Evaluation of Interface Shear Strength Coefficient of Alternative Geogrid Made from Para Rubber Sheet
Abstract
:1. Introduction
2. Material Properties
2.1. Soil Properties
2.2. Reinforcement Material
3. Methodology
3.1. Number of Blows Per Compaction Layer
- E = compaction energy (kN-m/m3);
- N = number of blows per layer (blow);
- n = number of layers (layer);
- W = hammer weight (kN);
- h = height of drop (m);
- v = volume of mold (m3).
3.2. Optimum Moisture Content
3.3. Large-Scale Direct Shear Test
- T = shear stress (kN/m2);
- F = shear force or horizontal force (kN);
- Ac = corrected area (m2).
- Ac = corrected area (m2);
- A = initial specimen contact area or area of shear box (m2);
- dH = horizontal displacement (m);
- W = width of shear box (m).
- σ = normal stress;
- δ = skin friction angle between soil and reinforcement material;
- ci = adhesion between soil and reinforcement material;
- ϕ = internal friction angle between soil and soil;
- c = cohesion between soil and soil.
4. Testing Conditions
5. Results and Discussion
5.1. Shear Stress and Horizontal Displacement
5.2. Shear Stress and Normal Stress
5.3. Interface Shear Strength Coefficient (Rin)
6. Conclusions
- The RSS geogrid and RCS geogrid worked well to increase the soil’s shear strength.
- The tensile strength of the RCS geogrid reinforcement made it superior to the RSS geogrid reinforcement for all types of soil.
- In comparison to reinforced clay and lateritic soil with the RCS geogrid, the higher average Rin was clearly observed for reinforced sand. The sand was thus the best material for reinforcement by an RCS geogrid.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiersnowska, A.; Fabianowski, W.; Koda, E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement. Polymers 2020, 12, 1874. [Google Scholar] [CrossRef] [PubMed]
- Yousif, H.F. Effect of Expansive Subgrade Soil on Reinforced Subbase Layer. Master’s Thesis, University of Technology, Baghdad, Iraq, October 2015. [Google Scholar]
- Bergado, D.T.; Chai, J.C.; Abiera, H.O.; Alfaro, M.C.; Balasubramaniam, A.S. Interaction between cohesive-frictional soil and various grid reinforcements. Geotext. Geomembr. 1993, 12, 327–349. [Google Scholar] [CrossRef]
- Nagrale, P.; Sawant, P.; Pusadkar, S. Laboratory investigations of reinforced subgrade soils. In Proceedings of the Indian Geotechnical Conference, GEO Trendz, Mumbai, India, 16–18 December 2010; IGS Mumbai Chapter & IIT Bombay. pp. 637–640. [Google Scholar]
- Hufenus, R.; Rueegger, R.; Banjac, R.; Mayor, P.; Springman, S.M.; Brönnimann, R. Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotext. Geomembr. 2006, 24, 21–37. [Google Scholar] [CrossRef]
- Cai, X.; Feng, J.; Li, S.; Xu, H.; Liu, W.; Huang, X. Study on Interface Interaction between Uniaxial Geogrid Reinforcement and Soil Based on Tensile and Pull-Out Tests. Sustainability 2022, 14, 10386. [Google Scholar] [CrossRef]
- Bai, Q.; Liu, J.; Wang, Y.; Du, H.; Wang, B. Experimental Investigation of Interface Characteristics between Geogrid and Coarse-Grained Soil in a Seasonally Frozen Area. Appl. Sci. 2022, 12, 10187. [Google Scholar] [CrossRef]
- Raja, M.N.A.; Shukla, S.K. Ultimate bearing capacity of strip footing resting on soil bed strengthened by wraparound geosynthetic reinforcement technique. Geotext. Geomembr. 2020, 48, 867–874. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Milligan, G.W.E. Large scale direct shear tests on reinforced soil. Soils Found. 1989, 29, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Sakleshpur, V.A.; Prezzi, M.; Salgado, R.; Siddiki, N.Z.; Choi, Y.S. Large-scale direct shear testing of geogrid reinforced aggregate base over weak subgrade. Int. J. Pavement Eng. 2019, 20, 649–658. [Google Scholar] [CrossRef]
