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Abstract: The acoustic features of old resonance wood in violins exhibit a superior quality when
compared to those from new resonance wood. This study focuses on an assessment of the sound
quality of two types of wood for musical instruments, spruce and maple (class A and D), before
and after aging via thermal and UV exposure. The samples were characterized before and after UV
aging in terms of color change (using a Chroma meter), surface morphology (using a MarSurf XT20
instrument), chemical changes (monitored by FTIR spectroscopy), and sound propagation speed
(using an ultrasound device). After UV treatment, the wavier surface increased the area of exposure
and degradation. Also, the color changes were found to be more accentuated in the case of spruce
compared to sycamore maple. The FTIR results indicated more advanced aging processes for spruce
when compared to maple under the same experimental conditions. This difference resulted mostly
from the increased formation of carbonyl-containing chromophores via oxidative processes in spruce
rather than in maple, which is in agreement with the color change findings. Exposure of both species
to thermal and UV radiation led to an increase in sound propagation speed, both longitudinally and
radially, and to a greater extent in wood quality class A when compared to quality class D.

Keywords: resonance wood; acoustic quality; sound propagation; UV aging; color changes; chemical
changes; surface morphology

1. Introduction

The acoustic quality of old violins has aroused the interest of researchers to explore the
causes that lead to higher sound quality when comparing geometrically identical violins
that have been manufactured from recently made resonance wood. According to some
researchers, the natural aging of wood is responsible for increasing the acoustic quality
of violins. Thus, ref. [1,2] highlight the occurrence of significant differences in the wood
density of old violins compared to the wood of new violins. The decrease in density by
33% in spruce boards and 10% in maple boards caused changes in the stiffness distribution,
which can have a direct impact on vibration effectiveness or can indirectly change sound
radiation due to the modified damping characteristics. On the other hand, Su et al. 2021 [3]
examined the effects of natural aging on Cremonese spruce using C13 solid-state nuclear
magnetic resonance, noting that there was little sign of degradation, which was in contrast
to Cremonese sycamore wood that showed significant hemicellulose degradation and the
demethoxylation of lignin. Such distinctions may be caused by fundamental differences in
the chemical compositions of wood. However, aging can also mean the formation of new
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substances and stabilization, which can, in some cases, be a desirable effect [4]. The critical
wavelengths to break the most important chemical bonds in wood polymers are 346, 334,
and 289 nm. These wavelengths are found in the UV component of solar radiation and
affect carbon-carbon, carbon-oxygen, and carbon-hydrogen bonds, respectively [5].

In addition to photodegradation, surface thermal degradation must also be considered
because the surface temperature of outdoor irradiated wood can reach 60–90 ◦C, depending
on its color [6]. Wood aging also leads to changes in the size of micropores, considering that
extended aging time makes the wood microstructure more stable, resulting in a decrease
in the number of micropores [7]. All investigations into naturally or artificially aged
wood have highlighted both chemical and physical changes, with these being connected
to each other. Thus, the color changes of wood as a result of natural aging are related to
specific chemical changes involving both the main and secondary chemical components
of wood [8,9] that are associated with the modification of other physical properties, such
as surface roughness [10,11] or wetting properties and adhesion capacity [12,13]. Changes
in chemical and mechanical properties are not limited to the wood surface. Mechanical
properties can also be affected by aging wood under variable conditions of temperature
and relative humidity [14–17]. It is certain that the aging process of wood differs depending
on the environmental conditions (outdoors or indoors). When wood is exposed to direct
sunlight, severe damage is induced by UV radiation [9,10,18,19]. In the situation of objects
stored indoors, as is the case of stringed musical instruments, the sunlight spectrum is
mostly filtered by window panes, resulting in a decrease in the intensity of UV radiation. In
addition, in indoor environments, artificial light sources are also present. Due to different
light spectrums, the photodegradation processes of indoor wood are not the same as those
for outdoor wood. The studies carried out by artificial aging procedures on different
wood species have shown that the color changes are rapid in the first 12 h of exposure for
hardwoods and for the first 24 h for softwoods [9,20–22]. A continuation of the exposure
time beyond these limits has shown a decrease in the fading speed. Most wood species
recorded almost no further color change until the end of the irradiation period.

