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Abstract: We present highly stretchable polypyrrole (PPy)/polydimethylsiloxane strain sensors of
highly improved sensitivity and durability fabricated by a chemical oxidative polymerization with
oxygen plasma treatment (O2 PT). In this study, O2 PT was performed for 30, 60, and 90 s at each
growth stage of the PPy film in three steps to investigate the effects on the sensor performance as well
as the microstructural properties of the PPy films. Bonding characteristics with underlying layers
and resistance to microcrack generation of the multi-layer PPy films under our given strained state
were significantly enhanced by the O2 PT. The best sensor performance in terms of sensitivity and
stability were achieved by PT for 30 s with a maximum gauge factor of ~438 at a uniaxial strain of
50%, excellent durability over 500 stretching/release cycles, and a fast response time of ~50 ms.

Keywords: strain sensor; polypyrrole/polydimethylsiloxane; oxygen plasma treatment; gauge
factor; durability

1. Introduction

Stretchable strain sensors have gained great recognition in terms of their potential in
applications such as continuous health monitoring [1], human body motions [2–4], human-
to-machine interfaces [5], and intelligent robots [6] with significant research advances in
wearable technology. In general, they can be classified into various categories of capac-
itive [7], resistive [8,9], triboelectric [10,11], and piezoelectric [12,13] sensors depending
on their operation mechanism. Among all of these sensing devices, the resistive strain
sensors have been the most preferred and intensively studied because of their simple
structure, user-friendly and secure signal acquisition, and high sensing stability [14–16].
Nonetheless, it is still a great challenge to successfully fabricate resistive strain sensors
capable of enduring a wide strain range (greater than few tens in percentage), high gauge
factor, long-term durability, and good interoperability with body skin.

To meet all these demanding conditions, many different stretchable conducting poly-
mer materials of polypyrrole (PPy) [17–19], polyaniline (PANI) [20–22], and poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) [23,24] have been intensively
studied for their easy integration to flexible and human-skin friendly substrates such as
polydimethylsiloxane (PDMS), thermoplastic polyurethane (TPU), and EcoflexTM rub-
bers [25–27]. More specifically, these conducting polymers, which have recently started
to be widely examined as strain sensor films, are subjected to respond to mechanical
deformations which, in turn, alters their electrical characteristics, such as change in re-
sistance, because of their reproducibility and stretchability. In particular, strain sensors
based on these stretchable conducting polymers have great importance in the everyday
health requirements of people which include the tracking of real-time fitness, routine health
monitoring, and, more importantly, the diagnostics of early diseases [28]. Among all the
properties of stretchable conducting polymers films for strain sensors, stretchability, con-
ductivity, and sensitivity are three fundamental factors which have decisive roles in the
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performance of the future strain sensors [29]. Due to easy synthesis, low cost in fabrication,
stability in oxidized form, high electrical conductivity, and good redox properties, the PPy
has been, by far, the most highlighted among the numerous conducting polymers [30–32];
however, as a conjugated conducting polymer, the brittleness of PPy limits its practical
uses. For this reason, either blending methods with some other polymers or forming the
PPy copolymers could, in part, improve the mechanical properties and fatigue endurance
of this material [33–35].

There have been reports on various PPy-based strain sensors formed on elastomers
with excellent elastic properties, and, as one of examples, Niu et al. demonstrated a
strain sensor by depositing a PPy thin layer on a fibrous PDMS membrane [36]. This
sensor showed distinctive responses and good conductivity at different strain ranges
and demonstrated its unique ‘on-off’ mode characteristics of PPy film in monitoring the
bending of different joints. Wang et al. also reported multifunctional and highly flexible
three-dimensional strain sensors using PPy-coated nickel foam through simple electro-
deposition method, and they revealed the unique interior structure and excellent robustness
under different stretching conditions as well as very good elastic characteristics [37]. On
the other hand, Mufang et al. showed a successful fabrication of PPy/polyurethane (PU)
strain sensors demonstrating the high sensitivity and stretchability required for human
motion detection [38]. There have been many other reports for conductive PPy/elastomers
composites by polymerizing the elastomer/oxidant with pyrrole vapors; however, most of
them exhibited a problem of “peel off” during heavy cyclic stress tests with degradation in
performance and sensing life-time because of the inherent stiffness and rigidity of PPy films.