- Artidteang, S.; Bergado, D.T.; Chaiyaput, S.; Tanchaisawat, T.; Lam, L.G. Performance of ruzi grass combined with woven limited life geotextiles (LLGS) for soil erosion control. J. Lowl. Technol. Int. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Artidteang, S.; Tanchaisawat, T.; Bergado, D.T.; Chaiyaput, S. Natural fibers in reinforcement and erosion control applications with limited life geosynthetics. Ground Improv. Case Hist. Compact. Grouting Geosynth. 2015, 717–740. [Google Scholar] [CrossRef]
- Artidteang, S.; Bergado, D.T.; Chaiyaput, S.; Tanchaisawat, T. Embankment reinforced with limited life geotextiles on soft clay. Proc. Inst. Civ. Eng. Ground Improv. 2015, 168, 130–143. [Google Scholar] [CrossRef]
- Chaiyaput, S.; Bergado, D.T.; Artidteang, S. Measured and simulated results of a kenaf limited life geosynthetics (LLGs) reinforced test embankment on soft clay. Geotext. Geomembr. 2014, 42, 39–47. [Google Scholar] [CrossRef]
- Sarsby, R. Limited-life geosynthetics. In Geosynthetics in Civil Engineering; Woodhead Publishing: Sawston, UK, 2007; pp. 244–286. [Google Scholar]
- Mwasha, A. Designing bio-based geotextiles for reinforcing an embankment erected on soft soil. Mater. Des. 2009, 30, 2657–2664. [Google Scholar] [CrossRef]
- Arwaedo, N.; Chaiyaput, S.; Sukchaisit, O.; Auephattayakorn, K.; Deawtipsukon, S. Effect of ribbed smoked sheet on CBR strength of lateritic soil. In Proceeding of the 5th International Conference on Smart Materials and Nanotechnology, Pattaya, Chonburi, Thailand, 1–4 December 2020. [Google Scholar]
- Chaiyaput, S.; Arwaedo, N.; Jamsawang, P.; Ayawanna, J. Natural para rubber in road embankment stabilization. Appl. Sci. 2018, 12, 1394. [Google Scholar] [CrossRef]
- Brydson, J.A. Thermoplastic elastomers: Properties and applications. Rapra Rev. Rep. 1995, 7, 3. [Google Scholar]
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D4318-17e1; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2018.
- Rubber Authority of Thailand, Ribbed Smoked Sheet. 2022. Available online: https://km.raot.co.th/km-knowledge/detail/198/ (accessed on 22 February 2022).
- ASTM D6637-01; Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method. ASTM International: West Conshohocken, PA, USA, 2001.
- Al-Omari, R.R.; Fekheraldin, M.K. Measurement of tensile properties of geogrids. In Proceedings of the 2nd International Conference on Geotechnique, Construction Materials and Environment, Kuala Lumpur, Malaysia, 14–16 November 2012. [Google Scholar]
- ASTM D1557-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2700 kN-m/m3)). ASTM International: West Conshohocken, PA, USA, 2021.
- Das, B.M. Principles of Geotechnical Engineering, 7th ed.; Cengage Learning: Stamford, CT, USA, 2013; pp. 120–124. [Google Scholar]
- Civil Engineering Notes, Standard Proctor Test. Available online: http://civilengineering-notes.weebly.com/compaction-test---proctor-test.html (accessed on 17 May 2022).
- Jewell, R.A.; Milligan, G.W.E.; Sarsby, R.W.; Dubois, D. Interaction between soil and geogrid. In Proceedings of the Polymer Grid Reinforcement, Thomas Telford, London, UK, 22–23 March 1984. [Google Scholar]
- ASTM D5321; Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear. ASTM International: West Conshohocken, PA, USA, 2021.