Several studies have addressed the problem of the photodegradation of wooden
surfaces due to UV and thermal radiation, but very few of them have analyzed the
acoustic and physical changes produced in the resonance wood used for musical
instruments [17,23–27]. Noguch et al. 2012 [17] and Obataya 2017 [24] observed an increase
in the stiffness of naturally aged wood by approximately 38% in 121-year-old wood, after
which a decrease was observed with increasing aging time. The speed of sound was 14%
higher for the 276-year-old wood compared to the 8-year-old wood. Similar results were
also obtained by Kranitz et al. [16], who observed an increase in the dynamic modulus of
elasticity in the longitudinal direction with tree age.

The main objective of this work is to study whether the effect of artificial aging through
thermal and UV exposure can improve the acoustic parameters of two wood species that
are commonly used for musical instruments: spruce and sycamore maple. The novelty of
the paper consists of a holistic research approach, in which the aging effect is regarded not
only upon acoustics solely but in combination with other changes, such as on surface color,
surface morphology, and chemical modifications, in order to provide a better understanding
of the aging process.

2. Materials and Methods
2.1. Materials

The wood samples selected for this study belong to the two most used wood species
for the construction of violins: spruce (Picea abies (L.) Karst.) and sycamore maple (Acer
pseudoplatanus, L.). Two quality class samples were prepared, depending on their anatomi-
cal characteristics: class A and class D, selected according to the anatomical classification
from previous studies [28,29]. Spruce wood samples were coded MA (class A) and MD
(class D), respectively, and differed in the number and width of the annual rings, with
the finest structure attributed to class A. Sycamore maple wood samples were coded PA
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(class A with a curly grain) and PD (class D with a straight grain). The sample code used
after exposure to ultraviolet radiation was the UV suffix, for example, MAUV (spruce,
quality A, and exposure to UV). The wood was harvested from the forests of the Carpathian
Mountains. It was cut and naturally dried for 3 years (class D) and 10 years (class A)
to obtain the semi-finished products necessary for the manufacturing of stringed musi-
cal instruments. The samples were processed in the form of plates with dimensions of
240 mm × 80 mm × 4 mm, respecting the main directions of wood (length (longitudinal
direction) × width (radial direction) × thickness (tangential direction)). All plates were
sanded with 220-grit sandpaper. Three replicates were studied for each sample category, as
shown in Figure 1.
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2.2. Methods
2.2.1. UV and Thermal Exposure

The samples were introduced into a photocatalytic reactor ICD – Transilvania Univer-
sity of Bras, ov, Bras, ov, Romania, equipped with 2 UV tubes (Philips, TL-D BLB 18 W/108)
and 5 VIS light tubes (Philips, TL-D Super 80 18 W/865). Each tube emits radiation in the UV
range, with wavelengths between 340–400 nm and wavelength λmax (emission) = 365 nm;
the average value of UV irradiation was measured with a Delta-T pyranometer, type BF3,
with 3 W/m2 [30]. Wood samples were exposed to UV for 360 h [31]. The distance be-
tween the samples and the lamp during irradiation was 20 cm, and the temperature inside
the irradiation chamber was 50 ◦C. Physical and acoustic properties were periodically
evaluated and measured. The moisture content was monitored using a Merlin HM8-WS1
moisture meter (Merlin Technology Inc. 1441 E. Business Center Dr., Mount Prospect,
Illinois, USA), and the mass was measured with a Kern and Sohn Weighing Balance, EWJ
600-2SM (Mechanikus Gottlieb KERN, Balingen, Germany).

2.2.2. Wood Color Change Measurements

The degree of change in the wood color as a result of the progressive exposure to
UV and to thermal radiation was determined by monitoring the color parameters with
a chroma meter CR-400 Konica Minolta. Thus, the (L*) lightness values were obtained,
as well as the chromatic co-ordinates on the green-red axes (the degree of green/red), a*,
the degree of blue/yellow, b*, and the total color change, denoted ∆E∗

ab. The latter was
calculated with Equation (1), according to [22,32,33]:

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (1)
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where ∆L∗—the lightness difference, ∆a∗—the redness difference, and ∆b∗—the yellowness
difference between wood before and after exposure to UV radiation.