In this work, we present a fabrication strategy of strain sensors with highly conducting
multi-step grown PPy films strongly anchored on the surface of underlying layers via simple
chemical oxidation polymerization plus an oxygen plasma treatment (O2 PT) process. To
investigate the effects of our synthesis method on the resistance force to crack generation
upon cyclic stress conditions, we performed O2 PT for various time intervals on each
layer of multi-step grown PPy films. Surface morphology and electrical characteristics
of the fabricated multi-layer PPy/PDMS strain sensors were also investigated according
to different PT conditions under various stress conditions. To examine the sensitivity of
our PPy/PDMS strain sensors to tension or bending strain in a large stretching range, two
typical human body motions including both subtle and large-scale movements were tested
by attaching the sensors to human body parts.

2. Materials and Methods

The pyrrole (C4H5N, 99.5% in purity) and iron chloride (FeCl3, 97% in purity) were
from Sigma-Aldrich, South Korea and used without any further purification. N-(3-trimethox
ysilylpropyl) pyrrole (C10H19NO3Si, 95% in purity), abbreviated as Py-Silane hereafter,
was from ABCR GmbH, Karlsruhe, Germany. The SYLGARDTM 184 kit for silicone elas-
tomer base and curing agent were purchased from Dow Corning Corporation (Auburn, MI,
USA). Colloidal silver paste (PELCO®, particle size 0.4–1.0 µm) purchased from Ted Pella,
Inc. (Redding, CA, USA) was used for the electrode formation of sensor devices at low
temperature. First, thin PDMS elastomer substrates were prepared by mixing the silicone
elastomer base and curing agent in a volume ratio of 10:1. The liquid mixture was then
placed on a watch glass and, after degassing, transferred to a silicon wafer by spin-coating
at 200 rpm for 30 s. The spin-coated PDMS was finally cured at 100 ◦C for 2 h to achieve a
final thickness of 0.45 mm and tailored to a rectangular shape (8 × 10 mm) using a surgical
blade for further use.

Schematics of Figure 1a,b describe a chemical oxidation polymerization procedure
with three-step O2 PT to fabricate our multi-layer PPy/PDMS strain sensor structures. In
the first step, the PDMS substrate was plasma-treated with O2 in a reactive ion etching
system for 3 min at a RF power of 50 W, O2 flow rate of 100 sccm, and a process pressure
of 50 mtorr to improve the PPy adhesion to the substrate by enhancing the hydrophilicity.
The contact angle (CA) was ~103.7◦ before PT, and it became significantly smaller (~29.3◦)
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after PT on the PDMS surface. CA measurements were done by a tensiometer (DAS100,
Kruss, Germany) with an optical goniometer using the water sessile drop method. As
illustrated in Figure 1, this O2 PT resulted in the formation of highly populated silanol
groups (Si-OH) on the PDMS substrate and lead to the substrate surface being more
reactive to the silane groups such as Py-Silane, used for a seed layer in this study. The
PDMS substrate was then placed in a vial glass with a drop of ~5 µL Py-Silane near to it,
and the setup was kept in a vacuum oven and heated at 70 ◦C for 3 h. During this vacuum
vapor treatment of PDMS surface by Py-Silane, the silane components of the Py-Silane
monolayer are to be coupled with the hydroxyls (-OH) on PDMS as shown in Figure 1b.
Our chemical oxidation polymerization process was carried out using FeCl3 as an oxidant,
and it lead to the pyrrole monomers being subjected to surface-initiated polymerization.
PPy polymerization was carried out by dipping the O2 plasma-treated PDMS substrates
into the growth solution mixture (for 30 min) which was prepared by mixing the aqueous
solutions of FeCl3 (0.5 M/12 mL) and pyrrole (1 M/12 mL). During the polymerization
process, an interaction between the Py part (see Figure 1b) of Py-Silane with Py-monomer
takes place, and it creates the strong covalent bonds of PPy on the PDMS surface as shown
in Figure 1b. After the first-step growth of PPy films, the samples were taken out from the
growth solution and rinsed in deionized water with ultrasonic agitation (for 3–4 min) to
remove any loosely coupled polymers on the surface.
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relaxed state, an additional 5% stretching was applied to open and make the microcrack 
more visible during our SEM observation. SEM images taken in this stretching condition 
are shown in each right column. 

