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Abstract: This study investigates the influence of design, relative density (RD), and carbon fiber (CF)
incorporation parameters on mechanical characteristics, including compressive modulus (E), strength,
and specific energy absorption (SEA) of triply periodic minimum surface (TPMS) lattice structures.
The TPMS lattices were 3D-printed by fused filament fabrication (FFF) using polylactic acid (PLA)
and carbon fiber-reinforced PLA(CFRPLA). The mechanical properties of the TPMS lattice structures
were evaluated under uniaxial compression testing based on the design of experiments (DOE)
approach, namely, full factorial design. Prediction modeling was conducted and compared using
mathematical and intelligent modeling, namely, adaptive neuro-fuzzy inference systems (ANFIS).
ANFIS modeling allowed the 3D printing imperfections (e.g., RD variations) to be taken into account
by considering the actual RDs instead of the designed ones, as in the case of mathematical modeling.
In this regard, this was the first time the ANFIS modeling utilized the actual RDs. The desirability
approach was applied for multi-objective optimization. The mechanical properties were found to be
significantly influenced by cell type, cell size, CF incorporation, and RD, as well as their combination.
The findings demonstrated a variation in the E (0.144 GPa to 0.549 GPa), compressive strength
(4.583 MPa to 15.768 MPa), and SEA (3.759 J/g to 15.591 J/g) due to the effect of the studied variables.
The ANFIS models outperformed mathematical models in predicting all mechanical characteristics,
including E, strength, and SEA. For instance, the maximum absolute percent deviation was 7.61% for
ANFIS prediction, while it was 21.11% for mathematical prediction. The accuracy of mathematical
predictions is highly influenced by the degree of RD deviation: a higher deviation in RD indicates a
lower accuracy of predictions. The findings of this study provide a prior prediction of the mechanical
behavior of PLA and CFRPLA TPMS structures, as well as a better understanding of their potential
and limitations.

Keywords: carbon fiber-reinforced PLA; composites; biodegradable polymer; additive manufacturing;
FDM; TPMS lattice structures; compression testing; specific energy absorption; artificial intelligence; ANFIS

1. Introduction

Lattice structures are attracting attention in a wide range of industries, including
aerospace, automotive, medical, and heat management, where lightweight and multifunc-
tionality are required. Properties like thermal insulation, acoustic absorption, mechanical
vibration damping, high stiffness-to-volume fraction ratio, and energy absorption are
required within these structures [1]. They enable the enhancement of the performance-to-
weight ratio, the creation of highly controlled architectures, and the distribution of impact
shock across an object.

In comparison to bulk materials, lattice structures have a high number of design
variables, which increases their complexity and limits their ability to be fabricated using
conventional manufacturing processes. However, the advent of additive manufacturing
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(AM) provides opportunities to fabricate such complex structures, e.g., lattice structures,
and opens doors for creating and exploring more designs.

The fundamental advantage of the lattice structures is that materials can be placed only
where they are needed for a particular application [2]. Thus, the inherent characteristics
of the material, relative density (RD), and geometry variables are the most important
factors that influence various lattices’ performances, all of which can be tuned to satisfy
the needed qualities. In other words, material, RD, and geometry are variables that can
be varied to achieve specific lattice properties. In regards to material, AM allows for
controlling material composition, e.g., incorporating particles/fibers as reinforcement,
leading to uncovering new enhanced multiphase (composite) materials. This enhances the
functionality and performance of the lattices in many aspects, such as mechanical [3–6],
medical [6,7], electrical [8], and multifunctional characteristics [9]. In this regard, the FDM
technique offers promising potential for developing highly reliable and mechanically strong
composite lattice structures [10].

The most common lattice structures’ unit cells are strut-based and surface-based, e.g.,
triply periodic minimal surfaces (TPMS) [11,12]. Strut-based structures are characterized
by their structural members’ joint and frame architecture [13]. Examples of strut-based
cell types are body-centered cubic (BCC), face-centered cubic (FCC) [2], octet-truss [14],
octagonal, and Kelvin [15]. On the other hand, surface-based structures have a sheet-like
architecture. Examples of TPMS cell topologies are Diamond, Gyroid, Primitive, Fisher-
Koch, and IWP [16]. Compared with strut-based structures, TPMS structures have shown
better mechanical performance, such as high strength, high load-bearing capacity, high
energy absorption capacity, and structural stability [17]. Furthermore, TPMS structures
have a higher surface-to-volume ratio, enabling them to be used in medical fields (e.g.,
scaffolds [18,19]) and heat management [20].

Researchers are becoming increasingly interested in the design and 3D printing of
TPMS structures in an attempt to enhance their performance. Spear and Palazotto [13] in-
vestigated the impact of different parameters including cell topologies (Diamond, Primitive,
and I-WP), size and number of cells, and wall thickness on the mechanical performance
of TPMS structures using factorial design. The samples were printed by selective laser
melting (SLM) using INC718 material. The results indicated the importance of considering
the main and combined variables when designing a lattice structure, especially for energy
absorbing purposes. Kladovasilakis et al. [21] studied the mechanical behavior of three
TPMS structures, namely Gyroid, Diamond, and Primitive, printed with PLA by FDM.
The different structures were investigated at different RDs (10% to 30%). They found that
Diamond structures showed the highest strength, whereas Primitive structures demon-
strated the highest capacity for energy absorption. At low RDs, the mechanical properties
of the considered TPMS structures deteriorate. Abueidda et al. [22] studied the effect of
TPMS cell topologies (Primitive, Schoen IWP, and Neovius), structure size, and RD on
the stiffness and strength of SLS-made TPMS polyamide-12 under compression testing.
Results showed that both Neovius and IWP structures demonstrated improved strength
and stiffness compared with Primitive structures. Shi et al. [23] researched the compression
properties and energy absorption of four TPMS cell topologies (Gyroid, Diamond, IW,
and Primitive). The TPMS structures were additively manufactured at different RDs from
Ti6Al4V using SLM. Compression strength and modulus, and energy absorption were
influenced by cell topologies and RDs, according to the findings. Ali et al. [24] investigated
the effects of annealing heat treatment and various cell topologies, including Diamond,
Primitive, Gyroid, Split-P, Kelvin, Octet, and Sea-Urchin Plus (SUP), on surface morphol-
ogy, mechanical characteristics, and energy absorption. The results showed that among
the studied structures, the SUP structure demonstrated the highest strength, while the
Diamond lattice demonstrated the best energy absorption capacity.

