6,11]. Furthermore, the use of semicontinuous emulsion poly-
merization under monomer-starved conditions allows for a controlled particle size along
the reaction time via a semicontinuous monomer addition [2,5,8,12,13]. The gradual arrival
of the monomer at the continuous medium favors homogeneous particle nucleation due
to the use of the low surfactant content in the monomer-free initial system. The direct
consequence is the increase in the particle number and polymerization rate [2,13]. The
analyzed data of particle size distributions (PSDs) after the cessation of the nucleation stage
comprise another technique to determine evidence for the nucleation mechanism [3,14].
Feeney et al. [14] provided experimental and theoretical evidence for the manner in which
an increase in the particle number positively skewed in the early reaction stage can be
described by a coagulation step.

On the other hand, the nucleation process during polymerization is difficult to explain
when monomers with different water solubilities appear to be copolymerized. Some in-
vestigations concluded that the monomer with higher solubility in the continuous media
governs the homogeneous nucleation; therefore, it has a special influence on the particle size,
particle number, and morphology in a typical emulsion polymerization process [15–18]. In
the kinetics of the emulsion polymerization of methyl methacrylate (MMA), it was demon-
strated that initiation occurred in the aqueous phase followed by the formation of new
latex particles via the coagulation of polymer chains in the course of polymerization [19].
This nucleation mechanism can be influenced by the moderate solubility of MMA [20–22].
However, the polymerization mechanism changes when the monomers have low water
solubility, such as in the case of butyl acrylate (BA), in which it moves into micelles at short
polymerization times until an oligomeric radical entry into the monomer-swollen micelles
to begin the nucleation of the particle (micellar nucleation) [20,23–25]. The polymeriza-
tion technique has a special influence on the nucleation mechanism and thus the particle
size effects. The absence of surfactant during the emulsion polymerization of MMA-BA
was studied by Lee et al. in a seeded emulsion polymerization [19]. The weight ratio
of MMA-BA and the effect caused in the average molecular weight was analyzed. The
two-stage monomer addition applied led to a core–shell structure in the polymer particles.
Sommer et al. employed atomic force microscopy (AFM) to analyze the surface morphol-
ogy effects of polymer particles of PMMA/PBA in a seeded emulsion polymerization [20].
Based on AFM images, these authors suggested that a coagulation mechanism can influence
the nucleation of PMMA. Ouzineb et al. [23] elucidated the nucleation mechanism above
and below the critical micelle concentration (CMC) for the emulsion copolymerization
of MMA-BA. Above CMC, the particle number increased throughout the polymerization
(assuming that homogeneous nucleation dominated). Below CMC, there was little free
surfactant to stabilize the nucleated particles, then small particles were introduced into
larger particles to maintain a constant number of particles [23].

Semibatch emulsion copolymerization with high solid content exerts an important
effect on the particle size and number. Chern and Hsu [24] established how the combination
of an anionic surfactant with a non-ionic surfactant modifies the nucleation mechanism
and particle size. In addition, these authors demonstrated that particle size had more
influence by means of the initial surfactant content in the reactor charge and was in-
dependent of the initiator concentration; a coagulative nucleation mechanism occurred
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when the surfactant concentration was far below its CMC [24]. In copolymerized sys-
tems when the particle formation of polymers occurs under monomer-starved conditions,
the process is surrounded by all of the environmental polymerized factors. Commonly,
the monomer addition rate, surfactant, and polymer content are just some of the factors
that influence the particle-formation mechanism and the final structure of the polymer
nanoparticle. A particle-coagulation phenomenon occurred in the second stage of the
nucleation reaction [26,27]. In the coagulative nucleation process, mature polymer particles
aggregate between these later to produce a coalescent particle in a soap-free polymer-
ized system [14,28–31]. Coagulation occurs as a phenomenon to stabilize the electrostatic
charges in the system [32]. The main features of coagulated systems according to industrial
scaling include the production of narrow and large-sized polymer particles and truly stable
latex particles as byproducts [31,33–35]. The main advantage of monomer-starved semi-
continuous polymerization is that the addition rate controls the polymerization rate. Due
to this fact, the monomer addition rate directly affects the particle number. The particle
nucleation effect was considered by some authors to be of secondary importance because
the majority of copolymerized systems are analyzed at a low solid content in which the
most soluble monomer governs the particle nucleation at the highest proportions [9,36]. In
order to generate new industrial processes that are economically viable, solid content in
copolymerization must rise. Thus, the nucleation process must be explained in terms of
this novel focus.