- DH-S 102/2532; Standard Drawing for Highway Design and Construction. Thailand Department of Highways: Bangkok, Thailand, 1989.
- Bergado, D.T.; Chai, J.C. Pullout force/displacement relationship of extensible grid reinforcements. Geotext. Geomembr. 1994, 13, 295–316. [Google Scholar] [CrossRef]
- Liu, C.N.; Ho, Y.H.; Huang, J.W. Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotext. Geomembr. 2009, 27, 19–30. [Google Scholar] [CrossRef]
- Gratchev, I.; Sassa, K. Shear strength of clay at different shear rates. J. Geotech. Geoenviron. Eng. 2015, 141, 06015002. [Google Scholar] [CrossRef] [Green Version]
- Dafalla, M.A. Effects of clay and moisture content on direct shear tests for clay-sand mixtures. Adv. Mater. Sci. Eng. 2013, 2013, 562726. [Google Scholar] [CrossRef] [Green Version]
- Kamalzare, M.; Moayed, R.Z. Influence of geosynthetic reinforcement on the shear strength characteristics of two-layer sub-grade. Acta Geotech. Slov. 2011, 8, 39–49. [Google Scholar]
- Umashankar, B.; Chennarapu, H.; Mouli, S.S. Interface Properties of Metal-Grid and Geogrid Reinforcements with Sand. In IFCEE, Proceedings of the International Foundations Congress and Equipment Expo 2015, San Antonio, TX, USA, 17–21 March 2015; Geotechnical Special Publication; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 1430–1438. [Google Scholar]
- Malizia, J.P.; Shakoor, A. Effect of water content and density on strength and deformation behavior of clay soils. Eng. Geol. 2018, 244, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Hazout, L.; Cherif, T.A.; Mahmoudi, Y.; Belkhatir, M. Deformation characteristics of natural river sand under compression loading incorporating extreme particle diameters impacts. Mar. Georesources Geotechnol. 2022, 1–19. [Google Scholar] [CrossRef]
- Hazout, L.; El-Abidine, Z.; Belkhatir, M.; Schanz, T. Evaluation of static liquefaction characteristics of saturated loose sand through the mean grain size and extreme grain sizes. Geotech. Geol. Eng. 2017, 35, 2079–2105. [Google Scholar] [CrossRef]
- Cuelho, E.; Perkins, S.; Morris, Z. Relative Operational Performance of Geosynthetics Used as Subgrade Stabilization; Western Transportation Institute, College of Engineering Montana State University: Bozeman, MT, USA, 2014. [Google Scholar]
- Zhao, Y.; Yang, G.; Wang, Z.; Yuan, S. Research on the effect of particle size on the interface friction between geogrid reinforcement and soil. Sustainability 2022, 14, 15443. [Google Scholar] [CrossRef]
Chemicals Components | Amount (phr) |
---|---|
Ribbed smoked sheet grade 3 (RSS) | 100 |
Zinc oxide (ZnO) | 3 |
Stearic acid | 1 |
Rubber antioxidant (6PPD) | 1 |
CaCO3-HI-CAL CC | 50 |
Carbon black N330 | 50 |
Silica | 5 |
Polyethylene glycol (PEG4000) | 1 |
Paraffin oil | 30 |
Sulfur | 2 |
Rubber accelerator (CBS) | 1.5 |
Total phr | 244.5 |
Properties | RSS Geogrid | RCS Geogrid |
---|---|---|
Aperture size (mm) | 20 × 20 | 20 × 20 |