Figure 1. (a) Schematic illustrations of the fabrication procedure with O2 PT for multi-layer
PPy/PDMS strain sensors and (b) molecular interactions between PPy and PDMS during the film
growth. Photographs of the PPy film surfaces after (c) first, (d) second, and (e) third coatings on
PDMS substrate and (f) the fabricated PPy/PDMS strain sensor with pasted electrodes.

The PPy layer grown on PDMS by the first step is shown in a photograph of Figure 1c.
Before the second-step growth, the films grown in the first step were plasma-treated with
O2 as shown in the second row of Figure 1a. When the PPy films are grown by this multi-
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step method with O2 PT, oxygen radicals present in the vacuum play an important role in
changing the PPy micro-fibers to a stronger and more densely cross-linked structure bound
more tightly to the underlying layers. After the second-step growth in the growth solution
for 30 min as shown in Figure 1d, third-step growth was performed in the same way as
illustrated in the third row of Figure 1a. The third layer of PPy film synthesized in this step
is shown in a photograph of Figure 1e. A lower RF power of 15 W but the same O2 flow
rate (100 sccm) and process pressure (50 mtorr) were used for the O2 PT in the second and
third steps to minimize the plasma damage on the PPy films. Multi-layer PPy/PDMS strain
sensors with three different PT time intervals of 30, 60, and 90 s were fabricated, where
the control sample (CS) with no treatment (PT for 0 s) was also prepared to investigate the
effect of oxygen plasma exposure to the sensor performance. The PPy films synthesized
in this procedure showed the total thickness in a range of 500 ± 30 nm as measured by
cross-sectional SEM. Electrodes for each sensor element were finally formed using silver
paste at room temperature and wired for further measurement as shown in Figure 1f.

Microstructural properties of PPy films on PDMS prepared under different O2 PT
conditions were characterized by a field emission scanning electron microscope (FESEM,
S-4800, Hitachi, Japan) at 15 kV and optical microscopy (BH3-WHP6, Japan). Electrical
resistances of the fabricated sensor devices were measured at room temperature through the
electrodes formed on the PPy surface using a Keithley 2450 source meter unit. Normalized
resistance change (∆R/Ro) upon static and cyclic uniaxial stretch/release for the sensor
devices was measured by a universal tensile test machine (Digital Tech, Japan), where Ro
is the unstrained resistance, and ∆R is the resistance change (∆R = R − Ro) upon uniaxial
stretching. A uniaxial stretch/release test was performed at a strain rate of 100 mm/min, a
tensile force of 5 N, and a clamp distance of 10 mm.

3. Results and Discussion
3.1. Surface Microstructural Morphology

A total of 500 cyclic stresses of 20% uniaxial stretching/release were applied to the
multi-layer PPy/PDMS structures fabricated under different O2 PT conditions before
SEM observation. Surface morphologies of the PPy films at two different magnifications
(top: ×2k, bottom: ×350) are shown in the SEM top-view images of Figure 2a–p. Micro-
graphs in the left columns for each PT condition were taken under the relaxed state. Since
most microcracks produced on the elastic PPy surfaces during the cyclic stress are closed in
the relaxed state, an additional 5% stretching was applied to open and make the microcrack
more visible during our SEM observation. SEM images taken in this stretching condition
are shown in each right column.