A special remark must be included regarding coagulative nucleation during a semi-
continuous emulsion polymerization in which—despite the use of a surfactant concen-
tration above CMC—the system does not behave as monomer-starved but instead as
monomer-flooded. The latter phenomenon was first approached by Sajjadi’s group [37],
who mentioned that there were not sufficient micelles in the continuous phase to solu-
bilize the monomer added. Typically, the monomer-flooded effect is presented in batch
or semibatch polymerization, which is especially affected by the initial monomer charge
identified by a secondary nucleation process and a bimodal particle size distribution [37].
The monomer-flooded model presented by Gilbert’s group [38] showed an improvement
in the polymerization mechanism by means of a molecular weight reduction. A later
model published by Sajjadi [39] revealed that a monomer-flooded system can stochastically
move into a monomer-starved system until a dominant kinetic mechanism prevails due to
polymer chains achieving a critical length.

Industrial interest in modifying the rigidity and crystalline properties of PMMA
through a union with elastomeric polymers (in which PBA is one of the most interesting
options in the polymer industry) is remarkable. In this research, we report the particle size
and morphology, polymerization kinetics, and nucleation mechanism in particle growth of
poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)) synthesized via SEHP with
different water-solubility monomers under monomer-starved conditions. By controlling the
monomer-feeding rate and the surfactant concentration, it was possible to correlate particle
growth with the nucleation mechanism in order to visualize future industrial application.

2. Materials and Methods
2.1. Materials

MMA and BA monomers (≥99.0% pure) were obtained from Sigma (St. Louis, MO,
USA). Methyl ester hydroquinone was removed from monomers with a DH-4 distillation
column (Scientific Polymer Products, Ontario, NY, USA). Sodium dodecyl sulfate (SDS,
98.0% from JT Baker), potassium persulfate (KPS, 99.0% from Sigma, St. Louis, Missouri,
United States), sodium bicarbonate (SBc, 99.7% from Jalmek, San Nicolás de los Garza,
Nuevo León, México), bi-distilled and deionized water were also used. Comonomer
addition to the reaction system was controlled by a syringe pump (kdScientific, Holliston,
MA, USA).



Polymers 2023, 15, 1628 4 of 17

2.2. Experimental Latex Preparation

Polymerizations were carried out via SEHP using different comonomer feeding rates
and SDS contents. First, 130 g of water and SDS were added and mixed in a reactor of
500 mL (two concentrations of SDS were used in the two copolymerization processes
(1 and 2 wt %) based on the total of 150 g of MMA and BA), and then 0.45 g of SBc was
charged to a reactor and heated at 70 ◦C under a nitrogen atmosphere with continuous
stirring (350 rpm) for 60 min. After 1 wt % of KPS (based on the total of 150 g of MMA
and BA) was solubilized in 20 g of water, the KPS solution was added to the reactor and
maintained for 30 min. Finally, the MMA and BA mixture was fed into the reactor at
a controlled rate, which was different in each process of copolymerization (0.5, 1.0, and
2.0 g min−1). In all polymerizations, the weight ratio of MMA to BA was maintained
constant (weightMMA/weightBA = 1.5), and the total amount of the comonomer mixture
was 150 g. Subsequently, all the reactions were maintained under the same conditions
for 60 min after the comonomer addition was completed. Batch emulsion polymerization
(BEP) was carried out under similar conditions to those of the procedure and at amounts of
reagents described previously except that 150 g of MMA/BA was added to the reactor after
the SDS addition. Subsequently, the initiator was added to allow the reaction to proceed
for 3 h.