The color was measured in three points on the plate, which were positioned according
to the schematic representation in Figure 2. The guide marks served to maintain the same
location when monitoring the color before and during UV exposure.
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2.2.3. Surface Quality Measurements

The equipment used for the evaluation of the surface morphology comprised a Mar-
Surf XT20 instrument manufactured by MAHR Gottingen GMBH (Göttingen, Germany),
fitted with an MFW 250 scanning head, with a tracing arm in the range of ±750 µm,
and a stylus with a 2 µm tip radius and a 90◦ tip angle. The stylus moved at a speed of
0.5 mm/s and exerted a low scanning force of 0.7 mN at a lateral resolution of 5 µm. Three
measurements per specimen were recorded by following an identical trace, before and
after exposure to UV, according to the measurement principles from Figure 3. The scanned
profiles were processed with MARWIN XR20 software provided by the instrument supplier
(Göttingen, Germany). The measured profiles contain a superposition of deviations from
the nominal flat surface, surface waviness, and surface roughness [34]. By removing the
form deviations, a primary profile was obtained, which contained the waviness and rough-
ness together. A special filtering procedure using a cut-off value separated the roughness
profile from the primary profile. A robust Gaussian regression filter with a cut-off length
of 2.5 mm was used in this research [34]. Mean value parameters were calculated, such as
Ra (arithmetical mean deviation of the roughness profile), Rt (total height of profile), and
Wa (arithmetical mean deviation of the waviness profile) (from ISO 4287:2009) [35]. Other
parameters included the Abbot-curve parameters: Rk (the core roughness depth), Rpk
(the reduced peak height), and Rvk (the reduced valley depth) from ISO 13565-2:1998 [36],
explained in detail in [37]. The parameter Rk is closely related to “processing roughness”
or “core roughness” [37], being the most stable parameter (small standard deviation) and
the least influenced by the presence of isolated protrusions or valleys of the profile. Rpk is
useful in assessing the surface fuzziness in a profile, while Rvk is sensitive to surface deep
cavities occurring below the core roughness.
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2.2.4. FTIR Analysis of Chemical Changes on Wood Surfaces

The chemical changes produced by UV and thermal exposure were investigated using
an FTIR spectrometer (ALPHA, Bruker, Ettlingen, Germany) with an ATR (attenuated total
reflectance) module. The spectra were recorded in the range 4000–600 cm−1 at a resolution
of 4 cm−1 and 24 scans per sample. Spectra were recorded in 3 areas for each sample. The
recorded spectra were further processed for baseline correction and smoothing, and average
spectra were computed for each category of sample/treatment using the OPUS software
(version 7.2, Bruker, Ettlingen, Germany). Average spectra were further normalized (min-
max normalization) and compared to highlight any chemical changes due to aging. The
working method was adopted according to [9,10].

Furthermore, the normalized average spectra were integrated, and the ratios of the
areas of some relevant absorption bands of the main chemical components of wood were
calculated to better highlight the chemical changes brought about by aging. The selected
absorption bands were those at around 1506–1507 cm−1, assigned to aromatic skeletal
vibration of lignin, 1730–1740 cm−1, assigned to unconjugated carbonyl groups, and about
1370 cm−1, assigned to holocellulose and considered as an internal reference [38]. The
calculated ratios were: A1506/A1370, A1730/A1370, and A1730/A1506, as in previously
reported research [9].

2.2.5. Sound Velocity Measurements

The measurement of the sound propagation speed in wood in the longitudinal (VLL)
and radial (VRR) direction was carried out using a LUCCHIMETTER portable ultrasound
device, Cremona, Italy. The principle of the ultrasound (US) measurements is presented in
Figure 4 [17]. The density of each plate was also determined in each stage of the experiment,
and the longitudinal and radial modulus of elasticity was calculated in accordance with the
calculation relationship mentioned by [26]. The mean (MV) and standard deviation (SD)
values of the measured parameters were recorded before and during exposure to tempera-
ture and UV. The rate of change of Young’s modulus with exposure time was calculated as
a percentage difference in the values measured at successive exposure durations.
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3. Results and Discussions
3.1. Changes in Color Parameters

Table 1 presents the mean values and the standard deviations of the L*, a*, and b*
co-ordinates for all studied samples before and after UV exposure. The ∆E* and ∆L* total
variations were also calculated and recorded. The color changes differed between the two
species—spruce and sycamore maple—but the differences were minor between the two
quality classes A and D within the same species, as can be seen in Figure 5 and in the color
differences from Table 1. Exposure to UV caused a change in brightness (by decreasing
the value of this parameter), with the speed of change reaching the maximum value in the
first 72 h of exposure. Thus, after the first 72 h of exposure to the UV radiation, the wood
surface darkened by 3.43% in the PA samples, 4.76% in the PD samples, 4.36% in the MA
spruce samples, and 4.35% in the MD samples.

