Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Nuclear Magnetic Resonance (NMR)
2.3. Gel Permeation Chromatography (GPC)
2.4. Dynamic Light Scatting (DLS)
2.5. Transmission Electron Microscopy (TEM)
2.6. Synthesis of Hyperbranched Poly(N,N-Dimethylacrylamide) (HB-PDMA)
2.7. Synthesis of Vinyl-Modified Tetrapeptide (Gly-Leu-Phe-Gly)
2.8. Synthesis of Leu-Gly(5-FU)
2.9. Synthesis of HB-PDMA-Gly-Leu-Phe-Gly
2.10. Activation of HB-PDMA-Gly-Leu-Phe-Gly Carboxylic Group
2.11. Synthesis of HB-PDMA-Gly-Leu-Phe-Gly-Leu-Gly(5-FU)
2.12. Release of 5-FU from the Polymer Conjugate and Dipeptide Derivatives of 5-FU
3. Results and Discussion
3.1. Synthesis of Hyperbranched Poly(N,N-dimethylacrylamide) (HB-PDMA)
3.2. Synthesis of 5-FU Polymer Conjugate
3.3. Monitoring 5-FU Release Using 19F NMR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lauterbur, P.C. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature 1973, 242, 190–191. [Google Scholar] [CrossRef]
- James, M.L.; Gambhir, S.S. A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications. Physiol. Rev. 2012, 92, 897–965. [Google Scholar] [CrossRef] [Green Version]
- Debbage, P.; Jaschke, W. Molecular Imaging with Nanoparticles: Giant Roles for Dwarf Actors. Histochem. Cell Biol. 2008, 130, 845–875. [Google Scholar] [CrossRef] [Green Version]
- Aime, S.; Botta, M.; Terreno, E. Gd(III)-Based Contrast Agents for MRI. Adv. Inorg. Chem. 2005, 57, 173–237. [Google Scholar] [CrossRef]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef]
- Bulte, J.W.M.; Kraitchman, D.L. Iron Oxide MR Contrast Agents for Molecular and Cellular Imaging. NMR Biomed. 2004, 17, 484–499. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.H.; Qian, X.; Mao, H.; Wang, A.Y.; Chen, Z.G.; Nie, S.; Shin, D.M. Targeted Magnetic Iron Oxide Nanoparticles for Tumor Imaging and Therapy. Int. J. Nanomed. 2008, 3, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Code, R.F.; Harrison, J.E.; Mcneill, K.G.; Szyjkowski, M. In Vivo 19F Spin Relaxation in Index Finger Bones. Magn. Reson. Med. 1990, 13, 358–369. [Google Scholar] [CrossRef]
- Bovey, F.A. Nuclear Magnetic Resonance Spectroscopy, 2nd ed.; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Bober, Z.; Aebisher, D.; Ożóg, Ł.; Tabarkiewicz, J.; Tutka, P.; Bartusik-Aebisher, D. 19F MRI As a Tool for Imaging Drug Delivery to Tissue and Individual Cells. Eur. J. Clin. Exp. Med. 2017, 15, 109–119. [Google Scholar] [CrossRef]
- Zhao, D.; Constantinescu, A.; Jiang, L.; Hahn, E.W.; Mason, R.P. Prognostic Radiology: Quantitative Assessment of Tumor Oxygen Dynamics by MRI. Am. J. Clin. Oncol. Cancer Clin. Trials 2001, 24, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, M.; Heerschap, A.; Ahrens, E.T.; Figdor, C.G.; de Vries, I.J.M. 19F MRI for Quantitative in Vivo Cell Tracking. Trends Biotechnol. 2010, 28, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivas, M.; Boehm-Sturm, P.; Figdor, C.G.; de Vries, I.J.; Hoehn, M. Labeling Cells for in Vivo Tracking using 19F MRI. Biomaterials 2012, 33, 8830–8840. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, E.T.; Zhong, J. In Vivo MRI Cell Tracking Using Perfluorocarbon Probes and Fluorine-19 Detection. NMR Biomed. 2013, 26, 860–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, J.C.; Edwards, P.G.; Paisey, S.J. Fluorinated Contrast Agents for Magnetic Resonance Imaging; a Review of Recent Developments. RSC Adv. 2011, 1, 1415–1425. [Google Scholar] [CrossRef]
- Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.; Bombelli, F.B.; Metrangolo, P.; Resnati, G. 19F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications. Chem. Rev. 2015, 115, 1106–1129. [Google Scholar] [CrossRef]
- Srinivas, M.; Morel, P.A.; Ernst, L.A.; Laidlaw, D.H.; Ahrens, E.T. Fluorine-19 MRI for Visualization and Quantification of Cell Migration in a Diabetes Model. Magn. Reson. Med. 2007, 58, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Moonshi, S.S.; Han, Y.; Puttick, S.; Peng, H.; Magoling, B.J.A.; Reid, J.C.; Bernardi, S.; Searles, D.J.; Král, P.; et al. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017, 50, 5953–5963. [Google Scholar] [CrossRef]
- Wang, K.; Peng, H.; Thurecht, K.J.; Puttick, S.; Whittaker, A.K. pH-Responsive Star Polymer Nanoparticles: Potential 19F MRI Contrast Agents for Tumour-Selective Imaging. Polym. Chem. 2013, 4, 4480–4489. [Google Scholar] [CrossRef]
- Wang, K.; Peng, H.; Thurecht, K.J.; Whittaker, A.K. Fluorinated POSS-Star Polymers for 19F MRI. Macromol. Chem. Phys. 2016, 217, 2262–2274. [Google Scholar] [CrossRef]
- Du, W.J.; Nystrom, A.M.; Zhang, L.; Powell, K.T.; Li, Y.L.; Cheng, C.; Wickline, S.A.; Wooley, K.L. Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic F-19 Magnetic Resonance Imaging Agent Assemblies. Biomacromolecules 2008, 9, 2826–2833. [Google Scholar] [CrossRef] [Green Version]
- Thurecht, K.J.; Blakey, I.; Peng, H.; Squires, O.; Hsu, S.; Alexander, C.; Whittaker, A.K. Functional Hyperbranched Polymers: Toward Targeted in Vivo 19F Magnetic Resonance Imaging Using Designed Macromolecules. J. Am. Chem. Soc. 2010, 132, 5336–5337. [Google Scholar] [CrossRef] [PubMed]
- Oishi, M.; Sumitani, S.; Nagasaki, Y. On-Off Regulation of 19F Magnetic Resonance Signals Based on pH-Sensitive PEGylated Nanogels for Potential Tumor-Specific Smart 19F MRI Probes. Bioconjug. Chem. 2007, 18, 1379–1382. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.M.; Mahoney, C.M.; Dempah, K.E.; Davis, J.M.; Becker, M.L.; Khondee, S.; Munson, E.J.; Berkland, C. Fluorinated Copolymer Nanoparticles for Multimodal Imaging Applications. Macromol. Rapid Commun. 2010, 31, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Peng, H.; Thurecht, K.J.; Puttick, S.; Whittaker, A.K. Segmented Highly Branched Copolymers: Rationally Designed Macromolecules for Improved and Tunable 19F MRI. Biomacromolecules 2015, 16, 2827–2839. [Google Scholar] [CrossRef]
- Wang, K.; Peng, H.; Thurecht, K.J.; Puttick, S.; Whittaker, A.K. Multifunctional Hyperbranched Polymers for CT/19 F MRI Bimodal Molecular Imaging. Polym. Chem. 2016, 7, 1059–1069. [Google Scholar] [CrossRef]