2.3. Analysis

Sampling aliquots (4 mL) were extracted at different intervals with a pipette according
to polymerization conditions to measure the particle size and conversions gravimetrically.
Dynamic light scattering (DLS) equipment was used to measure the particle size and
Z-potential in a Malvern Zetasizer ZS90 apparatus (Malvern Panalytical Ltd., Malvern,
UK) The latex samples were placed in a glass cuvette to measure the particle size and in
disposable folded-capillary cells to measure the Z-potential; these samples were diluted
with water up to 100 times to avoid multiple scattering and undiluted, respectively. The
number of particles (Np) was calculated using Equation (1) [2]:

Np =
6Ratxi

πρpol Dpol
3V(t)

(1)

where Ra is the addition rate; xi is the instantaneous conversion; Dpol is the diameter
measured at different times in DLS; V(t) is the total volume in the reactor at a determined
time; ρpol is the average density of each polymer in the reactor (ρpol = F1ρ1 + F2ρ2, where
F1 and F2 are the wt % of polymer in the experiment); and ρ1 and ρ2 are the polymer
densities of PMMA and PBA, respectively. The PMMA and PBA densities considered were
1.2 g mL−1 and 1.08 g mL−1, respectively.

The surface coverage ratio (Sc) of the surfactant on the particles (r) was the surface
covered by the available surfactant molecules (As) over the total surface area of polymer
particles (Ap) according to Equation (2) [5]:

r =
As

Ap
=

csNAvas

πD2
pNp

(2)

where cs is the surfactant concentration, NAv is Avogadro’s number, as is the molecular
surface area value for SDS (0.5 nm2 molecule−1) [40], Dp is the particle size from the
z-average diameter, and Np is the number of particles.

The particle coagulation rate data were fitted with the Smoluchowski equation for the
particle coagulation kinetics of Np as shown in Equation (3):

−rN = −
dNp

dtr
= KcN2

0 (3)
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where −rN is the particle coagulation rate, Kc is the coagulation coefficient, N0 is the particle
number, and tr is the normalized time (t/t∞, where t∞ is the total addition time).

2.4. Characterization
2.4.1. Transmission Electron Microscopy

A JEOL 1010 transmission electron microscope (TEM, JEOL Ltd., Tokyo, Japan) was
employed to observe the morphology of the copolymer particles. To accomplish this, one
drop of latex was diluted up to 200 times with water, and one drop of this solution was
deposited onto a copper grid and then dyed with a drop of 1.0 wt % phosphotungstic acid
aqueous solution for 24 h and dried in a vacuum oven at 50 ◦C for 12 h.

2.4.2. Glass Transition Temperature

The glass transition temperature (Tg) was measured via differential scanning calorime-
try (DSC) in order to examine the Tg in the copolymer formed. A Perkin Elmer Pyris 6
(Norwalk, CT, USA) differential scanning calorimeter was used. A nitrogen purge gas flow
of 50 mL min−1 and a heating rate of 10 ◦C min−1 were carried out in all runs. A second
scan of each sample under the same conditions was selected for the calculation of glass
transition temperatures to eliminate thermal history.

2.4.3. Nuclear Magnetic Resonance

The NMR spectra of the copolymers were obtained using JEOL equipment (JNM-
ECA600) spectrometer (JEOL Ltd., Tokyo, Japan) of high resolution in CDCl3 (1H: 600 MHz).
The 1D NMR spectra of the copolymers were recorded at a frequency of 600 MHz via 1H
and were employed to calculate the compositions and stereoregularity of the copolymers.

3. Results and Discussion

The SEHP was performed at feeding rates (Ra) of 0.5, 0.1, and 0.2 g min−1 for 1.0 and
2.0 wt % SDS. Both obtained latexes (via SEHP and BEP) were cloudy, which is typical of
direct emulsions; however, the latexes at 2.0 wt % SDS obtained via SEHP showed a lower
particle diameter (107 nm) and were somewhat more bluish than those obtained by BEP
(128 nm), which will be further discussed with regard to the DLS measurements.

3.1. Comonomers Conversion

Figure 1 shows the instantaneous conversions (xi) as a function of the relative time
(tr) for 1 (Figure 1a) and 2 (Figure 1b) wt % SDS and the addition rates of 0.5, 1.0, and
2.0 g min−1. tr was defined as the ratio of addition time (t) divided by the total addition
time (t∞) at each Ra used in the polymerization. Equation (4) was used to calculate xi [2,6]:

xi(t) =
wpol

wmon
(4)