Table 1. Color co-ordinates L*, a*, and b*, measured before and after exposure to UV.

Wood
Samples

Before UV After UV Total Variation Moisture Content (%)
L* a* b* L* a* b* ∆E* ∆L* Before UV After UV

MA
MV 85.63 1.67 20.34 79.12 3.77 32.07 14.75 −7.64 7.73 5.93
SD 0.21 0.14 0.88 0.13 0.06 0.77 0.25 0.12

MD
MV 86.02 1.67 20.07 79.34 3.67 31.71 15.18 −7.49 7.63 5.57
SD 1.02 0.47 0.31 0.64 0.22 0.62 0.12 0.4

PA
MV 81.37 3.78 17.23 75.92 4.05 24.71 9.26 −5.45 7.03 4.43
SD 0.14 0.10 0.30 0.34 0.17 0.48 0.35 0.32

PD
MV 82.03 3.01 16.82 75.68 4.28 25.10 10.50 −6.34 6.60 4.03
SD 3.35 0.26 0.66 0.98 0.87 0.47 0.85 0.25

The spruce darkened more compared to the sycamore maple samples, recording a
total color variation of around 15 when compared to the sycamore maple, whose total color
variation was around 10, as can be seen in Table 1. The results obtained are in agreement
with those reported by [21,39,40], where the change in color for spruce was the largest
among all the investigated species. Some researchers [10] found that the sycamore maple
that was subjected to a long simulated natural aging process indoors suffered from a
dramatic decrease in brightness after 4–5 months of exposure. After this time interval, the
process was reversed so that the degree of brightness partially recovered (approximately
45%) after 12 months of natural aging simulation [10]. When sycamore maple was exposed
for longer (84 months), the color darkened again. It is worth mentioning that time 0 from
the graphs in Figure 5 represents the values of the parameters measured before exposure to
UV in the initial stage. Figure 6 shows the difference in color between the initial samples
and the accelerated aging ones, at the end of the exposure.
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3.2. Study on the Surface Morphology
3.2.1. Surface Morphology Parameters for Spruce and Maple, before and after the
UV Treatment

Among the surface parameters evaluated, Table 2 contains the ones which proved to
be the most sensitive to UV exposure. They will be analyzed in the following subsections in
combination with the measured profiles. The Rk parameter is a measure of the central area
of the profile, where most of the profile data are concentrated, and is the most indicated
parameter for quality assessment, being an expression of the majority of measured points
on a surface [34]. The Rk mean values before and after the UV treatment are depicted for
both species and quality classes in Figure 7.

3.2.2. The Effect of UV Treatment on Spruce Wood

Since the same measuring trace was followed before and after the UV treatment, this
allowed not only for a reliable comparison between the roughness parameters but also for
a visual comparison of the profiles. A first observation was that the spruce samples bulged
after the UV treatment, which can be seen in Figure 8, showing a measured spruce profile
(MA quality) before and after the UV treatment. The green arrow indicates an accentuation
of the deviation from flatness of approx. 100 microns in amplitude. Another observation
was that the sanded spruce surfaces contain a specific wavy aspect which is related to the
sequence of earlywood–latewood, and their frequency depends on the frequency of the
annual rings (number of occurrences on a given length). This seems to be a typical reaction
of spruce wood after sanding. Deep gaps occur at the beginning of a new annual ring,
corresponding to the first earlywood tissue; then, the wood forms a bump covering the
earlywood–latewood sequence until the next annual growth border, where a new gap is
formed. This “anatomical waviness” is accentuated by the UV treatment, and this behavior
can be observed by the naked eye and by touch, as well as by the evidence in Figure 9,
where the primary profiles of spruce MA and spruce MD are shown. For example, the
surface waviness, expressed by Wa, increased more than three times in the case of MA
spruce treated with UV (Table 2). This phenomenon was also observed by [41,42] in the
case of the photodegradation of wood combined with thermal oxidation.
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Figure 6. Color comparison between wood samples before and after artificial aging: (a) spruce
samples, grade A; (b) spruce samples, grade D; (c) sycamore maple samples, grade A; (d) sycamore
maple samples, grade D.

Table 2. The average values (MV) of the roughness parameters (in microns) and their standard
deviations (SD), as measured before and after exposure to UV.