- Rolfe, B.E.; Blakey, I.; Squires, O.; Peng, H.; Boase, N.R.B.; Alexander, C.; Parsons, P.G.; Boyle, G.M.; Whittaker, A.K.; Thurecht, K.J. Multimodal Polymer Nanoparticles with Combined 19F Magnetic Resonance and Optical Detection for Tunable, Targeted, Multimodal Imaging in Vivo. J. Am. Chem. Soc. 2014, 136, 2413–2419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Moonshi, S.S.; Wang, W.; Ta, H.T.; Han, Y.; Han, F.Y.; Peng, H.; Kra, P.; Rolfe, B.E.; Gooding, J.J.; et al. High F-Content Perfluoropolyether-Based Nanoparticles for Targeted Detection of Breast Cancer by 19F Magnetic Resonance and Optical Imaging. ACS Nano 2018, 12, 9162–9176. [Google Scholar] [CrossRef]
- Wang, K.; Peng, H.; Thurecht, K.J.; Puttick, S.; Whittaker, A.K. Biodegradable Core Crosslinked Star Polymer Nanoparticles as 19F MRI Contrast Agents for Selective Imaging. Polym. Chem. 2014, 5, 1760–1771. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, A.V.; Bapat, A.P.; Cowin, G.J.; Thurecht, K.J. Switchable 19F MRI Polymer Theranostics: Towards in Situ Quantifiable Drug Release. Polym. Chem. 2017, 8, 5157–5166. [Google Scholar] [CrossRef]
- Fu, C.; Herbst, S.; Zhang, C.; Whittaker, A.K. Polymeric 19F MRI Agents Responsive to Reactive Oxygen Species. Polym. Chem. 2017, 8, 4585–4595. [Google Scholar] [CrossRef]
- Mizukami, S.; Takikawa, R.; Sugihara, F.; Shirakawa, M.; Kikuchi, K. Dual-Function Probe to Detect Protease Activity for Fluorescence Measurement and 19F MRI. Angew. Chem. Int. Ed. 2009, 48, 3641–3643. [Google Scholar] [CrossRef] [PubMed]
- Keliris, A.; Mamedov, I.; Hagberg, G.E.; Logothetis, N.K.; Scheffler, K.; Engelmann, J. A smart19F and 1H MRI Probe with Self-Immolative Linker as a Versatile Tool for Detection of Enzymes. Contrast Media Mol. Imaging 2012, 7, 478–483. [Google Scholar] [CrossRef]
- Mizukami, S.; Matsushita, H.; Takikawa, R.; Sugihara, F.; Shirakawa, M.; Kikuchi, K. 19F MRI Detection of β-Galactosidase Activity for Imaging of Gene Expression. Chem. Sci. 2011, 2, 1151–1155. [Google Scholar] [CrossRef]
- Mizukami, S.; Takikawa, R.; Sugihara, F.; Hori, Y.; Tochio, H.; Wälchli, M.; Shirakawa, M.; Kikuchi, K. Paramagnetic Relaxation-Based 19F MRI Probe to Detect Protease Activity. J. Am. Chem. Soc. 2008, 130, 794–795. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, Y.; Sakamoto, T.; Tsukiji, S.; Narazaki, M.; Matsuda, T.; Tochio, H.; Shirakawa, M.; Hamachi, I. Self-Assembling Nanoprobes That Display Off/on 19F Nuclear Magnetic Resonance Signals for Protein Detection and Imaging. Nat. Chem. 2009, 1, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Otten, P.; Ma, Z.; Cui, W.; Liu, L.; Mason, R.P. Novel NMR Platform for Detecting Gene Transfection: Synthesis and Evaluation of Fluorinated Phenyl β-D-Galactosides with Potential Application for Assessing lacZ Gene Expression. Bioconjug. Chem. 2004, 15, 1334–1341. [Google Scholar] [CrossRef]
- Kodibagkar, V.D.; Yu, J.; Liu, L.; Hetherington, H.P.; Mason, R.P. Imaging β-Galactosidase Activity using 19F Chemical Shift Imaging of LacZ Gene-Reporter Molecule 2-Fluoro-4-Nitrophenol-β-D-Galactopyranoside. Magn. Reson. Imaging 2006, 24, 959–962. [Google Scholar] [CrossRef]