where wpol is the weight of polymer at a time t and wmon is the weight of monomer added at
a time t, while xi and the global conversion (X) (Figure 2) were calculated from gravimetric
measurements with aliquots taken at different times. The copolymerizations were fast
for all the feeding rates studied compared with the BEP process. In Figure 1a, it can be
observed that at low tr (~0.085), a fast comonomer conversion took place with xi~0.7 that
slightly grew between tr = 0.1 and 0.35. Afterward, there was a gradual increase until
reaching final conversions higher than 0.9. For Ra = 2 g min−1, the copolymerization was
slightly slower and reached a comonomer conversion of xi = 0.8 at tr~0.2; in the BEP process,
there was a delay in the conversion to a few minutes of polymerization.
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Figure 2. Evolution of global conversion as a function of tr in the copolymerization of MMA-BA
prepared via SEHP with (a) 1.0 and (b) 2.0 wt % of SDS content at different feed rates according to
(�) 2.0 g min−1, (•) 1.0 g min−1, (N) 0.5 g min−1, and (�) BEP.

At short reaction times, there were enough radicals and surfactant for particle nu-
cleation; as the reaction progressed, the more soluble monomer (MMA) continued the
nucleation in the aqueous phase to maintain the growth of the polymer chains. With both,
it is possible that a great amount of BA diffused into the micelle, while the polymerization
of BA inside the micelle could be delayed until PMMA-PBA co-oligomers entered into
micelle, which caused the accumulation of BA and a decrease in the conversion in this
time period. Mainly, when there was not enough surfactant to stabilize or nucleate the
nanoparticles, this led to a decrease in the rate of polymerization and an accumulation of
the monomer in the micelles (Figure 3). Then, we could assume that the SDS concentration
of 1.0 wt % worked under flooded conditions while the lowest feeding rate exhibited
the monomer-starvation conditions. In the homopolymerization process carried out with
the monomers via SEHP for the addition rate of 2 g min−1 and 1.0 wt % of surfactant,
the polymerization of MMA obtained a high conversion (xi) and Rp (Figures S1 and S2),
but at tr~0.4, the particles were agglomerated and collapsed due to surfactant deficiency
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where Sc was lower (Figure S3). Therefore, the dominant mechanism of polymerization
for MMA was homogenous nucleation. However, in the BA polymerization under the
same conditions from kinetics at low times, an amount of BA added was diffused inside
the micelles because of decreased conversion and an increased residual monomer at a low
tr (0.1). Then, an increase in particle size caused by swelling of the micelles and Sc~0.44
was sufficient to maintain colloidal stability throughout the reaction via diffusion of the
monomer to the particles in formation (Figures S1–S3). On the contrary, for 2.0 wt % of SDS
content (Figure 1b), full starvation conditions were achieved because xi~0.9 at tr~0.8 for
Ra = 2 g min−1. This was due to the presence of a greater amount of surfactant that allowed
stabilizing of the monomer droplets and the formation of new particles. This effect gave
rise to an additional pathway of comonomer diffusion, especially at short reaction times. At
1.0 wt % of SDS, xi showed a delay in the conversion, suggesting that the low concentration
was insufficient to solubilize the comonomers (mainly BA) due to the low solubility in
water, which diffused into the micelles at a very early stage of copolymerization. This was
corroborated by the concentration of 2.0 wt % of SDS, in which this delayed induction time
was not observed.
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Figure 2 shows the global conversions (X) as a function of tr for 1.0 (Figure 2a) and
2.0 wt % SDS (Figure 2b), and the addition rates of 0.5, 1.0, and 2.0 g min−1. X were
obtained as in Equation (5) [41]:

X(t) =
wpol

Mtotal
(5)

where Mtotal is the weight of total monomer added.
A continuous and progressive polymerization was observed until the final amounts of

comonomers were added. For BEP, X achieved its maximal conversion (X~0.92) at tr~0.4,
and then remained constant. SEHP copolymerizations displayed smaller error bars, in
comparison with BEP copolymerizations; therefore, there was more control of the reaction
by SEHP.

The relative time evolution of the residual monomer weight fraction of SEHP at
different Ra and SDS concentrations is shown in Figure 3. Figure 3a shows a tendency to
accumulate the monomer for an Ra of 0.5 g min−1 and 2 g min−1, which demonstrated that
the system could not polymerize the full amount of monomer added. At the lowest Ra,
there was migration selectivity due to the water solubility of monomers (MMA is almost 14
times more soluble than BA) [42]. The solubility of MMA and BA in water was 150 mM
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and 11 mM (from 25 to 50 ◦C), respectively [42]. Thus, MMA could be maintained at a
higher number of nucleated particles in the aqueous phase, while BA migrated into the
micelles to later nucleate particles via micellar nucleation. For the highest feeding rate and
the lowest surfactant concentration, the highest accumulation of monomers was achieved;
this behavior was similar to the polymerization reaction under flood conditions. However,
Figure 3b shows that the starvation conditions were improved in all of the SEHPs due to
the increased amount of surfactant available to stabilize the large number of copolymer
particles formed in the system.