Regarding the incorporation of reinforcements as a strategy for enhancing lattices’
performance, very limited work has been reported particularly in TPMS structures. Zarei
Zarei et al. [6] explored the effect of adding Ti6Al4V to PLA on the mechanical and bio-
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logical performance of FDM-printed scaffolds. The results demonstrated that the ultimate
compressive strength and compressive modulus of composite scaffolds were enhanced by
the incorporation of 3–6 wt% Ti6Al4V. Qin et al. [17] studied the influence of adding rein-
forcements (CaCO3 and TCP) to the PLA matrix on the compressive modulus, compressive
strength, energy absorption, structure stability of Diamond (TPMS type) and cubic struc-
tures, additively manufactured by FDM. Results showed that the strength and compressive
modulus of lattice structures were enhanced by adding CaCO3 and TCP. Furthermore, with
regard to cell topology, the Diamond lattice demonstrated better load-bearing capacity,
energy absorption, and structure stability. Kaur et al. [3] performed compression testing
to study the mechanical performance of octahedral and octet lattice structures printed
with PLA and carbon fiber-reinforced composite of PLA (CFRPLA) using FDM. CFRPLA’s
octahedral and octet structures demonstrated higher modulus and energy absorption than
PLA structures. Based on their observation, this could be due to shear forces acting on
the polymer melt during extrusion causing fibers to align along the printing direction,
enhancing the structures’ mechanical stability. Stan et al. [10] investigated the mechanical
behavior of FDM 3D-printed lattice structures under axial and transverse compression
tests. Structures were 3D-printed from carbon fiber (CF) and glass fiber (GF) reinforced
polyamide-12 (PA12) composites. Considering axial and transverse specific load and
stiffness, the performance of the CF/PA12 structures was better than that of the PA12 or
GF/PA12 structures. In [25], experiments and numerical simulations were used to study
the bending properties of various lattice structures made of wood fiber/PLA. Hexagonal,
squared, triangular, circular-cored hexagonal, and circular-core squared structures were
considered. The results showed that the circular-cored hexagonal structure yielded the
highest flexural strength and stiffness. However, this study did not compare the findings of
wood fiber/PLA with neat PLA to show the influence of wood fiber incorporation.

It is critical to understand the single and combined effects of various variables, such as
material characteristics, relative density, and design parameters on the performance of the
FDM TPMS structures. Studying the single and combined effects of various variables needs
to be conducted based on a design of experiments (DOE) scheme. This allows statistical
exploration of the single and combined effects of factors and further generalization of the
lattice’s performance using model-based analysis. Developing models based on factorial
design could be a beneficial method for designing customized lattice structures [26]. To
the best of our knowledge, almost all reported studies of TPMS lattice structures have not
employed a DOE to investigate the influence of design, materials, and relative density
variables, which have the most impact on the lattice structure’s properties. Only a few
studies have used a DOE approach to investigate the performance of strut-based lattice
structures [26–31] and focused only on single-phase materials. In addition, no study has
reported using artificial intelligence modeling to predict the mechanical performance of
3D-printed lattice structures made from singular-phase or composite materials.

It is worth mentioning that most of the reported studies ignored the influence of
RD when statistically investigating the influence of the design parameters on mechanical
characteristics. For instance, the reports that studied the effect of design parameters, such as
strut/wall thickness, cell type, and cell size directly induced RD variations in their results.
In other words, it can be said that the results were affected by RD in an uncontrolled
manner. This is because wall thickness, cell type, and cell size control the RD, and any
combination of them will lead to a particular RD. For example, [26] performed a statistical
analysis of the effect of cell size, cell type, and strut diameter on different mechanical
characteristics. Similarly, the authors of [13] conducted a statistical study on the influence
of different TPMS topologies, cell sizes, cell numbers, and surface thicknesses. In such
cases, the statistical findings could be misleading since the influence may be attributed to
the resulting RD rather than the investigated factors.

This study attempts to examine the influence of material composition, geometry (cell
type and size), and RD variables on the FDM-printed TPMS lattice structures using the
DOE approach. In this regard, three TPMS cell types, namely Diamond, Gyroid, and
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Primitive, with various cell sizes (8 mm and 12 mm), CF incorporation (0% and 15%), and
RDs (30% and 44%) were considered. The analysis was conducted based on a full factorial
design. The actual relative densities of the printed samples were measured to ensure
no significant difference between the designed and printed RDs. Uniaxial compression
testing was used to evaluate the mechanical properties of 3D-printed samples, including
compression modulus, strength, and SEA. Moreover, ANFIS modeling was also employed
for predicting the performance of the TPMS structures, and the results were compared with
the mathematical models developed based on the DOE approach. By using the ANFIS
modeling predictions, we could accurately predict mechanical characteristics considering
the inherent imperfections in 3D printing, such as an RD variation, which cannot be avoided.
Due to the freedom in the ANFIS modeling approach, the actual RDs were used instead of
the intended (designed) RDs, leading to improved prediction accuracy. Finally, the best
parameter settings for maximizing the TPMS lattices’ performance were determined using
multi-objective optimization through the desirability function.

The following section discusses the materials and methods used in this study. The
results are presented in Section 3. Section 4 provides the discussions. Finally, Section 5
presents the conclusions.

2. Materials and Methods
2.1. Materials

In this study, the TPMS structures were FDM-fabricated from two materials: (1) pure
Polylactic acid (PLA) and (2) carbon fiber-reinforced PLA (CFRPLA) in which 15% high-
modulus short carbon fibers CF were incorporated into the PLA matrix. The matrix of both
materials is Natureworks 4043D PLA biopolymer grade. The materials (filaments) were
provided by 3DXTech, USA, with a diameter of 1.75 mm, and used as received. For the
pure PLA filament, the mechanical properties are 1.24 g/cm3 (density, ρ), 56 MPa (Tensile
strength at break), and 2865 MPa (Tensile Modulus) [32], while for the CFRPLA filament:
1.29 g/cm3 (density, ρ), 48 MPa (Tensile strength at break), 4950 MPa (Tensile Modulus) [33].

2.2. Design and Relative Density

In the current research, three different TPMS cell topologies, including Gyroid (G),
Diamond (D), and Primitive (P) were considered. Within the context of this study, the terms
“cell topology” and “cell type” are used interchangeably. Figure 1a illustrates the G, D, and
P cell topologies. The unit cell size (l) of all cell topologies was designed in a cubic unit cell
with 8 mm and 12 mm edge lengths. The reason behind these particular lengths is to fit the
whole lattice dimensions.

Relative density (RD) is one of the most factors that influence a lattice’s performance.
RD, also termed as volume fraction (Vlattice/Voverall), is defined as the lattice structure vol-
ume (Vlattice) divided by the overall structure volume (Voverall) [34]. This study employed
30% and 44% RDs, taking into account the minimum feasible wall thickness to meet FDM
resolution, nozzle diameter, and cell sizes. The selected range of the RDs also considered
that the actual densities of the printed samples showed a close agreement with the designed
RDs. For each TPMS cell topology, the needed RD is determined by the wall thickness and
length of the cell. Hence, the intended RD was controlled by adjusting the ratio of the cell
wall thickness parameter (t) to the cell size (t/l) [16]. It should be mentioned that every cell
topology has its function in relation to the t/l ratio because of the differences in surface
areas. The t values were determined based on the CAD predictions. Table 1 presents the
values of the t parameter for each cell topology at the designed RD and cell lengths.
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Figure 1. TPMS Lattice structures at 30% RD: (a) cell topologies, cell sizes, and the associated lattice
structures and (b) lattice structure dimensions.

Table 1. Values of wall thickness parameter (t) for each TPMS topology at designed RDs and lengths (l).