- Liu, L.; Kodibagkar, V.D.; Yu, J.-X.; Mason, R.P. 19F-NMR Detection of lacZ Gene Expression via the Enzymic Hydrolysis of 2-Fluoro-4-Nitrophenyl -D-Galactopyranoside in Vivo in PC3 Prostate Tumor Xenografts in the Mouse. FASEB J. 2007, 21, 2014–2019. [Google Scholar] [CrossRef]
- Putnam, D.; Kopeček, J. Enantioselective Release of 5-Fluorouracil from N-(2-Hydroxypropyl)Methacrylamide-Based Copolymers via Lysosomal Enzymes. Bioconjug. Chem. 1995, 6, 483–492. [Google Scholar] [CrossRef]
- Plenderleith, R.; Swift, T.; Rimmer, S. Highly-Branched poly(N-Isopropyl Acrylamide)s with Core–shell Morphology below the Lower Critical Solution Temperature. RSC Adv. 2014, 4, 50932–50937. [Google Scholar] [CrossRef] [Green Version]
- Coin, I.; Beyermann, M.; Bienert, M. Solid-Phase Peptide Synthesis: From Standard Procedures to the Synthesis of Difficult Sequences. Nat. Protoc. 2007, 2, 3247–3256. [Google Scholar] [CrossRef]
- Nkhifor, M.; Schacht, E.H. Synthesis of Peptide Derivatives of Hluorouracil. Tetrahedron 1994, 50, 3747–3760. [Google Scholar] [CrossRef]
- Frechet, J.M.J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M.R.; Grubbs, R.B. Self-Condensing Vinyl Polymerization—An Approach to Dendritic Materials. Science 1995, 269, 1080–1083. [Google Scholar] [CrossRef]
- Rimmer, S.; Carter, S.; Rutkaite, R.; Haycock, J.W.; Swanson, L. Highly Branched Poly-(N-Isopropylacrylamide)s with Arginine–glycine–aspartic Acid (RGD)- or COOH-Chain Ends That Form Sub-Micron Stimulus-Responsive Particles above the Critical Solution Temperature. Soft Matter 2007, 3, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Platt, L.; Kelly, L.; Rimmer, S. Controlled Delivery of Cytokine Growth Factors Mediated by Core–shell Particles with Poly(acrylamidomethylpropane Sulphonate) Shells. J. Mater. Chem. B 2014, 2, 494–501. [Google Scholar] [CrossRef]
- Shallcross, L.; Roche, K.; Wilcock, C.J.; Stanton, K.T.; Swift, T.; Rimmer, S.; Hatton, P.V.; Spain, S.G. The Effect of Hyperbranched Poly(acrylic Acid)s on the Morphology and Size of Precipitated Nanoscale (Fluor)hydroxyapatite. J. Mater. Chem. B 2017, 5, 6027–6033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvinenko, G.I.; Simon, P.F.W.; Müller, A.H.E. Molecular Parameters of Hyperbranched Copolymers Obtained by Self-Condensing Vinyl Copolymerization. 1. Equal Rate Constants. Macromolecules 1999, 32, 2410–2419. [Google Scholar] [CrossRef]
- Litvinenko, G.I.; Simon, P.F.W.; Müller, A.H.E. Molecular Parameters of Hyperbranched Copolymers Obtained by Self-Condensing Vinyl Copolymerization, 2. Non-Equal Rate Constants. Macromolecules 2001, 34, 2418–2426. [Google Scholar] [CrossRef]
- Qiu, X.P.; Winnik, F.M. Facile and Efficient One-Pot Transformation of RAFT Polymer End Groups via a Mild Aminolysis/michael Addition Sequence. Macromol. Rapid Commun. 2006, 27, 1648–1653. [Google Scholar] [CrossRef]