3.2. Polymerization Rate Analysis

The comparison between the ratio of the polymerization rate (Rp) and Ra (Rp/Ra) of
the two concentrations of surfactant and their comonomer feeding rates as a function of
tr is depicted in Figure 4. The polymerization rate (Rp) or comonomer conversions in the
polymer were dependent on the comonomer addition rate (Ra) [43,44]. The instantaneous
polymerization parameters measured whether monomer-starved conditions were achieved.
According to Wessling et al. [43], Rp ≈ φp Ra (where φp is the volume fraction of polymer
in the monomer-swollen particles). Under monomer-starved conditions, Rp ≈ Ra, as
has been published elsewhere [2,6]. In Figure 4a, a behavior plateau was observed for
Rp/Ra < 0.9 between tr values of 0.1–0.35 for 1.0 wt % of SDS and for all feeding rates. As
the polymerization progressed, Rp/Ra increased continuously until reaching values higher
than 0.9. In this period, nucleation could occur under monomer-flooded conditions via
monomer accumulation in short polymerization times [6], which was mainly due to the
low solubility of BA in water, which limited its nucleation in the aqueous phase. On the
other hand, its counterpart with the highest surfactant concentration did not present in
this region (Figure 4b). This phenomenon of localization during the nucleation stage could
be explained by a stabilization of the particles. The low amount of surfactant available
to stabilize the larger number of particles led to (for a certain time period) Rp not being
as fast as the comonomer addition. Studies on the homopolymerization of MMA and
BA in emulsion showed that at the beginning of the reaction in the aqueous phase, both
monomers had very different kinetics at low concentrations of surfactant. Sajjadi and
Brooks [45] performed the polymerization of BA by SEHP. These authors showed long
periods of inhibition and low Rp/Ra only when there was a high ratio of emulsifier added
throughout the reaction. This reaffirmed that poorly soluble monomers in an aqueous
phase cannot nucleate easily and that the higher amount of monomer diffuses into micelles
until they are nucleated by growing oligomeric radicals in the aqueous phase. Otherwise, in
the kinetics of the emulsion polymerization of MMA under similar reaction conditions, no
inhibition periods would have been observed, and polymerization would have been carried
out under flooded conditions [46]. Thus, the just-formed copolymer particles were forced
to join with mature particles in order to preserve latex stability. This did not imply changes
in the reaction sites or differences in the conformation of the final polymer chain structure.