Cell Topology
l = 8 mm l = 12 mm

RD: 30 RD: 44 RD: 30 RD: 44

D 0.5374 0.7856 0.8065 1.1786

G 0.6826 0.995 1.024 1.493

P 0.772 1.131 1.1585 1.6965

The lattice structures were designed and printed in sizes of 24 × 24 × 48 mm3, see
Figure 1b. The whole lattice dimensions were selected based on the aspect ratio (length
to width ratio) of the ASTM D695-15 standard for compressive testing of rigid polymeric
materials (), so that the length should be twice the sample width [17]. The number of cells
to fit the selected dimensions depends on the cell size, whether 8 mm (3 × 3 × 6 cells) or
12 mm (2 × 2 × 4 cells). CREO 8.0 software was used to design the G, D, and P structures
in the STL format. High-accuracy STL files were obtained for all investigated designs, with
the number of generated triangles varying from 464,860 to 6,653,676 depending on the cell
topology, cell size, and RD.

2.3. Experimental Design

The influence of the material composition (CF incorporation), cell topology, cell size,
and relative density on the mechanical properties, including compression modulus (E)
and strength, and specific energy absorption (SEA), was evaluated by the DOE approach.
Table 2 illustrates the four parameters and their respective levels. A full factorial design
was used with 24 runs. Each run was repeated 3 times resulting in a total of 72 experiments.
Analysis of variance (ANOVA) was performed with a 95% confidence interval to study the
significant influence of the variables and their interactions on E, compressive strength, and
SEA. p-Values less than 0.05 imply that model terms (main factors and interactions) are
statistically significant. Mathematical relationships between the investigated parameters
and each of the output responses were developed. The developed mathematical models
were further considered for optimization of the considered parameters. The best settings
of the considered parameters were optimized through the desirability approach to simul-
taneously (multi-objective optimization) achieve the maximum E, compressive strength,
and SEA. Design-Expert 13 software was used to systematically analyze the influence
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of the investigated parameters, develop mathematical (prediction) models, and conduct
multi-objective optimization.

Table 2. Materials, design, and RD parameters and their levels.

Parameter
Levels

1 2 3

CF incorporation (CF), wt.% 0 15 -
Relative density (RD), % 30 44 -

Cell size, mm 8 12 -
Cell topology (Cell type) D G P

2.4. FDM Printing of TPMS Lattices

An open-source FDM machine, Prusa FDM printer (Original Prusa i3 MK3S+, Czech
Republic), equipped with a 0.4 mm nozzle, was used to additively manufacture the lattice
structures. The STL files for the TPMS lattice structures were imported into slicer software
(PrusaSlicer 2.4.2) in order to slice and generate “GCODE” files. Table 3 presents the
printing parameters employed to 3D print the samples. All samples were printed without
support structures. Examples of printed TPMS structures of different cell topologies are
displayed in Figure 2.

Table 3. FDM printing parameters.

Printing Temperature Bed Temperature Printing Speed Layer Thickness Infill

220 ◦C 65 ◦C 45 mm/s 0.2 mm 100%
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2.5. Metrological Characterization

The printed samples’ actual dimensions (e.g., length, width, and thickness) were deter-
mined by a Lab Profile Projector (VOM-2515), as shown in Figure 3a. Three measurements
were made for each dimension, and the averaged values were used. Density was obtained
by utilizing Archimedes’ method, a common method used for determining the density of
both porous and solid structures. First, the sample’ density was determined by Archimedes’
method by weighing the sample in air and distilled water. The volume of the lattice (Vlattice)
was then determined from the obtained density. Then, the ratio between (Vlattice/Voverall),
which represent the RD, was calculated. The overall volume (Voverall) was calculated from
the actual sample’ dimensions. Measurements were conducted on Shimadzu Analytical
Balance (AUW220D, China) with a readability of 0.01 mg and a universal specific gravity
kit (SGK-C, Mineralab, UK) as in [5]; see Figure 3b.
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2.6. Mechanical Properties

The influence of the considered parameters on the mechanical characteristics of the
TPMS structures was conducted under a uniaxial compression test. The compression tests
were carried out following the ASTM D695-15 standard. Compression tests were performed
along the build direction at a constant crosshead speed of 1.6 mm/min up to 60% strain on
a Zwick Z100 testing machine equipped with a 100 KN load cell. During the tests, forces
and displacements were recorded using testXpert II software.

Mechanical characteristics, including compressive modulus (E), compressive strength,
and SEA, were gathered from the force-displacement curves. First, engineering compressive
stress was used and calculated by dividing the recorded forces (F) by the measured original
cross-sectional area. The strain was computed by dividing the recorded displacements (δ)
during the tests by the original length of the sample. Then, compression modulus and
strength were determined. Compression modulus was calculated by the slope of the tangent
line at the linear portion of the stress-strain curves by testXpert II software. Compression
strength (σpeak) was considered as the peak strength, the maximum stress-value of the first
peak (i.e., first local maximum) in the stress-strain curve [17,35].

Specific energy absorption (SEA) is a useful indicator for measuring a structure’s
capability to absorb energy per unit weight. The SEA of a lattice structure is represented by
the area under the force-displacement curve divided by the structure’s weight. The SEA
was calculated as in Equation (1) [14]. The area under the force-displacement curve was
calculated up to 55% strain (theoretical strain densification strain) using MATLAB R2022a.

SEA =

∫ δ
0 Fdδ

m
(1)

where F is the force, δ is the displacement, and m is the structure’s weight.

2.7. Adaptive Neuro-Fuzzy Inference System (ANFIS) Model

ANFIS is a hybrid neuro-fuzzy method for modeling complex systems. It integrates
the best learning abilities of the artificial neural network (ANN) and inference capabilities
of the fuzzy inference system (FIS) [36,37]. ANFIS accomplishes sample-based learning
using the train data set to develop an efficient ANFIS structure for solving the associated
problem. The developed ANFIS structure is being evaluated for its validity through a test
data set. ANFIS uses a five-layer, feed-forward propagation structure [38]. Figure 4 shows
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an illustration of the ANFIS structure with two inputs, three membership functions (MFs),
and one output. The layer explanation is described as follows [38–40]:
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Figure 4. ANFIS structure.

Layer 1: input membership functions (MFs). In this layer, also called the fuzzification
layer, the fuzzy membership value of each input, i.e., µAi(x) and µBi(y) is calculated by a
proper membership function, e.g., trapezoidal, Gaussian, and triangular.