Aperture area (mm2) | 400 | 400 |
Thickness (mm) | 2.38 | 2.51 |
Ultimate tensile strength MD (kN/m) | 0.298 | 6.614 |
Ultimate tensile strength CD (kN/m) | 0.246 | 6.327 |
Tensile strength at 2% strain MD (kN/m) | 0.067 | 0.251 |
Tensile strength at 2% strain CD (kN/m) | 0.075 | 0.269 |
Soil Types | Reinforcement Material | Normal Stress (kN/m2) | ||
---|---|---|---|---|
30 | 60 | 120 | ||
Sand | Non-geogrid reinforced | Sand UR 30 | Sand UR 60 | Sand UR 120 |
RSS geogrid | Sand RSS 30 | Sand RSS 60 | Sand RSS 120 | |
RCS geogrid | Sand RCS 30 | Sand RCS 60 | Sand RCS 120 | |
Lateritic soil | Non-geogrid reinforced | Lat UR 30 | Lat UR 60 | Lat UR 120 |
RSS geogrid | Lat RSS 30 | Lat RSS 60 | Lat RSS 120 | |
RCS geogrid | Lat RCS 30 | Lat RCS 60 | Lat RCS 120 | |
Clay | Non-geogrid reinforced | Clay UR 30 | Clay UR 60 | Clay UR 120 |
RSS geogrid | Clay RSS 30 | Clay RSS 60 | Clay RSS 120 | |
RCS geogrid | Clay RCS 30 | Clay RCS 60 | Clay RCS 120 |
Testing Conditions | Cohesion (kN/m2) | Adhesion (kN/m2) | Internal Friction Angle (Degree) | Skin Friction Angle (Degree) |
---|---|---|---|---|
Sand UR | 2.89 | - | 24.48 | - |
Sand RSS | - | 6.56 | - | 32.26 |
Sand RCS | - | 1.27 | - | 39.28 |
Lat UR | 28.19 | - | 30.15 | - |
Lat RSS | - | 25.72 | - | 35.01 |
Lat RCS | - | 49.97 | - | 36.19 |
Clay UR | 50.08 | - | 30.97 | - |
Clay RSS | - | 52.10 | - | 31.55 |
Clay RCS | - | 54.14 | - | 33.01 |
Samples | Rin | |||
---|---|---|---|---|
Normal Stress = 30 | Normal Stress = 60 | Normal Stress = 120 | Average | |
Sand UR | 1 | 1 | 1 | 1 |
Sand RSS | 1.538 | 1.469 | 1.430 | 1.479 |
Sand RCS | 1.563 | 1.669 | 1.730 | 1.654 |
Lat UR | 1 | 1 | 1 | 1 |
Lat RSS | 1.026 | 1.076 | 1.123 | 1.075 |
Lat RCS | 1.396 | 1.229 | 1.075 | 1.233 |
Clay UR | 1 | 1 | 1 | 1 |
Clay RSS | 1.036 | 1.033 | 1.030 | 1.033 |
Clay RCS | 1.081 | 1.082 | 1.082 | 1.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liangsunthonsit, A.; Jaroonrat, P.; Ayawanna, J.; Naebpetch, W.; Chaiyaput, S. Evaluation of Interface Shear Strength Coefficient of Alternative Geogrid Made from Para Rubber Sheet. Polymers 2023, 15, 1707. https://doi.org/10.3390/polym15071707
Liangsunthonsit A, Jaroonrat P, Ayawanna J, Naebpetch W, Chaiyaput S. Evaluation of Interface Shear Strength Coefficient of Alternative Geogrid Made from Para Rubber Sheet. Polymers. 2023; 15(7):1707. https://doi.org/10.3390/polym15071707
Chicago/Turabian StyleLiangsunthonsit, Anubud, Pakkapon Jaroonrat, Jiratchaya Ayawanna, Weerawut Naebpetch, and Salisa Chaiyaput. 2023. "Evaluation of Interface Shear Strength Coefficient of Alternative Geogrid Made from Para Rubber Sheet" Polymers 15, no. 7: 1707. https://doi.org/10.3390/polym15071707
APA StyleLiangsunthonsit, A., Jaroonrat, P., Ayawanna, J., Naebpetch, W., & Chaiyaput, S. (2023). Evaluation of Interface Shear Strength Coefficient of Alternative Geogrid Made from Para Rubber Sheet. Polymers, 15(7), 1707. https://doi.org/10.3390/polym15071707