Wood Samples Ra Rk Rpk Rvk Rk + Rpk + Rvk Rt Wa

MA
Before UV

MV 4.61 15.37 4.37 6.02 25.75 41.23 5.61
SD 0.35 1.24 0.42 1.11 2.12 4.64 1.11

MA
After UV

MV 5.62 18.76 4.56 7.28 30.60 48.75 18.85
SD 0.46 2.31 0.50 1.72 2.51 10.48 3.48

MD
Before UV

MV 4.37 13.61 3.20 7.43 24.24 39.53 3.64
SD 0.44 1.30 0.52 0.51 2.32 1.05 0.19

MD
After UV

MV 4.47 13.78 3.45 7.37 24.60 40.03 4.46
SD 0.43 0.93 0.03 0.94 1.89 3.13 0.12

PA
Before UV

MV 3.40 8.93 4.36 8.08 21.37 39.76 0.53
SD 0.60 1.27 1.58 2.16 4.42 4.57 5.42

PA
After UV

MV 3.34 8.40 4.80 9.03 22.23 44.53 4.44
SD 0.46 1.61 1.89 0.77 3.19 5.24 15.22

PD
Before UV

MV 4.69 13.44 4.52 9.71 27.66 49.49 4.72
SD 0.37 1.34 0.90 0.62 1.40 5.99 6.66

PD
After UV

MV 4.48 12.52 4.20 10.57 27.29 45.22 3.36
SD 0.37 1.08 0.78 0.66 0.95 2.90 13.19
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Figure 9. Comparisons of the primary profiles in the case of the MA and MD spruce boards, before
(above) and after UV exposure (below): (a) sample grade MA; (b) sample grade MD (legend: the blue
arrow highlights the differences in the roughness profiles).

The anatomical waviness of the MA spruce class, characterized by narrower annual
rings, gave birth to a higher frequency anatomical waviness when compared to the spruce
MD class, where the annual rings were wider (Figure 9).
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The separation of roughness irregularities from waviness is made by selecting a filter
cut-off. The value that is recommended for wood surfaces, namely 2.5 mm, in accordance
with [34], can retain the high-frequency waviness (anatomical waviness) in the roughness
profile, which was mainly the case for the spruce MA class (Figure 10) and less for MD. An
increase in magnitude for the anatomical waviness is clearly visible (the blue profile) after
UV exposure.
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A wavier surface means an increased area of exposure to UV and temperature mod-
ification and, thus, a higher likelihood for surface chemical degradation, which will be
discussed in Section 3.3. Retaining the anatomical waviness in the roughness profile had an
impact on the assessment of the roughness of the MA quality spruce. The central roughness
(Rk) of the profile and also the average roughness (Ra) were higher after UV treatment
by approx. 22% (Table 2, Figure 7). In the case of the MD quality spruce, the roughness
changes produced by the UV treatment were negligible, approx. 1% in the case of Rk and
2% in the case of Ra. Even if the anatomical waviness increased slightly after exposure to
UV radiation, the impact on the roughness was reduced.

3.2.3. The Effect of UV Treatment on the Surface Morphology of Sycamore Maple Wood

As in the case of spruce, the exposure of maple to UV light caused surface bulging
(Figure 11), and this behavior was present for both qualities of wood. Another observation
was that the UV treatment accentuated the surface waviness of the curly maple, where the
Wa increased by app. three times (Table 2). As in the case of spruce, an increase in surface
waviness causes more area exposure to the modification agent. From Table 2 and Figure 7,
it can be observed that before and also after UV treatment, the core roughness (Rk) of the
curly maple was smaller than that of the straight-grain maple. The slightly higher density
of curly maple (659 kg/m3) in comparison to straight grain maple (626 kg/m3), together
with different local hardnesses caused by the variation in grain orientation in the curly
maple (from along to almost across the grain), might have been responsible for a smoother
sanded surface for the curly maple. The effect of the UV treatment on maple wood can be
seen in Table 2 and Figure 7 via the discrete decrease in the central roughness of the profile,
Rk, by approx. 6–7%, which may be a consequence of a shrinkage phenomenon, narrowing
the initial wood cavities and so reducing the ability of the stylus to penetrate.
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The profile comparisons in Figure 12a for curly maple show a discrete shrinkage
phenomenon occurring after the treatment, where some of the features have slightly
changed their initial location. Another observation in the comparative profiles of Figure 12
was that some of the deepest features (possible earlywood pores) deepened further, which
was perhaps due to a cracking effect under treatment. This caused an increase in the Rvk
parameter by approx. 11% in PA quality and approx. 9% in PD quality (Table 2).
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It can be concluded that the UV treatment has accentuated the shape deviations from
a flat surface and has enlarged the area exposure by accentuating the surface waviness.
This phenomenon was more pronounced for quality class A in both species. The surface
roughness evaluated by the parameter Rk has a tendency to increase after exposure to UV
in the case of spruce samples regardless of the class, and this is mainly attributed to an
increase in high-frequency anatomical waviness being retained in the roughness profiles. A
slight decrease in the core roughness (Rk) for sycamore maple wood may be attributed to
surface shrinkage.