One clear difference observed in SEM micrographs is that the PPy layers grown with
O2 PT exhibit a smoother surface with higher surface coverages as depicted in Figure 2e–p,
while the PPy films prepared with no O2 PT (control sample, CS) shows rougher surface
(Figure 2a–d). This observation suggests that the O2 PT significantly affects the bonding
characteristics of additional PPys to the lower layers such as the PDMS or underlying PPys
during the growth. It, in fact, provides rich hydroxyl groups to the surface of underlying
polymer layers as well as more hydrophilic surface, thereby allowing the nucleation of PPys
to covalently bond more actively with the underlying layer and ensuring the deposition
of denser fiber networks [39]. For example, the earlier studies of O2 PT or oxygen plasma
immersion ion implantation methods showed that the static water CAs on the polymeric
surfaces of PDMS, poly(ε-caprolactone), and PPy were decreased from 114, 136, and 98◦ to
~25, 0, and 3◦ by their optimum conditions [40–42]. In our case, the CA was decreased from
~123 to ~37◦ after PT on the PPy surface. Thin PPy films with rougher surface also showed
more “peel-off” problems which can lead to increase in electrical resistance and lower
responsivity upon applied external strain. On the other hand, uniform surface coverage
and the formation of a dense micro-fiber network of PPy achievable by the interlayer O2
PT is essential for reliable long-term strain sensing performance.
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Figure 2. SEM top-views of the PPy films on PDMS substrates synthesized under different PT con-
ditions of (a–d) CS (no O2 PT), (e–h) 30 s O2 PT, (i–l) 60 s O2 PT, and (m–p) 90 s O2 PT. A total of
500 cyclic loads of strain (20%)/relaxation were applied in advance to the PPy films before SEM obser-
vation. Images shown on the left columns of each PT condition were taken under relaxed condition at
two different magnifications (top: ×2000, bottom: ×350). Images shown on the right columns were
taken under the same uniaxial stretching condition (5%) to make the surface microcracks more visible.

Microcrack densities of the PPy films after being stressed by 500 cyclic uniaxial stretch-
ing (20%) and release were measured to quantitatively examine the effect of O2 PT. A
simple linear density to the elongational direction was utilized in this study because all
the microcrack lines were aligned to the perpendicular direction with elongation as shown
in Figure 3. Optical micrographs were taken at four different areas (50 × 50 µm2) under a
sustaining strain of 5% so that all the microcracks could be observed more clearly. Straight
lines were drawn to the parallel direction to the elongation for each selected area on optical
images, and the average numbers of microcracks intersecting the crossing lines were ex-
tracted. Figure 3b illustrates the extracted microcrack densities (number of microcracks
per µm) of the multi-layer PPy/PDMS samples prepared under various O2 PT conditions.
The lowest density was shown in the case of O2 PT for 30 s, while the highest was obtained
from CS, and this result clearly shows that our O2 PT (especially, the maximum effect at PT
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for 30 s) allows the PPys to grow to a denser fiber network structure, thereby resulting in
enhanced resistance to microcrack generation under alternating stress.
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Figure 3. (a) Optical microscope top-view images of PPy films synthesized on PDMS substrates under
four different PT time intervals of 0 (CS), 30, 60, and 90 s. A total of 500 cyclic loads of stretching
(20%)/release were applied in advance to the PPy films before optical microscope observation.
Micrographs were taken on four different areas (50 × 50 µm2) for each PT condition. (b) Bar-graphs
illustrating the microcrack densities measured from the PPy films plasma-treated for different time
intervals of 0 (CS), 30, 60, and 90 s. All the images were taken under the same uniaxial stretching
condition (5%) to make the surface microcracks more visible.

3.2. Electrical Characterization

Shown in Figure 4a–d are the typical current-voltage (I–V) characteristics of multi-layer
PPy/PDMS strain sensors fabricated using different O2 PT conditions (CS, PT for 30, 60,
and 90 s) when stressed under various uniaxial strains ranging from 0 to 50% elongation.
Regardless of PT condition, all the sensors showed good ohmic properties in a voltage
range from −5 to +5 V, but the sensor plasma-treated for 30 s exhibited the lowest electrical
resistance (reciprocal of the slope in I–V curve). The electrical resistance progressively
increased with the increase of strain in all cases, but the resistances in the case of PT for
30 s were the lowest over the entire range of strain as shown in Figure 4e. As observed in
our SEM, the resistance force against microcrack generation of PPy film was maximum
at a PT time interval of 30 s but decreased again when the PT was performed for longer
time intervals. This phenomenon is not fully understood yet, but it is believed that the
increased nucleation rate of PPys caused by higher population of hydroxyls (as well as
hydrophilicity) on the surfaces of underlying polymers starts to be saturated to a level of
O2 plasma exposure time as reported in the previous studies [43]. On the other hand, for PT
longer than 30 s, delocalization of the π-conjugated electrons from the backbone chains of
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PPys can be retarded by the introduction of negatively charged oxygen ions in the plasma
state and highly populated hydroxyl groups on the surface; therefore, beyond this point,
the intrinsic resistance force of PPy against microcrack generation can start to decrease.
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Figure 4. I–V characteristics measured under the axial strain ranging from 0 to 50% from the multi-
layer PPy/PDMS strain sensors fabricated with various O2 PT time intervals of (a) 0 (CS), (b) 30,
(c) 60, and (d) 90 s. (e) Electrical resistances measured from the plasma-treated sensors for various
time intervals are shown upon the change of film strain from 0 to 50%.

