Water-Resistant Thermoelectric Ionogel Enables Underwater Heat Harvesting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TEIG
2.3. Preparation of ITEC
2.4. Tensile Mesurement
2.5. Water Contact Angle (WCA) Measurement
2.6. Swelling Behavior Measurement
2.7. Thermal Stabilities Measurement
2.8. Ionic Conductivity Measurement
2.9. Ionic Seebeck (Si) Coefficient Measurement
2.10. Thermal Conductivity Measurement
2.11. The Thermal Power Figure of Merit (ZT) and the Power Factor (PF)
2.12. Density Functional Theory (DFT) Calculations
3. Results and Discussion
3.1. Mechanical Properties of Ionogels
3.2. Thermoelectric Properties in Air
3.3. Thermoelectric Properties under Water
3.4. Harvesting Low-Grade Heat under Water and in Rainy Weather
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; Huang, R.; Chang, J.; Yu, X.; Jiang, R.; Yu, X.; Roskilly, A.P. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Appl. Energy 2021, 283, 116277. [Google Scholar] [CrossRef]
- Verones, F.; Mohd Hanafiah, M.; Pfister, S.; Huijbregts, M.A.J.; Peletier, G.J.; Koehler, A. Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments. Environ. Sci. Technol. 2010, 44, 9364–9369. [Google Scholar] [CrossRef]
- Li, W.; Ma, J.; Qiu, J.; Wang, S. Thermocells-enabled low-grade heat harvesting: Challenge, progress, and prospects. Mater. Today Energy 2022, 27, 101032. [Google Scholar] [CrossRef]
- Luo, A.; Fang, H.; Xia, J.; Lin, B.; Jiang, Y. Mapping potentials of low-grade industrial waste heat in Northern China. Resour. Conserv. Recycl. 2017, 125, 335–348. [Google Scholar] [CrossRef]
- Chattterjee, U.; Park, J.-H.; Um, D.-Y.; Lee, C.-R. III-nitride nanowires for solar light harvesting: A review. Renew. Sustain. Energy Rev. 2017, 79, 1002–1015. [Google Scholar] [CrossRef]
- Shi, X.; He, J. Thermopower and harvesting heat. Science 2021, 371, 343. [Google Scholar] [CrossRef]
- Gao, C.; Lee, S.W.; Yang, Y. Thermally Regenerative Electrochemical Cycle for Low-Grade Heat Harvesting. ACS Energy Lett. 2017, 2, 2326–2334. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, X.-L.; Yang, Y.-L.; Chen, Z.-G. Flexible thermoelectric materials and devices: From materials to applications. Mater. Today 2021, 46, 62–108. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, 1369. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Wang, S.; Wang, X.; Suwardi, A.; Chua, M.H.; Soo, X.Y.D.; Xu, J. Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials. Nano-Micro. Lett. 2021, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.G. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, 1807916. [Google Scholar] [CrossRef]
- Hasan, M.N.; Nafea, M.; Nayan, N.; Mohamed Ali, M.S. Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Adv. Mater. Technol. 2021, 7, 2101203. [Google Scholar] [CrossRef]
- Kim, M.H.; Cho, C.H.; Kim, J.S.; Nam, T.U.; Kim, W.-S.; Il Lee, T.; Oh, J.Y. Thermoelectric energy harvesting electronic skin (e-skin) Patch with reconfigurable carbon nanotube clays. Nano Energy 2021, 87, 106156. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.; Tang, X.; Liu, Y.; Jiang, T.; Yuan, Z.; Liu, K. Electrodeposition preparation and optimization of fan-shaped miniaturized radioisotope thermoelectric generator. Energy 2020, 194, 116873. [Google Scholar] [CrossRef]
- Kim, J.; Khan, S.; Wu, P.; Park, S.; Park, H.; Yu, C.; Kim, W. Self-charging wearables for continuous health monitoring. Nano Energy 2021, 79, 105419. [Google Scholar] [CrossRef]
- Cheng, H.; Le, Q.; Liu, Z.; Qian, Q.; Zhao, Y.; Ouyang, J. Ionic thermoelectrics: Principles, materials and applications. J. Mater. Chem. C 2022, 10, 433–450. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, H.; He, H.; Li, J.; Ouyang, J. Significant Enhancement in the Thermoelectric Properties of Ionogels through Solid Network Engineering. Adv. Funct. Mater. 2021, 32, 2109772. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B.; Li, J.; Wu, R.; Jin, M.; Zhao, H.; Chen, S.; Wang, H. Advanced Bacterial Cellulose Ionic Conductors with Gigantic Thermopower for Low-Grade Heat Harvesting. Nano Lett. 2022, 22, 8152–8160. [Google Scholar] [CrossRef]
- Pai, Y.H.; Tang, J.; Zhao, Y.; Liang, Z. Ionic Organic Thermoelectrics with Impressively High Thermopower for Sensitive Heat Harvesting Scenarios. Adv. Energy Mater. 2022, 13, 2202507. [Google Scholar] [CrossRef]
- Zhao, D.; Würger, A.; Crispin, X. Ionic thermoelectric materials and devices. J. Energy Chem. 2021, 61, 88–103. [Google Scholar] [CrossRef]
- Cheng, H.; He, X.; Fan, Z.; Ouyang, J. Flexible Quasi-Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. Adv. Energy Mater. 2019, 9, 1901085. [Google Scholar] [CrossRef]
- Hata, S.; Maeshiro, K.; Shiraishi, M.; Yasuda, S.; Shiozaki, Y.; Kametani, K.; Du, Y.; Shiraishi, Y.; Toshima, N. Water-resistant organic thermoelectric generator with >10 μW output. Carbon Energy 2022, 1–13. [Google Scholar] [CrossRef]