Layer 2: fuzzy rules. The firing strength ( wi), the weight for each rule’s output is
calculated in this layer. Each node’s output is the product of all its input signals, which can
be calculated using Equation (2).

wi = µAi(x)× µBi(y), i = 1, 2, 3 (2)

Layer 3: normalization. This layer represents the normalization of the firing strength
(wι), as computed by Equation (3).

wι =
wi

∑i wi
, i = 1, 2, 3 (3)

Layer 4: defuzzification. The output of each node in this layer is calculated based on
the function given in Equation (4).

wι· fi = wι(pix + qiy + ri), i = 1, 2, 3 (4)

where pi, qi, and ri called a consequent parameter set.
Layer 5: output layer. This layer has only one node to calculate the system output, as

in Equation (5).
Output = ∑

i
wι· fi (5)

The ANFIS modeling was used for predicting the performance of the TPMS structures
in terms of E, σpeak, and SEA. Using the ANFIS modeling predictions, we could accurately
predict mechanical characteristics considering imperfections in 3D printing, such as an
RD variation. This way, the actual RDs were used instead of the intended RDs, leading to
improved prediction accuracy. Figure 5 depicts the methodology adopted in this study.
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3. Results
3.1. Mechanical Characterization

Table 4 shows the average values of the actual RDs, E, σpeak, and SEA of the 24 runs
according to the full factorial DOE. The variabilty in the three repeated measured results is
indicated by the standard deviation (SD). The results, including E, σpeak, and SEA, were
derived from the force-displacement curves. Typical stress-strain curves under the uniaxial
compression test of the 24 runs listed in Table 4 are depicted in Figure 6. As can be seen in
Figure 6, the mechanical behavior of the lattice structures is susceptible to changes in the
CF incorporation, design, and RD factors. This influence is shown by how much the stress-
strain curves vary in terms of either the stress range or the shape of the curves. For instance,
the influence of the cell type in terms of the stress range and the deformation behavior is
shown between Diamond-based structures (Figure 6a), Gyroid-based structures (Figure 6c),
and Primitive-based structures (Figure 6e). For example, Diamond-based structures show
higher load-bearing capacity and more uniformity in deformation in comparison with
Primitive-based structures.
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Table 4. Full factorial experiments along with the results (E, σpeak, SEA, and actual RDs).

Run#
Variables Responses

Actual RD (% ± SD)
A: CF (%) B: RD (%) C: Cell Size (mm) D: Cell Type E (GPa ± SD) σpeak (MPa ± SD) SEA (J/g ± SD)

1 0 30 8 D 0.315 ± 0.004 10.057 ± 0.204 12.317 ± 0.532 32.36 ± 0.26
2 0 30 12 D 0.325 ± 0.010 9.225 ± 0.054 12.214 ± 0.298 28.50 ± 0.09
3 0 44 8 D 0.402 ± 0.005 13.891 ± 0.027 13.948 ± 0.062 42.65 ± 0.31
4 0 44 12 D 0.495 ± 0.017 15.352 ± 0.173 14.415 ± 0.287 42.58 ± 0.68
5 15 30 8 D 0.375 ± 0.007 9.929 ± 0.149 12.491 ± 0.24 31.18 ± 0.06
6 15 30 12 D 0.349 ± 0.005 8.581 ± 0.166 11.573 ± 0.418 28.11 ± 0.09
7 15 44 8 D 0.470 ± 0.021 13.316 ± 0.027 14.354 ± 0.321 42.35 ± 0.17
8 15 44 12 D 0.549 ± 0.028 15.768 ± 0.199 15.591 ± 0.292 43.33 ± 0.36
9 0 30 8 G 0.182 ± 0.011 6.612 ± 0.129 9.106 ± 0.360 28.91 ± 0.34
10 0 30 12 G 0.240 ± 0.002 7.575 ± 0.034 9.311 ± 0.083 30.48 ± 0.07
11 0 44 8 G 0.389 ± 0.006 13.099 ± 0.082 12.678 ± 0.058 44.99 ± 0.15
12 0 44 12 G 0.364 ± 0.016 11.411 ± 0.196 11.673 ± 0.118 41.68 ± 0.52
13 15 30 8 G 0.230 ± 0.006 6.342 ± 0.111 9.056 ± 0.102 28.51 ± 0.28
14 15 30 12 G 0.262 ± 0.002 6.679 ± 0.045 8.496 ± 0.124 30.18 ± 0.07
15 15 44 8 G 0.421 ± 0.008 12.367 ± 0.206 12.044 ± 0.074 44.15 ± 0.66
16 15 44 12 G 0.398 ± 0.032 11.214 ± 0.108 11.702 ± 0.108 42.55 ± 0.49
17 0 30 8 P 0.144 ± 0.005 5.164 ± 0.074 6.016 ± 0.216 28.50 ± 0.27
18 0 30 12 P 0.171 ± 0.001 5.580 ± 0.090 6.327 ± 0.051 28.59 ± 0.20
19 0 44 8 P 0.315 ± 0.010 11.778 ± 0.096 10.150 ± 0.061 43.48 ± 0.07
20 0 44 12 P 0.37 0 ± 0.006 11.541 ± 0.127 9.636 ± 0.156 42.99 ± 0.58
21 15 30 8 P 0.170 ± 0.004 4.583 ± 0.051 4.985 ± 0.089 28.11 ± 0.13
22 15 30 12 P 0.204 ± 0.005 4.957 ± 0.035 3.759 ± 0.164 28.55 ± 0.07
23 15 44 8 P 0.364 ± 0.008 10.643 ± 0.255 8.499 ± 0.237 42.51 ± 0.33
24 15 44 12 P 0.398 ± 0.006 11.262 ± 0.071 6.375 ± 0.188 43.37 ± 0.19

Deformation mechanisms are graphically illustrated in Figure 7. A bending–torsion
coupled failure is evident for the Diamond-based structures; see Figure 7a. Figure 7b
shows that the Gyroid-based structure exhibits bending and buckling mechanisms of
failure. Figure 7c illustrates the deformation of the Primitive-based structure showing a
layer-by-layer deformation mechanism as also reflected by the stress-strain curves; see
Figure 6e,f.

3.2. ANOVA Analysis

The effect of the considered variables on the TPMS structure performances was studied
statistically using ANOVA. Reduced ANOVA tables were utilized so that nonsignificant
terms were eliminated using backward/forward methods to enhance the model accuracy
without sacrificing the model fit. It is worth mentioning that the normality assumption
was satisfied (see Figure 8). The R2 of E, σpeak, and SEA are 0.995, 0.999, and 0.97, re-
spectively, which indicates an excellent representation of the variability of the data by the
model terms. Table 5 shows the reduced ANOVA table of the compressive modulus, and
p-values less than 0.05 indicate that model terms are significant. From the ANOVA table
(Table 5), all considered factors, including CF incorporation, RD, cell type, and cell size,
significantly influence the E. Two-source interactions, including the cell type and RD, and
cell type and cell size, show a significant influence on the E. Furthermore, three-source
interactions, namely RD, cell size, and cell type, have a significant influence on the E. The
most significant effects are caused by changing the RD variable (58.95%), followed by
cell type (31.32), and then the CF incorporation (3.51%). Figures 9 and 10 also provide a
visual representation of the results, showing the influence direction of the main factors
(Figure 9) and their interactions (Figure 10) on the compressive modulus. The Diamond
cell type demonstrates the highest compressive modulus, followed by the Gyroid cell type,
and finally, the Primitive cell type, which demonstrated the lowest compressive modulus
performance. The other parameters—CF, RD, and cell size—have a proportional influence,
meaning that a change from a low level to a high level of any of them can increase in the E.
Figure 10b,c show how the interaction of the RD, cell size, and cell type affects the E. For
instance, the E of the Diamond-based structures improved at high RD (44%) (Figure 10b)
but decreased at low RD (30%) (Figure 10c) as the cell size increased.
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Figure 6. Typical stress-strain curves of the experimental runs listed in Table 4, classified based
on the cell type and CF %: (a,b) Diamond-based samples at 0% CF and 15% CF, respectively;
(c,d) Gyroid-based samples at 0% CF and 15% CF, respectively; (e,f) Primitive-based samples at 0%
CF and 15% CF, respectively.
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Figure 7. Failure mechanisms of different structures at different strain % of samples with 30% RD,
8 mm cell size, and 0% CF: (a) Diamond, (b) Gyroid, and (c) Primitive.
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Table 5. Reduced ANOVA table of E.