To further investigate the sensing performance, the gauge factors (GFs) of multi-layer
PPy/PDMS structures prepared under different PT conditions were calculated. The GF
is defined as (∆R/Ro)/εwhere ε is the mechanical strain, and ∆R/Ro is the normalized
resistance change, and it is an important parameter demonstrating the sensitivity of resistive
strain sensors. Plotted in Figure 5 are the calculated GFs as functions of uniaxial strain for
the sensors fabricated under two different conditions (CS and PT for 30 s). The maximum
GFs of each sensor prepared under every different PT condition at a strain of 50% (ε = 0.5)
were also summarized in an inset table. As shown in Figure 5a, the CS exhibited the lowest
GF of 97 at 50% strain, and the reason behind this low sensitivity is the absence of PT which
leads to the loosely bounded PPy layers and the consequent peel-off or break-down under
strained condition. On the other hand, the GF values of the sensors prepared with O2 PTs
showed significant improvement, and, as illustrated in inset table of Figure 5a, the highest
GF of 438 was obtained from the case of PT for 30 s (at ε = 0.5). Various GFs of stretchable
sensor materials on PDMS have been reported such as 2–10 from Ag-nanowire/PDMS
and carbon black nanoparticle/PDMS, 137–261 from graphene oxide/PDMS, ~103 from
graphene woven fabrics/PDMS, and 3.9–233 from graphene/PDMS composite [44]. In the
case of a free-standing silver/PPy composite sensor, a GF of ~21 was reported at a strain of
20% [45]. In addition, the comparison of previously reported flexible strain sensors based
on PDMS were summarized in Table 1. The greater GF of a sensor we have, the more
easily we can detect small deformations. One notes that a GF of 438 obtained in this study
(multi-layer PPy/PDMS structures fabricated with PT for 30 s) at a very high strain of 50%
is a significant achievement.
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Figure 5. (a) GFs (gauge factors) of the multi-layer PPy/PDMS strain sensors fabricated with two
different O2 PT time intervals of 0 (CS) and 30 s. GFs (at a strain of 50%) of the sensors fabricated
with four different O2 PT time intervals were summarized in an inset table. (b) Transient responses of
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60 s and 90 s PT conditions.

Table 1. Comparison of previously reported flexible strain sensors based on PDMS.

Materials Methods Strain Limit (%) GFs

MWCNTs-PDMS [46] Liquid Phase Mixing 45 1.2
MWNT-GNPs-PDMS [47] Printing technique 40 >100

CNT-CB-PDMS [48] Micromolding method 22.6 29
AgNW-PDMS [49] Micromolding method 70 2–14

Graphene-PDMS [50] Coating technique 7.1 2.4–14
PPy-PDMS (our work) Dipping method 50 438

Strain load of a quasi-step function varying between 0 and 1% was applied to the
sensors to examine the transient response characteristics. Magnified views of the mea-
sured single transient responses from the CS and the sensor plasma-treated for 30 s are,
respectively, shown in Figure 5b and additional inset. Response times (τRS) for the CS and
plasma-treated (for 30 s) sensors to reach their quasi-steady states were 200 and 50 ms,
respectively, while τRS of the sensors that were plasma-treated for 60 and 90 s were 130 and
140 ms, respectively (see the inset table). As revealed from this measurement, the O2 PT for
30 s also brought about significantly reduced response time that can carry out real-time
detection and respond to complicated human activities.