- Jinno, H.; Fukuda, K.; Xu, X.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2017, 2, 780–785. [Google Scholar] [CrossRef]
- Zheng, Q.; Jin, Y.; Liu, Z.; Ouyang, H.; Li, H.; Shi, B.; Jiang, W.; Zhang, H.; Li, Z.; Wang, Z.L. Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment. ACS Appl. Mater. Interfaces 2016, 8, 26697–26703. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, Y.; Chen, T. A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Mater. Horiz. 2021, 8, 2761–2770. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, P. Underwater Communication and Optical Camouflage Ionogels. Adv. Mater. 2021, 33, 2008479. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, D.; Khan, Z.U.; Puzinas, S.; Jonsson, M.P.; Berggren, M.; Crispin, X. Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors. Adv. Electron. Mater. 2017, 3, 1700013. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wu, H.; Shi, H.; Xu, L.; Zhu, Y.; Qin, Y.; Peng, G.; Zhang, Y.; Ge, Z.H.; Ding, X.; et al. High-Ranged ZT Value Promotes Thermoelectric Cooling and Power Generation in n-Type PbTe. Adv. Energy Mater. 2022, 12, 2200204. [Google Scholar] [CrossRef]
- Gao, Y.-H.; Chen, H.; Liu, N.; Zhang, R.-Z. Criteria for power factor improvement in thermoelectric composite. Results Phys. 2018, 11, 915–919. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Z.; Deng, Z.; Du, Z.; Sun, T.L.; Guo, Z.H.; Yue, K. A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. Adv. Mater. 2021, 33, 2105306. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, K.D.; Tyrou, A.; Assael, M.J.; Li, X.; Wu, J.; Ebert, H.-P. Reference Correlations for the Thermal Conductivity of Solid BK7, PMMA, Pyrex 7740, Pyroceram 9606 and SS304. Int. J. Thermophys. 2020, 41, 98. [Google Scholar] [CrossRef]
- Tomida, D.; Kenmochi, S.; Tsukada, T.; Qiao, K.; Yokoyama, C. Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at Pressures up to 20 MPa. Int. J. Thermophys. 2007, 28, 1147–1160. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Q.; Xiao, S.; Feng, J.; Zhang, X.; Wang, T. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Sci. Adv. 2021, 7, eabi7233. [Google Scholar] [CrossRef]
- Han, C.-G.; Qian, X.; Li, Q.; Deng, B.; Zhu, Y.; Han, Z.; Zhang, W.; Wang, W.; Feng, S.-P.; Chen, G.; et al. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368, 1091–1098. [Google Scholar] [CrossRef]
- Kim, S.L.; Hsu, J.-H.; Yu, C. Thermoelectric effects in solid-state polyelectrolytes. Org. Electron. 2018, 54, 231–236. [Google Scholar] [CrossRef]
- Kim, S.L.; Lin, H.T.; Yu, C. Thermally Chargeable Solid-State Supercapacitor. Adv. Energy Mater. 2016, 6, 1600546. [Google Scholar] [CrossRef]
- Shu, Y.; Odunmbaku, G.O.; He, Y.; Zhou, Y.; Cheng, H.; Ouyang, J.; Sun, K. Cation effect of inorganic salts on ionic Seebeck coefficient. Appl. Phys. Lett. 2021, 118, 103902. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, H.; Khan, Z.U.; Chen, J.C.; Gabrielsson, R.; Jonsson, M.P.; Berggren, M.; Crispin, X. Ionic thermoelectric supercapacitors. Energy Environ. Sci. 2016, 9, 1450–1457. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tian, Y.; Wu, B.; Jia, W.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. High-Performance Ionic Thermoelectric Supercapacitor for Integrated Energy Conversion-Storage. Energy Environ. Mater. 2021, 5, 954–961. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, M.; Wang, W.; Liu, S.; Huang, W.; Zhao, Q. Flexible Transparent Supercapacitors: Materials and Devices. Adv. Funct. Mater. 2020, 31, 2009136. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, D.; Cheng, M.; Zhou, J.; Owusu, K.A.; Mai, L.; Yu, Y. A New View of Supercapacitors: Integrated Supercapacitors. Adv. Energy Mater. 2019, 9, 1901081. [Google Scholar] [CrossRef]
- He, X.; Cheng, H.; Yue, S.; Ouyang, J. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties. J. Mater. Chem. A 2020, 8, 10813–10821. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Li, H.; Wei, J.; Li, R.; Sun, J.; Zhao, C.; Chen, T. Water-Resistant Thermoelectric Ionogel Enables Underwater Heat Harvesting. Polymers 2023, 15, 1746. https://doi.org/10.3390/polym15071746
Li L, Li H, Wei J, Li R, Sun J, Zhao C, Chen T. Water-Resistant Thermoelectric Ionogel Enables Underwater Heat Harvesting. Polymers. 2023; 15(7):1746. https://doi.org/10.3390/polym15071746
Chicago/Turabian StyleLi, Long, Huijing Li, Junjie Wei, Rui Li, Jiale Sun, Chuanzhuang Zhao, and Tao Chen. 2023. "Water-Resistant Thermoelectric Ionogel Enables Underwater Heat Harvesting" Polymers 15, no. 7: 1746. https://doi.org/10.3390/polym15071746
APA StyleLi, L., Li, H., Wei, J., Li, R., Sun, J., Zhao, C., & Chen, T. (2023). Water-Resistant Thermoelectric Ionogel Enables Underwater Heat Harvesting. Polymers, 15(7), 1746. https://doi.org/10.3390/polym15071746