Source Sum of Squares Contribution % df Mean Square F-Value p-Value

Model 0.2723 99.52 12 0.0227 190.15 <0.0001 significant
A-CF 0.0096 3.51 1 0.0096 80.43 <0.0001
B-RD 0.1613 58.95 1 0.1613 1351.86 <0.0001

C-Cell_Size 0.005 1.83 1 0.005 41.73 <0.0001
D-Cell_Type 0.0857 31.32 2 0.0429 359.23 <0.0001

BC 0.0003 0.11 1 0.0003 2.17 0.1686
BD 0.0027 0.99 2 0.0014 11.32 0.0021
CD 0.001 0.37 2 0.0005 4.37 0.0402

BCD 0.0067 2.45 2 0.0033 27.88 <0.0001
Residual 0.0013 0.48 11 0.0001
Cor Total 0.2736 100 23

R2: 0.995, Adjusted R2: 0.99, and Predicted R2: 0.977.
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Figure 9. Effect of the main factors on the E.
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Figure 10. Interaction plots: (a) BD interaction, (b) CD interaction, and (b,c) BCD interaction.

Similarly, the reduced ANOVA table for the σpeak, peak strength is presented in Table 6.
According to the σpeak ANOVA table, the factors that significantly influence σpeak are CF
incorporation, RD, and cell type. The two-source interaction terms, including RD and cell
type, and cell size and cell type, have a significant influence on the σpeak. Furthermore, RD
and cell size interact significantly with the other two parameters, CF and cell type. The most
significant effects are caused by changing the RD variable (71.68%), followed by cell type
(23.87%). Figure 11 demonstrates the directional influence of the main components, whereas
Figure 12 shows the two- and three-source interaction terms. Figure 11 shows that the TPMS
structures with Diamond-cell type exhibit the highest σpeak, whereas the Primitive-based
cell type structures show the lowest. Compressive strength is proportionally influenced
by RD; increasing RD results in an increase in σpeak (Figure 11). Regarding CF, Figure 11
demonstrates that σpeak decreases as CF increases. The interaction between cell type and
size is illustrated in Figure 12b, which demonstrates that as cell size increases, the σpeak of
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the Diamond and Primitive structures improve while the σpeak of the Gyroid structures
decreases. Figure 12d shows how the interaction of the RD, cell size, and cell type affects
the σpeak. For instance, the σpeak of the Diamond-based structures improved at high RD
(44%) but decreased at low RD (30%) as the cell size increased.

Table 6. Reduced ANOVA Table of σpeak.

Source Sum of Squares Contribution % df Mean Square F-Value p-Value

Model 255.66 99.88 15 17.04 448.56 <0.0001 significant
A-CF 1.33 0.52 1 1.33 34.97 0.0004
B-RD 183.47 71.68 1 183.47 4828.63 <0.0001

C-Cell_Size 0.0775 0.03 1 0.0775 2.04 0.191
D-Cell_Type 61.1 23.87 2 30.55 804.05 <0.0001

AB 0.0171 0.01 1 0.0171 0.4495 0.5215
AC 0.0597 0.02 1 0.0597 1.57 0.2454
BC 0.0994 0.04 1 0.0994 2.62 0.1444
BD 1.5 0.59 2 0.75 19.74 0.0008
CD 0.7668 0.3 2 0.3834 10.09 0.0065

ABC 0.5298 0.21 1 0.5298 13.94 0.0058
BCD 6.7 2.62 2 3.35 88.2 <0.0001

Residual 0.304 0.12 8 0.038
Cor Total 255.96 100 23

R2: 0.999, Adjusted R2: 0.997, and Predicted R2: 0.989.
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The reduced ANOVA table for SEA is presented in Table 7. The results indicate that
the cell type, CF incorporation, and RD have a significant influence on the SEA. In addition,
the two-source interaction between the cell type and CF has a significant influence on the
SEA. The most important effects are contributed by the cell type (70.51%), followed by RD
(22.44%), and then the CF and cell type interaction (2.66%). The influence of the main factors
is also graphically presented in Figure 13. Similar to the compressive modulus and strength,
Diamond-based cell types exhibit the best SEA. SEA is proportionally influenced by RD, i.e.,
an increase in RD results in an upsurge in SEA. Figure 13 demonstrates that SEA decreases
as CF increases. This influence, however, varies depending on the cell type, as illustrated in
Figure 14. For instance, Diamond-based TPMS structures show an enhancement in SEA
with an increase in CF (Figure 14a,b), whereas Primitive-based TPMS structures show a
decrease in SEA (Figure 14a,d). Furthermore, Table 7 demonstrates the significant influence
of the interaction between the CF and cell type (shown in Figure 14a) on SEA, providing
further evidence that CF’s influence on SEA is dependent on the cell topology.
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Figure 12. Interaction influence on the σpeak: (a) BD interaction, (b) CD interaction, (c) ABC interac-
tion, and (d) BCD interaction.
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Table 7. Reduced ANOVA Table of SEA.

Source Sum of Squares Contribution % df Mean Square F-Value p-Value

Model 225.92 97.02 6 37.65 92.36 <0.0001 significant
A-CF 3.28 1.41 1 3.28 8.03 0.0114
B-RD 52.26 22.44 1 52.26 128.19 <0.0001

D-Cell_Type 164.18 70.51 2 82.09 201.37 <0.0001
AD 6.2 2.66 2 3.1 7.61 0.0044

Residual 6.93 2.98 17 0.4077
Cor Total 232.85 100 23

R2: 0.97, Adjusted R2: 0.96, and Predicted R2: 0.941.
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of 44%: (a) CF and cell type interaction, (b) Diamond cell type, (c) Gyroid Primitive cell type, and
(d) Primitive cell type.

3.3. Mathematical and ANFIS Prediction Models

Mathematical relationships between the responses, including E, σpeak, and SEA, and
the investigated variables were developed based on the reduced models in the ANOVA
analysis, e.g., Tables 5–7. The developed mathematical models are presented in Table 8.