To investigate the sensing stability of our strain sensors with the change of strain in
magnitude, the responses of ∆R/Ro upon the cyclic stretching/release were measured as
depicted in Figure 6 by increasing the peak elongational strain from 10 to 50% with a 10%
stepwise increase. For these measurements, a constant tensile strain rate of 100 mm/min
was maintained. Except for the case of PT for 30 s, the normalized resistances at either
peak point (stretching) or valley point (release) measured from all other sensors exhibited
unstable changes with the cyclic strain as indicated by dotted lines in the figures. On the
other hand, the sensors fabricated with PT for 30 s demonstrated more stable responses
under the conditions of both stretching and release with the strain increase of every 10%
step (indicated by straight dotted line). It is believed that this stability of normalized
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resistance is due to the minimizing permanent damage caused by microcrack generation in
PPy films through O2 PT.
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To examine the sensing stability depending upon the change of strain rate, the sensors
were examined under another stretching/release cycle test condition with three different
strain rates of 10, 50, and 100 mm/min after each set of three cycles, as illustrated in
Figure 7a–d, but the maximum stretching strain was fixed at 20% in all cases. It was
confirmed that the sensor with O2 PT for 30 s also exhibited no significant variation
in normalized resistance and the stable response at different strain rates as shown in
Figure 7b. The CS sensor, however, showed clear and gradual increase in normalized
resistance, especially at peak points (stretching), with the increase of strain rate as revealed
in Figure 7a. In this test, the sensors prepared with PT for 60 or 90 s exhibited much more
stable responses in normalized resistance (see Figure 7c–d) than those of CS.
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To assess the durability of multi-layer PPy/PDMS strain sensors, we also performed a
mini-marathon test of 500 cyclic stretching/release in real time with a constant peak strain
of 20% and a fixed strain rate of 100 mm/min. As shown in Figure 8a, the normalized
resistances of CS exhibited significant increase with time at both peak and valley points,
which could be attributed to the fatigue fracture and displacement of PPy microfiber
structure loosely bounded to the underlying layer due to the absence of interlayered O2 PT.
On the other hand, the sensors fabricated with O2 PT showed more stable peak and valley
values and durable performance under this cyclic test as shown in Figure 8b–d. Especially,
the sensor with PT for 30 s demonstrated the best performance in durability over the entire
range of the cyclic test (Figure 8b).
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500 cyclic strains from 0 to 20%.

3.3. Sensing Mechanism

To understand how our multi-layer PPy/PDMS sensors respond to an external load of
stretching, the morphological change on the surface of PPy films (fabricated with O2 PT for
30 s) under different levels of elongation (ε = 0, 10, 20, 30, 40, and 50%) were more closely
observed using optical microscopy at a ×100 magnification as shown in Figure 9. Under no
elongation, PPy multi-layer films obviously show no microcrack and sit stable on the PDMS
substrate. When the sensors are stretched to a strain level of 10%, narrow line-shaped
microcracks (aligned to the perpendicular direction with elongation) start to appear on the
PPy film surface as shown in Figure 9b. Average microcrack line width (wc) observed at
this strain was 2.5 µm, where wc was measured from four different areas (50 × 50 µm2) of
each sensor structure. With the increase of strain level, the wc was increased significantly
as well as the population of microcracks, and measured wc at 20, 30, 40, and 50% was 8.0,
15.6, 18.0, and 20.0 µm, respectively (see Figure 9c,d).



Polymers 2023, 15, 1714 12 of 15

Polymers 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

The formation of microcracks in PPy film structure under a strained state is caused 
by the random dissipation of strain energy applied to the porous PDMS elastomers, espe-
cially by breaking the interfacial adhesion of PPy thin film and random fracturing in the 
parts of the PPy networked fiber structure; therefore, this process could achieve the effec-
tive release of stored strain energy. In the release state, as the PPy/PDMS elastic body is 
contracted again, the line width of the microcracks generated in the PPy tissue was re-
duced and even closed. This gave rise to the recovery of many “current paths” and con-
siderable reduction in electrical resistance as illustrated in Figure 9g–l. 

 
Figure 9. (a–f) Microstructural surface evolution of the multi-layer PPys on PDMS (O2 PT for 30 s) 
under different tensile strains of 0–50% observed by optical microscopy (×100). (g–l) Schematics of 
the PPy film surfaces under different strains where the currents (red arrow) flow bypassing the open 
circuit paths generated by microcracks. 