3.3. Particle Size and Surfactant Coverage Ratio

Figure 5 shows the z-average particle size (Dpz) of P(MMA-co-BA) nanoparticles (NPs)
synthesized via SEHP as a function of X for the three feeding rates studied and in the
presence of 1.0 and 2 wt % of SDS as measured by DLS at 25 ◦C. Experiments carried
out with the comonomer addition at 1 and 2 g min−1 presented similar behaviors: the
particle size increased as X increased (Figure 5a). All the systems contained 50 wt % of solid
content, which allowed identifying the solid content point at which a desired particle size
was obtained. At the end of the reaction, values of Dpz were very close to those obtained
via BEP due to the coagulation of copolymer particles. On the other hand, for 2.0 wt% of
SDS (Figure 5b), significant differences were observed between the feeding rates within the
X range of 0.5–0.9. The final Dpz for the NPs produced via SEHP were smaller (~20 nm) for
all addition rates studied than those obtained via BEP. The increase in Dpz with the increase
in conversion was highly related to particle coagulation. However, for NPs obtained via
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BEP, Dpz was practically constant from the initial reaction stage until final conversion
because micellar nucleation was predominant. When the emulsion homopolymerization
was carried out by means of monomer-starved conditions, the Dpz was maintained constant
because nucleation in the aqueous phase increased the number of particles in the latex [6].
However, in the NPs obtained via SEHP, a continuous increase was observed in Dpz. Hence,
we proposed that the micellar nucleation mechanism was induced by BA due to its low
solubility, while MMA was induced by homogeneous nucleation. This allowed us to infer
that the mechanism that controls the polymerization process is coagulative nucleation
because NPs formed in the aqueous phase were incorporated onto the surface of NPs
formed by micellar nucleation, as was further clarified by TEM images. This phenomenon
is commonly observed in one-step emulsion polymerization [27].
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Figure 6 shows the Sc as a function of tr for the copolymerization of MMA and BA
with different feeding rates. Sc shows the grade to which surfactant molecules stabilized
the particles in the polymerization reaction. BEP is generally known to possess more
surface coverage with surfactant because all polymerization is controlled by the mechanism
of micellar nucleation [47]. Lower values of Sc were found for feeding rates of 0.5 and
1.0 g min−1 (Figure 6a). Nevertheless, for the addition rate of 2.0 g min−1, different behavior
was observed: Sc was higher compared to the remaining two, and it increased at the end of
tr. As can be observed, a higher Dpz and a lower number of NPs indicated that a greater
amount of monomer was diffused into the micelle, and chain growth occurred to leave a
more surfactant-free surface. As shown in Figure 6b, Sc values of BEP remained high (~0.5).
For SEHP, the Sc values were lower compared to BEP due to the large number of particles
formed. Sc showed a minimum at tr of 0.6 for all rates at 1.0 wt % of SDS followed by an
increase in Sc; whereas for the concentration of 2.0 wt % SDS, a slight increase was observed
after the minimum. Therefore, the increase in Sc after 50% of the conversion indicated that
the nucleation mechanism was controlled for both micellar and homogeneous nucleation
to stabilize the particles in the system [47]. However, in the BEP reaction, after Sc reached
the minimal value, this remained constant for both surfactant concentrations, indicating
that micellar nucleation was controlled throughout the entire polymerization process.
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Figure 6. Surface coverage as a function of tr in the copolymerization of MMA-BA prepared via
SEHP with (a) 1.0 and (b) 2.0 wt % of SDS content at different feed rates according to (�) 2.0 g min−1,
(•) 1.0 g min−1, (N) 0.5 g min−1, and (�) BEP.

To explain the coagulation phenomenon in this study, we measured the zeta potential
(Z-potential) at different times in the BEP reaction and at 2.0 g min−1 of comonomer
feed for 1.0 wt % of SDS in SEHP (Figure S4). The Z-potential showed an increase from
−69 to −47 mV throughout the BEP reaction. This increase can be explained by the
large particle sizes and the slight increases in the particle number, which was caused
by comonomer droplets in uninitiated micelles moving toward the growing nucleated
micelles from the beginning to the end of the polymerization. Meanwhile, for SEHP, the
Z-potential remained at low values during the initial times (between −66 mV and −70 mV)
caused by the nucleation of new particles (mainly in the aqueous phase) and then began
to increase from −62 mV to a tr of 0.5 due to the increase in the particle size caused by
the presence of monomers inside of the micelle that began to polymerize. After this time,
this increase became pronounced and reached its maximum at −56 mV to a tr of 0.7; in
this time range, we propose that secondary particles began to coalesce on the primary
particles. Subsequently, the Z-potential decreased again, and new nucleated particles
reattached to growing particles. This increase was in agreement with the results depicted
in Figures 5 and 6 for Dpz and for the minimal value in Sc, respectively, as well as for the
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particle number (Np) as shown in Figure 6. However, this process is very common in the
use of charged particles [48].

3.4. Coagulation Mechanism Analysis

The mechanism of particle formation indicates how the process of obtaining primary
small particles takes place throughout the swelling and growth in the polymerized system.
Figure 7 presents the behavior of the number of particles (Np) during the reactions for all
polymerization systems. For the SEHP, the tendency indicated that at low X values, high
values of Np were achieved. Nonetheless, from propagation until the termination reaction
was processed, Np diminished by one order of magnitude. This decrease in particle number
may have been caused due to the coagulative nucleation that occurred under monomer-
starved or flooded conditions; therefore, it was possible to obtain up to 50.0 wt % solid
content. Under monomer-starved conditions, when the homogeneous nucleation process
was dominant, Np increased constantly because the size could be controlled. Moreover, in
emulsion polymerization, when there is particle coagulation, Np is controlled by two steps:
a fast step in which particle aggregation occurs and a slow step in which particle coalescence
controls the kinetics [27]. In our research, these steps were observed by analysing the Np;
however, the coalescence process occurred in which Np decreased slightly as X increased
because comonomers were added throughout the entire process of copolymerization.
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Figure 7. Number density of particles as a function of global conversion in the copolymerization of
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according to (�) 2.0 g min−1, (•) 1.0 g min−1, (N) 0.5 g min−1, and (�) BEP. Inset: rN as a function of
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The insets in Figure 7a,b show the particle coagulation rate
(
dNp/dt