Similarly, the ANFIS models were developed to predict the performance of the TPMS
structures in terms of E, σpeak, and SEA. An advantage of this type of modeling is that it
eliminates the requirement to strictly adhere to predetermined settings for any variable
in the DOE, where any change in that setting will most likely impact the results. For
instance, the ANOVA analysis results (Section 3.2) proved that RD contributed the most
to the mechanical properties, including E, σpeak, and SEA. Thus, a variation in the actual
RD from the designed RD will certainly lead to a variation in the mechanical properties.
In this regard, actual RD should be used instead of using the designed one, particularly
when there is a high variation, which cannot be avoided. Using the actual RDs makes the
analysis and modeling more accurate. Variations between the actual and designed RDs are
attributed to a number of reasons depending on the AM process. For instance, deviation in
wall thickness and the presence of voids and cracks are reasons to deviate RD in the FDM
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process [5,41]. Excess porosity is an example of the source RD deviation in the SLS process,
as elaborated by [42]. In laser-powder bed fusion (L-PBF), unmelted powder particles
that have no pathway to get out of the structure, closed pores due to powder clog [43],
deviation in wall thickness, voids and cracks, and surface roughness [16] are reasons for
RD deviation. Therefore, a modeling approach such as ANFIS will be more accurate as it
can consider the measured RDs instead of the designed ones.

Table 8. Mathematical prediction models of E, σpeak, and SEA.

Response Topology Mathematical Model

E

G −0.625663 + 0.00266637A + 0.0240777B + 0.0481099C − 0.00123144BC

D 0.551474 + 0.00266637A − 0.00698681B − 0.0525257C + 0.00168178BC

P −0.253648 + 0.00266637 + 0.011005B − 0.000032C + 0.000253839BC

σpeak

G −20.3991 + 0.44013A + 0.844853B + 1.63904C − 0.013642AB − 0.0490301AC − 0.0475763BC + 0.00141501ABC

D 14.1892 + 0.44013A − 0.0749332B − 1.53656C − 0.013642AB − 0.0490301AC + 0.0437816BC + 0.00141501ABC

P −13.6707+ 0.44013A+ 0.584075B+ 0.575688C− 0.013642AB− 0.0490301AC− 0.0142519BC+ 0.00141501ABC

SEA

G 2.89235 − 0.0244981A + 0.2108B

D 5.42397 + 0.0185767A + 0.2108B

P 0.232705 − 0.141851A + 0.2108B

In this study, the ANFIS models were developed during the training phase based on the
full factorial results (as training data) presented in Table 4. The ANFIS technique allows for
the utilization of input data even if it does not comply with a specific DOE. It should be noted
that the actual RDs were used instead of the designed RDs when developing ANFIS models in
both the training and testing phases. Thus, more realistic models could be developed, resulting
in improved prediction accuracy. The accuracy of the developed models was evaluated with
the testing data set presented in Table 9. For each TPMS performance (e.g., E, σpeak, and SEA),
the accuracy of the developed ANFIS models was evaluated using the root mean square error
(RMSE), which was calculated using Equation (6).

RMSE =

√
1
n ∑n

i=1(Expi − Predi)
2 (6)

where n is the number of testing data while Expi and Predi are the experimental and
predicted results of the ith testing experiment, respectively.

Table 9. Testing data set.

Testing Data Set

Run# CF (%) RD (%) Cell Size (mm) Cell Type Act. RD

Test-1 0 37 8 P 37.07
Test-2 0 37 8 G 35.20
Test-3 0 37 8 D 35.62
Test-4 15 37 8 P 37.14
Test-5 15 37 8 G 34.91
Test-6 15 37 8 D 35.36

Furthermore, for each TPMS performance, RMSE was used during the training phase
for tuning and selecting the fuzzy inference parameters to minimize the RMSE. The fuzzy
inference parameters and their settings that resulted in the lowest RMSE are presented
in Table 10. An illustration of the ANFIS structure of the σpeak response is provided in
Figure 15.
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Table 10. Fuzzy inference parameters settings.

Response Training Opt. Method MF Type Output Function No. MFs Epochs

E Hybrid trimf Constant 2 2 3 4 210
σpeak Hybrid pimf Linear 2 2 2 3 30
SEA Hybrid trimf Linear 2 2 2 2 30

Strength

CF

RD

Cell Size

Cell Type

σpeak

Figure 15. ANFIS structure network for modeling the σpeak with “2 2 2 3” number of MFs.

In Figure 16, the predicted values for E, σpeak, and SEA based on the mathematical
and ANFIS models are shown alongside the experimental results. Figure 16a,c,e depict the
experimental and predicted findings for the training data, demonstrating that experimental
and predicted results obtained from both methods are comparable. Figure 17a–c show
evidence of the close agreement between predicted results obtained by both models and the
experimental results in terms of R2 for E, σpeak, and SEA. Similarly, Figure 16b,d,f depict the
experimental and predicted findings for the testing data, showing that the predicted results
obtained from ANFIS methods are much close to the experimental results. Furthermore, an
enhancement is clearly shown in ANFIS predicting results for E, σpeak, and SEA compared
with mathematical results. For instance, the R2 of ANFIS prediction for σpeak is 0.977, which
is significantly higher than that of mathematical prediction, which is 0.763.

Table 11 compares the RMSE performance of the mathematical and ANFIS models
with respect to testing experiments, revealing that ANFIS models have outperformed
mathematical models in all responses. Furthermore, a comparison between mathemat-
ical and ANFIS results for each test experiment in terms of absolute percent deviation
(Dev. =

∣∣∣ Expi−Predi
Expi

∣∣∣ ∗ 100) is presented in Table 12. From Table 12, the maximum devia-
tion in the ANFIS’ prediction results was 7.61% (the 3rd test experiment, σpeak), while a
deviation of 21.11% (the 5th test experiment, σpeak) was found for the mathematical model.
It should be noted that the maximum deviation in the mathematical prediction results
(21.11%) occurred in the 5th testing experiment, which showed a high RD deviation (actual
and designed RDs are 37% and 34.91%, respectively). Furthermore, mathematical models
also displayed some deviations exceeding 10%, contrary to ANFIS deviation values.
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Figure 16. Comparison between experimental, mathematical, and ANFIS results for the training and
testing data sets: (a) training data of E, (b) testing data of E, (c) training data of σpeak, (d) testing data
of σpeak, (e) testing data of SEA, and (f) training data of SEA.

Table 11. RMSE of the mathematical and ANFIS prediction models based on the testing data set.

Response Math. RMSE ANFIS’ RMSE

E 0.017 0.012
σpeak 1.181 0.418
SEA 0.851 0.416

The results shown in Figures 16 and 17 and Tables 11 and 12 highlight the significance
of employing AI models such as the ANFIS model for predicting the performances of TPMS
lattice structures while accounting for the issues associated with 3D printing, such as RD
deviation. Table 12 shows that whenever the actual RD is close to the designed RD, both
models provide accurate predictions. However, for a high variation in RD, the ANFIS
model is preferable. This indicates the ability of both modeling approaches to predict
various mechanical properties of TPMS structures while considering different variables,
including material composition, geometry, and RD.
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Figure 17. Experimental results vs. mathematical and ANFIS predicted results for the training and
testing data sets: (a) training data of E, (b) training data of σpeak, (c) training data of SEA, (d) testing
data of E, (e) testing data of σpeak, and (f) testing data of SEA.

Table 12. Experimental and predicted results of the testing data sets.