- Grover, G.N.; Alconcel, S.N.S.; Matsumoto, N.M.; Maynard, H.D. Trapping of Thiol-Terminated Acrylate Polymers with Divinyl Sulfone to Generate Well-Defined Semitelechelic Michael Acceptor Polymers. Macromolecules 2009, 42, 7657–7663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.W.; Yu, B.; Hoyle, C.E.; Lowe, A.B. Convergent Synthesis of 3-Arm Star Polymers from RAFT-Prepared poly(N,N-Diethylacrylamide) via a Thiol–ene Click Reaction. Chem. Commun. 2008, 40, 4959–4961. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Chan, J.W.; Hoyle, C.E.; Lowe, A.B. Sequential Thiol-Ene/Thiol-Ene and Thiol-Ene/Thiol-Yne Reactions as a Route to Well-Defined Mono and Bis End-Functionalized Poly(N-Isopropylacrylamide). J. Polym. Sci. Part A Polym. Chem. 2009, 47, 3544–3557. [Google Scholar] [CrossRef]
- Boyer, C.; Granville, A.; Davis, T.P.; Bulmus, V. Modification of RAFT-Polymers via Thiol-Ene Reactions: A General Route to Functional Polymers and New Architectures. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 3773–3794. [Google Scholar] [CrossRef]
- Li, G.-Z.; Randev, R.K.; Soeriyadi, A.H.; Rees, G.; Boyer, C.; Tong, Z.; Davis, T.P.; Becer, C.R.; Haddleton, D.M. Investigation into Thiol-(Meth)acrylate Michael Addition Reactions Using Amine and Phosphine Catalysts. Polym. Chem. 2010, 1, 1196–1204. [Google Scholar] [CrossRef]
- Chan, J.W.; Yu, B.; Hoyle, C.E.; Lowe, A.B. The Nucleophilic, Phosphine-Catalyzed Thiol-Ene Click Reaction and Convergent Star Synthesis with RAFT-Prepared Homopolymers. Polymers 2009, 50, 3158–3168. [Google Scholar] [CrossRef]
- Putnam, D.A.; Shiah, J.G.; Kopeček, J. Intracellularly Biorecognizable Derivatives of 5-Fluorouracil. Implications for Site-Specific Delivery in the Human Condition. Biochem. Pharmacol. 1996, 52, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Nichifor, M.; Schacht, E.H.; Seymour, L.W. Polymeric Prodrugs of 5-Fluorouracil. J. Control. Release 1997, 48, 165–178. [Google Scholar] [CrossRef]
- Taylor, J.B.; Triggle, D.J. Comprehensive Medicinal Chemistry II, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Lutz, N.W.; Hull, W.E. Assignment and pH Dependence of the 19F-NMR Resonances from the Fluorouracil Anabolites Involved in Fluoropyrimidine Chemotherapy. NMR Biomed. 1999, 12, 237–248. [Google Scholar] [CrossRef]
Polymer | Γ | Time/h | Conv/% a | Mn/kDa b | Ð b | Mn,theo/kDa c | DB(exp) d | DBtheo e | F f |
---|---|---|---|---|---|---|---|---|---|
P1 | 50 | 24 | 91% | 13.5 | 1.78 | 4.8 | 0.038 | 0.039 | 67 |
P2 | 50 | 24 | 96% | 19.9 | 2.70 | 5.0 | 0.038 | 0.039 | 76 |
P3 | 50 | 7 | 93% | 25.5 | 3.77 | 4.9 | 0.038 | 0.039 | 75 |
P4 | 50 | 6 | 91% | 32.0 | 8.11 | 4.8 | 0.038 | 0.039 | 72 |
P5 | 50 | 4 | 92% | 33.0 | 11.92 | 4.9 | 0.038 | 0.039 | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaidari, L.M.; Spain, S.G. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers 2023, 15, 1778. https://doi.org/10.3390/polym15071778
Alhaidari LM, Spain SG. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers. 2023; 15(7):1778. https://doi.org/10.3390/polym15071778
Chicago/Turabian StyleAlhaidari, Laila M., and Sebastian G. Spain. 2023. "Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring" Polymers 15, no. 7: 1778. https://doi.org/10.3390/polym15071778
APA StyleAlhaidari, L. M., & Spain, S. G. (2023). Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers, 15(7), 1778. https://doi.org/10.3390/polym15071778