3.3. FTIR Spectroscopy

The comparative spectra for spruce and sycamore maple (Figure 13), as well as the
data in Table 3, illustrate the common chemical characteristics of the two wood species as
well as some of the differentiating features, such as an increased absorption intensity at
1730 cm−1, which is assigned to unconjugated carbonyl groups that were observed for
sycamore maple wood when compared to spruce wood. This can be associated with a
higher content of acetyl groups that are mainly present in hemicelluloses of a pentosan
type (e.g., xylan), which are found in higher percentages in hardwoods compared to
softwoods [43,44].
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Table 3. Chemical differences between spruce and sycamore maple wood before UV exposure.

The Ratio of the Areas Corresponding to the Wave Number

Samples A1730/A1370
Nonconjugated Carbonyl/(Cel + HCel)

A1504-1507/A1370
Lignin/(Cel + HCel)

A1730/A1504-1507
Nonconjugated Carbonyl/Lignin

MA before UV 1.87 1.96 0.95
MA after UV 3.91 1.47 2.65

MA after UV/MA before 2.09 0.75 2.78
MD before 1.51 1.99 0.76

MD after UV 3.56 1.38 2.58
MD after UV /MD before 2.36 0.69 3.41

PA before 3.91 1.11 3.52
PA after UV 5.01 0.91 5.50

PA after UV /PA before 1.28 0.82 1.56
PD before UV 3.93 1.37 2.85
PD after UV 4.67 0.84 5.54

PD after UV/PD before 1.19 0.61 1.94
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The FTIR analysis also highlighted differences in the characteristic absorptions of
lignins; for spruce, an absorption at 1261 cm−1, which is assigned to guaiacyl (G) ring
breathing (characteristic for the guaiacyl type lignin (GL) in softwoods), was identified,
while for the maple samples, well-defined absorptions at 1325 cm−1 and 1235 cm−1, which
are assigned to syringyl (S) rings and C-O stretching in lignin and xylan (with contributions
from the syringil ring, respectively), were identified due to the different nature of hardwood
lignins, which are of a siryngil-guaiacyl nature (SGL). Additionally, the absorption of
the aromatic skeleton vibration of lignin was recorded at 1507 cm−1 for spruce and at
1504 cm−1 for sycamore maple due to the same structural differences [9,38,44–46]. On the
other hand, the absorption of the aromatic nucleus at approximately 1593 cm−1 appeared
only as a shoulder in the spruce wood spectrum, whereas it was clearly distinct in the
maple wood spectrum.

The calculated ratios of the areas of the relevant absorption peaks A1730/A1370
(unconjugated carbonyls/holocellulose) and A1504–1507/A1370 (lignin/holocellulose)
(centralized in Table 3) highlighted the differences between the two studied species. Thus,
the calculated ratios A1730/A1370 for sycamore maple wood in its initial state (before UV
treatment) were 3.91–3.93, which is higher than those calculated for spruce wood: 1.51–1.87
due to a larger amount of acetyl groups in the hemicelluloses (mostly pentosans) that
were reported in the global holocellulose content (cellulose and hemicelluloses). On the
other hand, the calculated ratios A1504–A1507/A1370 of 1.96–1.99 for spruce compared to
1.11–1.37 for maple are in accordance with the higher content of lignin reported in holocel-
lulose for softwoods compared to hardwoods [43].

The comparative spectra recorded for the sycamore maple and spruce wood before
and after UV exposure indicated chemical changes that affected lignin, which is the main
UV absorber in wood structures. A decrease in the most characteristic absorption band
of lignin (1504–1507 cm−1) was clearly observed, as well as the intensification of the
absorption band at 1730 cm−1, which is characteristic of nonconjugated carbonyl groups.
These changes highlight the degradation of lignin and the formation of chromophore
com-pounds with carbonyl groups (Figure 14a,b), which is in good accordance with the
literature [8–10,12,38,45–47].