No. (RD
Dev.%)

E (GPa) σpeak (MPa) SEA (J/g) Dev. (E) Dev. (Str.) Dev. (SEA)
Exp. Math. ANFIS Exp. Math. ANFIS Exp. Math. ANFIS Math. ANFIS Math. ANFIS Math. ANFIS

1(0.2) 0.23 0.23 0.24 8.37 8.33 8.84 7.92 8.03 8.19 0.13 3.93 0.56 5.62 1.37 3.39
2(4.9) 0.28 0.29 0.27 8.48 9.89 8.37 9.77 10.69 10.39 2.09 4.91 16.67 1.21 9.46 6.41
3(3.7) 0.36 0.37 0.34 10.40 12.08 11.19 12.10 13.22 12.83 3.91 4.30 16.23 7.61 9.33 6.08
4(0.4) 0.28 0.27 0.29 8.08 7.76 8.18 7.10 5.90 7.06 5.50 1.08 4.04 1.26 16.81 0.50
5(5.7) 0.29 0.33 0.31 7.70 9.32 7.75 9.67 10.32 9.82 12.52 6.14 21.11 0.69 6.76 1.51
6(4.4) 0.40 0.41 0.41 10.63 11.51 11.05 12.91 13.50 12.81 1.38 0.99 8.30 3.96 4.60 0.78

3.4. Multi-Objective Optimization

Desirability analysis was used to select the best settings of the CF incorporation, rela-
tive density, cell type, and cell size RD that led to maximizing the σpeak, E, and SEA. Table 13
shows the optimal combination values of the considered variables for multi-objective op-
timization. Diamond topology, 12 mm cell size, 15% CF, and 44% RD should be used to
achieve an overall desirability of 97.8%. Nevertheless, if, for whatever reason, either Gyroid
or Primitive cell topologies are selected, the optimal combinations as well as the overall
desirability values for both designs are illustrated in Table 14. Tables 13 and 14 present
the significance of carefully selecting the cell topology, cell size, and CF incorporation, as
different combinations of these factors result in varying performances.
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Table 13. Optimal parameter settings obtained by multi-objective desirability analysis.

Cell Topology Cell Size (mm) CF (%) RD (%) E (GPa) σpeak (MPa) SEA (J/g) Desirability %

D 12 15 44 0.542 15.55 14.978 97.0

Table 14. Optimal parameter settings considering Gyroid and Primitive cell topologies.

Cell Topology Cell Size (mm) CF (%) RD (%) E (GPa) σpeak (MPa) SEA (J/g) Desirability %

G
8.178(~8) 15 44 0.424 12.28 11.80 68.6

8.06 (~8) 0 44 0.385 13.112 12.168 68.6

P 12 0 44 0.364 11.412 9.508 54.4

Table 15 shows the validation experiments related to the multi-objective optimization
findings reported in Tables 13 and 14, demonstrating a good agreement between the
multi-objective optimization and experimental results.

Table 15. Validation experiments for multi-objective optimization.

Cell Topology Cell Size (mm) CF (%) RD (%) E (GPa) σpeak (MPa) SEA (J/g)

D 12 15 44 0.549 15.768 15.591

G 8 15 44 0.421 12.367 12.044

G 12 0 44 0.364 11.411 11.673

P 12 0 44 0.370 11.541 9.636

4. Discussion

Stress-strain curves depicted in Figure 6 show evident variations in the mechanical
response during the compression testing. Variations are clearly detected in terms of stress,
compressive modulus, and deformation patterns. Primitive structures showed a wave pat-
tern of deformation (Figure 6e,f (e.g., run #17–24)), while Diamond structures (Figure 6a,b)
and Gyroid structures (Figure 6c,d) seemed to deform uniformly, giving them the advantage
of accumulating the load-bearing capacity (e.g., run #1–8 for Diamond and run #9–16 for
Gyroid. Compared with D (Figure 6a) and G (Figure 6c), samples with 0% CF, which exhibit
a sharp reduction in stress following elastic deformation, D (Figure 6b) and G (Figure 6d)
samples with 15% CF demonstrate more plastic deformation. However, Figure 6f shows
that incorporating CF into the Primitive structures, particularly with samples of 12 mm cell
sizes (run#22 and run#22 24), makes the deformation more wavy than in samples with 0%
CF (Figure 6e).

From the results presented in Table 4, Diamond-based TPMS lattice structures showed
the best mechanical properties, including compressive modulus, σpeak, and SEA. For
instance, the maximum compressive modulus (0.549 GPa), σpeak (15.768 MPa), and SEA
(15.591 J/g) were observed with Diamond, 15% CF, 44% RD, and 12 mm cell size (run #8).
On the other hand, the worst mechanical responses were obtained by Primitive-based cell-
type TPMS structures. The minimum compressive modulus (0.144 GPa) was obtained with
Primitive, 0% CF, 30% RD, and 8 mm cell size (run #17), while the lowest σpeak (4.583 MPa)
was observed with Primitive, 15% CF, 30% RD, and 8 mm cell size (run #21). Similarly, the
minimum SEA (3.759 J/g) was observed with Primitive, 15% CF, 30% RD, and 12 mm cell
size (run #22). The walls’ orientation and better material distribution within the geometry
of the Diamond structures improve wall contact and reduce the empty spaces, making it
less susceptible to fracture initiation [5,24]. For illustration, Figure 18 shows cross-sections
of lattice structures with 12 mm cell size and 44% RD. It is evident from the cross sections
that empty spaces between walls in the Diamond structure (Figure 18a) are less than those
in Gyroid and Primitive structures; Figure 18b,c, respectively.
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Figure 18. Cross-sectional of Lattice structures showing material distribution and empty spaces at
12 mm cell size and 44% RD: (a) Diamond, (b) Gyroid, and (c) Primitive.

The influence of all considered parameters, including cell topology and size, CF
incorporation, and RD, as well as their different combinations on the compressive response
of the TPMS structures, was statistically significant. Results showed that RD had the
greatest impact on mechanical response among the four studied variables, followed by cell
type and CF incorporation. Cell size had the least impact. The authors of [44] stated that
RD is the key factor in mechanical performance, including elastic modulus and strength of
a given lattice structure. This is in line with the statistical findings, which show that RD has
a high influence on both the E and σpeak (58.95% and 71.68%, respectively). The statistical
analysis confirms that cell type and RD influence the compressive modulus, σpeak, and SEA
of the TPMS lattice structures. This finding is in line with previous studies that investigated
the effect of TPMS cell topologies and RDs on E, σpeak, and SEA characteristics, such that
these properties were enhanced as RD increased [16]. Diamond structures showed the
best performance, while Primitive structures were the worst [24]. In this regard, when
statistically investigating the influence of design parameters, such as strut/wall thickness
and cell type and size, RD has to be controlled; otherwise, the results could be misleading.

CF incorporation was found to be a statistically significant influence on the mechanical
properties and SEA. These findings are consistent with [3]: CF-reinforced PLA lattices
showed enhanced compressive modulus and energy absorption. According to results in [3],
the shear forces acting on the polymer melt during extrusion cause fibers to align along
the printing direction, enhancing the structures’ mechanical stability. Furthermore, results
reported in [4] stated that the tensile modulus and energy absorption at the break of chiral
structures were significantly enhanced (by two times) when incorporating CF into PLA.
The interaction of CF incorporation with the cell topology significantly influenced the SEA.
This finding agrees with [5] in that the CF incorporation evidently enhanced the energy
absorption in the octahedral lattices, while a slight influence was found on the octet lattices.
This study confirms these previous findings by demonstrating that CF increases the SEA
of Diamond-based structures while (Figure 14b) decreasing the SEA of Primitive-based
structures (Figure 14d). This influence of CF and cell type interaction on the SEA is also
depicted in Figure 19 using ANFIS 3D surface plot.