)
versus X for the

Np carried out via SEHP at different addition rates and with 1.0 and 2.0 wt % of SDS content
and BEP. As can be observed, as X increased, dNp/dt decreased rapidly until reached a
minimum (indicated with an arrow) at X~0.11 and X~0.17 for SEHP with 1.0 and 2.0 wt
% of SDS content, respectively. The decrease during this period was highly related to the
continuous formation of particles or to the predomination of homogeneous nucleation
in that there were many radicals to form oligomeric or polymeric radicals in an aqueous
phase to nucleate particles. Subsequently, there was a slight increase in dNp/dt until X~0.5
caused by a diffusion of comonomers toward the particles present or those nucleated. At
higher values of X (>~0.5), a plateau was reached. These results infer that the mechanism
that controlled the kinetics was coagulative nucleation and that it depended mainly on the
monomer- and surfactant-starved conditions in the systems. As discussed previously, by
not possessing enough surfactant molecules to stabilize the monomer droplets entering
the system, the newly formed particles coalesced to maintain the colloidal stability of the
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latex. In addition, the reaction achieved stability in the particle-formation process thanks to
the redistribution of surfactant molecules from the previously formed micelles to newly
formed particles.

3.5. Thermic Copolymer Behavior

The glass transition temperatures (Tg) of copolymers synthesized via BEP and SEHP
at different concentrations of SDS and monomer feed rates were obtained by using a DSC
analysis as shown in Figure 8. In the thermograms, it can be appreciated that the Tg of
the copolymer in BEP for two SDS concentrations was obtained at ~20 ◦C and that for the
SEHP it was between 21 and 23 ◦C (Table S1). This difference in the Tg can be explained
by the manner in which the polymerization was carried out in both processes. In BEP, in
the first step, the diffusion process of monomers into micelles to be swollen took place;
notwithstanding this, the ratio of MMA/BA monomers and oligomeric radicals in the
aqueous phase increased during the initiation step because the solubility of MMA in water
was higher than in BA. When the copolymeric radicals moved into the micelle to carry
out the micellar nucleation, the relationship was maintained; this allowed synthesizing
copolymer chains with higher sequences of MMA chemical bonds and a consequent
increase in the tacticity.
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3.6. Stereoregularity Analysis

Using 1H-NMR spectroscopy, it was possible to identify the formation, stereoregularity
of MMA, and the monomer composition that was present in the copolymers of some poly-
merization processes of SEHP and BEP (Figure 9). The tacticity of MMA was determined
by integrating intensity peaks of α-methyl protons at 0.80, 0.99, and 1.10 ppm (Table S2),
which corresponded to the syndiotacticity (rr), heterotacticity (mr), and isotacticity (mm),
respectively. The copolymers with a higher content of mm were those obtained via SEHP
(~8%), while BEP was 3.1%. These higher values of mm were related to the increase in Tg of
the copolymer via SEHP and were higher than those obtained via BEP. In this process, the
polymer Tg was dependent on both monomers; however, it was also related to the stereo-
regularity of the polymer [2]. Monomer compositions in the copolymer were calculated
using the area of signal peaks of the methylene proton of PBA and methyl proton PMMA
(Equation (6)), thereby obtaining a composition of BA for the SEHP process of 21% and for
BEP of 20%.