3.4. Human Motion Monitoring 
Due to the electromechanical sensing performance and reliability as discussed above, 

we were able to examine the feasibility of applying the multi-layer PPy/PDMS sensors 
fabricated with O2 PT to the monitoring of human body movements. Figure 10 demon-
strates the change in the resistance signal of the sensor generated by various movements 
of human-body joints. The strain sensor was first attached to the upper part of an index 
finger (see Figure 10a), and the corresponding change in normalized resistance was meas-
ured according to the finger’s bending movements (bending angle = 10, 30, 45, 60, and 
90°). The resistance signals of the sensor exhibited a significant step-like increase as the 
bending strain changed toward the final bending by 90°. When the finger was fully ex-
tended, the resistance immediately returned to its original level. The greater the degree of 
bending, the higher the relative resistance changed, showing high strain sensitivity (GF of 
few hundreds) and ultrafast response capability (in few tens of milliseconds). In addition, 
our PPy/PDMS sensors could effectively monitor subtle human motions such as drinking, 
swallowing, and chewing. As an example, Figure 10b displays the real time response of 

Figure 9. (a–f) Microstructural surface evolution of the multi-layer PPys on PDMS (O2 PT for 30 s)
under different tensile strains of 0–50% observed by optical microscopy (×100). (g–l) Schematics of
the PPy film surfaces under different strains where the currents (red arrow) flow bypassing the open
circuit paths generated by microcracks.

The formation of microcracks in PPy film structure under a strained state is caused by
the random dissipation of strain energy applied to the porous PDMS elastomers, especially
by breaking the interfacial adhesion of PPy thin film and random fracturing in the parts of
the PPy networked fiber structure; therefore, this process could achieve the effective release
of stored strain energy. In the release state, as the PPy/PDMS elastic body is contracted
again, the line width of the microcracks generated in the PPy tissue was reduced and even
closed. This gave rise to the recovery of many “current paths” and considerable reduction
in electrical resistance as illustrated in Figure 9g–l.

3.4. Human Motion Monitoring

Due to the electromechanical sensing performance and reliability as discussed above,
we were able to examine the feasibility of applying the multi-layer PPy/PDMS sensors
fabricated with O2 PT to the monitoring of human body movements. Figure 10 demon-
strates the change in the resistance signal of the sensor generated by various movements of
human-body joints. The strain sensor was first attached to the upper part of an index finger
(see Figure 10a), and the corresponding change in normalized resistance was measured
according to the finger’s bending movements (bending angle = 10, 30, 45, 60, and 90◦). The
resistance signals of the sensor exhibited a significant step-like increase as the bending
strain changed toward the final bending by 90◦. When the finger was fully extended, the
resistance immediately returned to its original level. The greater the degree of bending, the
higher the relative resistance changed, showing high strain sensitivity (GF of few hundreds)
and ultrafast response capability (in few tens of milliseconds). In addition, our PPy/PDMS
sensors could effectively monitor subtle human motions such as drinking, swallowing, and
chewing. As an example, Figure 10b displays the real time response of resistance upon the
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very small-scale motion of water drinking when collected from the sensor mounted around
a human throat as shown in the inset.
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(10–90◦) to recovery and (b) the motion of drinking water.

4. Conclusions

In conclusion, a chemical oxidative polymerization synthesis method combined with
three-step O2 PT was demonstrated in this study for the fabrication of highly sensitive and
reliable multi-layer PPy/PDMS strain sensor structures. The sensors fabricated with O2 PT
under an optimized condition showed high sensitivity (GF = 438), a wide sensing range
up to 50% elongation, good electrical conductance of PPy films in our sensing strain range
of 0–50% (R < 300 kΩ), fast response time (~50 ms), reliable sensing stability at different
strain rates, and long-lasting sensing durability upon the cyclic stitching/release. This
sensor performance improvement is due to the oxygen plasma exposure to the growing
PPy films, which successfully reinforce the bonding characteristics of PPy with underlying
layers and provide stronger resistance force to microcrack generation under strained state.
Successful extension of this sensor fabrication technology will be applicable to future real-
time monitoring of human bodies, flexible robots, and wearable electronic devices and very
large and diverse movements.
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