Cell size had the smallest effect, and the statistical analysis confirmed its influence only
on the compressive modulus. However, its interactions with cell type and RD significantly
influenced the compressive modulus and strength, as seen in Tables 5 and 6. Moreover, the
influence of the combination of cell size, CF incorporation, and RD on the σpeak was significant.
Even though the combination of the three factors had no statistical influence on the SEA
contrary to [28] (Truncated octahedron lattices), the negative influence on SEA was consistent
with [28]. Findings in [41] stated that certain combinations of wall thickness and cell size
(which control the structure RD) of Gyroid structures outperformed others, suggesting the
need for predicting the optimal combination of wall thickness and cell size. This observation is
noteworthy since it implies that different combinations of design, RD, and material composition
(e.g., CF incorporation) factors could be used to attain the desired performance.
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For the training data set, factorial design experiments presented in Table 4, both
prediction models, mathematical and ANFIS models, performed well in predicting E, σpeak,
and SEA, as illustrated in Figures 16 and 17. However, regarding the testing data set
presented in Table 9, ANFIS models clearly outperformed the mathematical models in
terms of RMSE (Table 11) and the absolute percent deviation (Table 12). Furthermore,
Tables 12 and 16 demonstrate that mathematical modeling predictions deviated more
from experimental results compared with ANFIS predictions, notably for experiments
having high RD deviation. This implies a connection between mathematical prediction
performance and RD deviation. From the ANOVA analysis, Section 3.1, the RD influenced
E, σpeak, and SEA with a contribution of 58.95%, 71.68%, and 22.44%, respectively.

Table 16. Relationship between RD absolute percent deviation, RD contribution, and mathematical
prediction absolute percent deviation.

Test No. RD Dev. (%)

RD Contribution %

58.95 71.68 22.44

E
Math. Dev. (%) σpeak Math. Dev. (%) SEA

Math. Dev. (%)

1 0.2 0.13 0.56 1.37

2 4.9 2.09 16.67 9.46

3 3.7 3.91 16.23 9.33

4 0.4 5.50 4.04 16.81

5 5.7 12.52 21.11 6.76

6 4.4 1.38 8.30 4.60

A correlation was observed between the contribution percentage of the RD influence
on the TPMS structure performance (e.g., E, σpeak, and SEA) reported in ANOVA analysis
(Tables 5–7) and the performance of the mathematical predictions. In other words, a high
contribution percentage of RD influence on a TPMS structure’s performance (e.g., E, σpeak,
or SEA) indicates a high error in mathematical modeling predictions for experiments
having a high RD deviation. For instance, the higher mathematical modeling prediction
deviations for σpeak (16.67%, 16.23%, 21.11%, and 8.30%) were observed for the testing
experiments (2, 3, 5, and 6, respectively), with relatively high RD deviations; see Table 16.
The fourth testing experiment (i.e., regarding the mathematical prediction deviations for
the E and SEA) was an exceptional case where the aforementioned phenomenon was not
valid. Furthermore, Figure 20 depicts the relationship between the RD deviation and the
mathematical prediction deviation for E, σpeak, and SEA. A high correlation between the
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RD deviation and mathematical prediction deviation in the case of σpeak (R2 = 0.802) can be
observed, while a low correlation is in the case of SEA. Table 17 presents the results of the
Spearman Rho correlation test, indicating a significant correlation (0.943) between the RD
deviation and mathematical prediction performance in the case of σpeak, which is highly
influenced by the RD variable (71.68%).
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prediction absolute percent deviation.

Table 17. Correlation between RD absolute percent deviation and mathematical prediction absolute
percent deviation of E, σpeak, and SEA.

Math. Prediction Dev.

E σpeak SEA

RD Dev.
Correlation 0.486 0.943 0.143

p-value 0.329 0.005 0.787

5. Conclusions

In this study, the influence of different TPMS-based cell topologies with varying unit
cell sizes, relative densities, and CF incorporation on the mechanical and specific energy
absorption was statistically investigated. The FDM 3D-printed lattices were tested using
a uniaxial compression testing, and their E, σpeak, and SEA were evaluated. Prediction
models were developed using ANFIS and mathematical modeling. By using the ANFIS
models, we were able to predict mechanical characteristics considering imperfections in 3D
printing, such as an RD variation. This was achieved by using the actual RDs instead of the
designed RDs. Multi-objective optimization was conducted using the desirability approach
with the objective of maximizing E, σpeak, and SEA. The following inferences can be made
from this study’s findings:

• The findings demonstrated a change in the E (0.144 GPa to 0.549 GPa), σpeak (4.583 MPa
to 15.768 MPa), and SEA (3.759 J/g to 15.591 J/g) due to the impact of the
considered variables.

• RD had a significant influence on both E and σpeak, with a contribution of 58.95% and
71.68%, respectively. The cell type had the highest impact on the SEA, contributing to
70.51% of the total influence. In general, RD had the highest influence on mechanical
responses among the four studied variables, followed by cell type, CF incorporation,
and finally, cell size having the least impact.
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• The findings revealed the importance of statistically evaluating the influence of the
design, RD, and material composition (e.g., CF incorporation) parameters and their
combination to attain the desired TPMS lattice structure performance.

• For the training data set (factorial design experiments), both mathematical and ANFIS
models predicted E, σpeak, and SEA well. However, when it comes to the testing
data set (validation experiments), ANFIS models clearly outperformed mathematical
models in terms of RMSE and absolute percent deviation in predicting all mechanical
characteristics. For instance, the maximum absolute percent deviation was 7.61% for
ANFIS prediction, while it was 21.11% for mathematical prediction.

• The accuracy of mathematical predictions is highly influenced by the degree of RD
deviation; a higher deviation in RD results in lower accuracy of predictions. Further-
more, a correlation between the mathematical models’ prediction accuracy and the
RD deviation was found when the RD influence contribution on a TPMS performance
was high. For instance, when RD accounted for 71.68% of the variation in σpeak, there
was a significant correlation (94.3%) between the accuracy of mathematical predictions
and RD deviation. Therefore, for a high variation in RD, ANFIS models are preferable.

• Whenever the actual RD is close to the designed RD, both models provide accurate
prediction models. This also indicates the ability of both models to predict different
mechanical properties of TPMS structures, taking into account different variables,
including material composition, geometry, and the RD.

• This study provides a better understanding of PLA and CFRPLA TPMS structures, as
well as an ability to better predict their mechanical behavior. For instance, based on the
multi-objective optimization using the desirability approach, the Diamond topology,
12 mm cell size, 15% CF, and 44% RD combination are the best settings that achieved
an overall desirability of 97.8% for E, σpeak, and SEA.
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