CBA =
ABA

2
ABA

2 + AMMA
3

× 100 (6)
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3.7. Copolymer Particles Morphology

The TEM images of copolymer particles shown in Figure 10 were taken at 120 min of
reaction time (Figure 10a,c) and at the end of the copolymerization (300 min) (Figure 10b,d)
at the addition rate of 0.5 g min−1 for SEHP at 1 and 2 wt %. In this figure, rows 1 and
2 show the NPs formed at 1.0 and 2.0 wt % of SDS content, respectively. In Figure 10a,c,
the beginning of the coagulation step can be observed in which smaller spherical particles
began to adhere to larger particles. Moreover, at a low concentration of SDS, the particle size
as shown by TEM (Dz0) at 120 min and 300 min were 70 and 150 nm, respectively; whereas
at the higher concentration, Dz0 at 120 and 300 min were 55 and 110 nm, respectively. Note
that the Dz0 of particles produced with 1.0 wt % of SDS (Figure 10a,b) were larger than
those obtained with 2.0 wt % of SDS (Figure 10c,d). The increase in Dz0 in a coagulation
process due to the collision frequency of particles and the subsequent merging process
is commonly denominated as flocculation [49]. Contrariwise, the image of the particles
produced via BEP shows a higher Dz0 and high polydispersity (Figure S5).
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4. Conclusions

High solid content (50%) with stable latexes via SEHP under monomer-starved con-
ditions was obtained. Under these conditions, the mechanism of coagulative nucleation
was demonstrated by Dpz, Np, Sc, Z, and the Smoluchowski model. Moreover, almost
all reaction systems studied were achieved under these conditions except at the concen-
tration of 1 wt % at 2 g min−1, in which flooded conditions dominated and the radicals
could not consume the greater amount of comonomers that were added because there
was insufficient surfactant for nucleating particles. In addition, the low solubility of BA
contributed to a faster diffusion of BA inside the micelle, contributing to the decreases in
Rp and an increase in the monomer accumulation. The particle size was maintained as a
linear increase as a result of the continuous swelling and nucleation of the particles; this
was corroborated by a decrease in Np and Sc until 50% of conversion. After this, a more
pronounced increase in the particle size was observed at higher conversions because the
new particles that formed coalesced on primary particles. In this range, we observed a
slight increase in the Sc, thereby requiring less surfactant to stabilize the particles, which
was corroborated by the TEM images. The Z-potential exhibited an increase after 40% of
global conversion until reaching a maximal value of −56 mV. Therefore, particles nucleated
via homogenous nucleation were agglomerated or coalesced on mature particles, and the
Z-potential decreased again as a result of the homogeneous nucleation of particles due to
the continuous addition of comonomers until the final polymerization process. Based on
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the particle coagulation of the rate, it was possible to identify the coagulative nucleation to
global conversions higher than 40% because there was a minimal change in the particle
number caused by continuous aggregation of the new particles to the mature particles. This
behavior also was demonstrated by the Smoluchowski equation, which also demonstrated
a linear behavior at higher conversions. Therefore, three regions were observed in the
SEHP process, two predominated by nucleation mechanism: the homogeneous nucleation,
transition zone, and coagulative nucleation. In addition, in the final polymerization process,
certain results were similar (such as conversion and particle size), while the Tg, stereoregu-
larity of the copolymer, and stability of the latex were higher in the SEHP process due to
the addition rate and coagulative nucleation, which are very important in the industrial
process because it is possible to maintain the stability of latex for a longer time. Finally, the
SEHP copolymerization process allowed obtaining a high solid content with high colloidal
stability and a Tg close to room temperature. These characteristics enhance the use in the
formation of films (mainly for paints and adhesives). The results of this study can be a tool
to modify variables according to the required final product.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15071628/s1, Figure S1: Kinetics parameters of homopoly-
mers PMMA and PBA compared with the copolymer prepared at 2 g min−1 and the batch copolymer
with 1.0 wt % of surfactant content; Figure S2: Particle size and number of particles of homopolymers
PMMA and PBA compared with the copolymer prepared at 2 g min−1 and the batch copolymer with
1.0 wt % of surfactant content; Figure S3: Surface coverage calculations of homopolymers PMMA
and PBA compared with the copolymer prepared at 2 g min−1 and the batch copolymer with 1.0 wt
% of surfactant content; Table S1: Tg of copolymers with 1.0 wt % and 2.0 wt % of surfactant content
at different addition rates; Figure S4: Z-potential measurements for BEP and SEHP processes at a
feed rate of 2 g min−1 with 1 wt % of SDS in both processes; Table S2: Tacticity and BA concentration
of copolymer obtained via RMN; Figure S5: TEM image of final copolymer synthesized with 1.0 wt %
of surfactant content in batch copolymerization.
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