The results of the semi-quantitative evaluation of the chemical change after UV expo-
sure via the calculated absolute and relative ratios of the selected relevant absorptions are
contained in Table 3.

The relative ratios were calculated by reporting the absolute ratios after UV exposure
to their initial values, allowing for an overview of the processes occurring during the
experimental aging procedure and a comparative evaluation of the behavior of the two
species. Thus, the decrease in the ratios between lignin and holocellulose (A1510/A1370),
resulting in relative ratios lower than 1.0 (0.75–0.69 for spruce; 0.82–0.61 for sycamore maple)
highlighted the degradation of lignin regardless of species and quality class, while the
increase in the ratios of nonconjugated carbonyl to holocellulose (A1730/A1370), resulting
in relative ratios higher than 1.0 (2.09–2.36 for spruce; 1.19–1.28 for sycamore maple)
highlighted oxidative processes, with the formation of carbonyl-containing chromophores.

Based on this relative semi-quantitative evaluation, lignin degradation was almost
similar for the two species under study, with some variations for both species depending
on the quality class of the wood. Lignin degradation appeared to be slightly more intense
for the samples in quality class A, both in the case of spruce (8.67%) and sycamore maple
(34%), but no conclusion should be drawn based only on this type of evaluation.

The relative ratios of A1730/A1370 clearly suggest more advanced oxidative processes
in the case of the spruce wood samples than in the case of maple wood. The generation
of carbonyl groups as a result of lignin photo-oxidation was found to be much higher
in softwoods when compared to hardwoods by other researchers [38,45]. Based on the
relative FTIR ratios calculated in this research, some small differences appeared between
the quality classes for both wood species. For the spruce wood class A samples, the for-
mation of carbonyl chromophores seemed to be 13% lower than for the D class samples,
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while for the sycamore maple class A samples, the oxidative process seemed more intense,
at approximately 7.8% higher than for the class D samples. The two chemical processes
occurring in parallel during the UV-induced photo-oxidation of wood (lignin degradation
and the oxidation of lignin degradation products, forming colored compounds contain-
ing carbonyl chromophores) are cumulatively illustrated by the increase in the ratios of
nonconjugated carbonyl/lignin (A1730/A1510), with their relative values higher than 1.0
after UV exposure (Table 3). Values of 2.78–3.41 for the spruce samples (classes A and D)
and 1.56–1.64 for the sycamore maple samples (classes A and D) indicate more advanced
aging processes for spruce compared to sycamore maple under the experimental conditions
employed in this research. This difference resulted mostly from the higher formation of
carbonyl-containing chromophores via oxidative processes, which is in good accordance
with the greater color changes measured in the spruce samples (∆E = 14.74–15.17) when
compared to sycamore maple samples (∆E = 9.26–10.50) presented in Table 1.
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3.4. Changes in Acoustic Properties

After thermal and UV aging, all the wood samples used for the construction of musical
instruments registered a decrease in density; approximately 19% for the spruce wood
samples and approximately 10% for the maple samples (Figure 15a,b). Exposure to UV
radiation had the effect of increasing the speed of sound propagation in the wood, both
longitudinally and radially, in both species. It was found that the changes produced by the
lignin degradation processes (highlighted in Section 3.3.) led to an increase in the sound
propagation speed by 5–6% in the longitudinal direction in both the spruce wood and
sycamore maple wood. In the radial direction, the increase in the sound speed reached up
to 15%, with the anatomical quality class being an indicator of differentiation. Thus, in the
case of the quality class A samples, the sound velocity in the radial direction increased after
the UV treatment by 14.5% for spruce and 15.5% for sycamore maple when compared to
the values obtained for the class D samples (9.7% spruce; 11.5% maple) (Figure 15c–f). The
Young’s modulus values in the longitudinal direction, for which the calculation is based
on the product of the speed squared and the density, recorded an increase after exposure
to UV radiation, with 3% for the PA samples, 6% for the PD samples, 3.1% for the MA
samples, and 3.5% for the MD samples. The most notable changes were registered in the
radial direction, where the modulus of elasticity had the largest increase in the class D
samples for both spruce and maple (Figure 15g–j).
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Figure 15. The variation in the physical, acoustic, and elastic parameters with aging duration: (a)
density variation in the spruce samples; (b) density variation in the maple samples; (c) variation
in sound velocity in spruce wood in the longitudinal direction; (d) variation in the sound velocity
in the spruce samples in the radial direction; (e) variation in the sound velocity in the sycamore
maple samples in the longitudinal direction; (f) variation if the sound velocity in the sycamore maple
samples in the radial direction; (g) variation in the Young’s modulus in the spruce samples in the
longitudinal direction; (h) variation in the Young’s modulus in the spruce samples in the radial
direction; (i) variation in the Young’s modulus in the sycamore maple samples in the longitudinal
direction; (j) variation in the Young’s modulus in the sycamore maple samples in the radial direction.

Table 4 summarizes the acoustic and elastic parameters measured during exposure
to thermal and UV treatment. It can be observed that the only property that registered a
decrease in value was the density of both species and qualities.
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Table 4. Summary of acoustic and elastic parameters determined before and during exposure
to UV. Legend: ρ—density (kg/m3); VLL—sound velocity in wood in the longitudinal direction,
(m/s); VRR—sound velocity in wood in the radial direction, (m/s); EL—elasticity modulus in the
longitudinal direction (GPa); ER—elasticity modulus in the radial direction (GPa); MD—mean value;
SD—standard deviation.

Spruce MA Spruce MD
Initial 72 h 192 h 266 h 300 h Initial 72 h 192 h 266 h 300 h

ρ

(kg*m−3)

MV 476 459 444 443 442 431 406 405 404 399
SD 37 13 35 35 36 30 29 30 28 29

y = −0.1634x + 479.6 y = −0.0563x + 418.62

VLL (m/s)
MV 6187 6387 6458 6474 6513 5776 5958 5963 6075 6091
SD 180 108 117 127 134 374 423 238 303 320

y = 1.7366x + 6125.9 y = 3.3054x + 5443.7

VRR (m/s)
MV 1529 1538 1602 1643 1704 1329 1377 1400 1426 1459
SD 42 113 90 59 113 251 286 263 272 243

y = 44.6x + 1452.6 y = 30.733x + 1306.1

EL (GPa)
MV 18.27 18.53 18.63 18.74 18.85 14.50 14.51 14.56 14.94 15.00
SD 2.33 0.94 2.02 2.15 2.23 2.74 2.92 2.17 2.43 2.48

y = −0.0016x + 18.86 y = 0.006x + 13.72

ER (GPa)
MV 0.79 1.02 1.08 1.13 1.20 0.81 0.83 0.86 0.88 1.30
SD 0.12 0.17 0.09 0.10 0.26 0.32 0.35 0.34 0.34 0.33

y = 0.0016x + 0.77 y = 0.0027x + 0.39

Sycamore maple (PA) Maple PD

ρ

(kg*m−3)

MV 695 651 649 648 646 618 582 581 578 573
SD 12 12 12 11 10 16 17 18 16 15

y = −0.1428x + 681.13 y = −0.1408x + 609.17

VLL (m/s)
MV 4866 4937 5057 5084 5149 4557 4662 4755 4763 4818
SD 5.20 80.30 15.59 6.35 45.31 260.29 225.16 221.52 238.53 275.65

y = 0.6465x + 4605.9 y = 0.6465x + 4605.9

VRR (m/s)
MV 1947 2115 2141 2130 2249 1506 1641 1701 1737 1831
SD 70.77 70.38 55.99 65.59 43.97 237.23 249.30 226.70 252.63 283.52

y = 0.9598x + 1960.4 y = 0.9191x + 1533.9

EL (GPa)
MV 15.78 16.33 16.53 16.87 17.30 11.94 12.23 12.55 13.68 14.69
SD 2.92 1.37 0.92 1.48 3.47 0.08 0.16 0.13 0.77 0.30

y = 0.004x + 15.92 y = 0.0005x + 12.94

ER (GPa)
MV 2.64 2.89 2.94 2.98 3.29 1.11 1.28 1.79 2.00 2.27
SD 0.136 0.052 0.108 0.103 0.17 0.14 0.05 0.11 0.10 0.17

y = 0.0026x + 2.5215 y = 0.0048x + 0.9083

The other properties (sound velocity, as well as the modulus of elasticity in the longitu-
dinal and radial direction) increased after repeated exposure to UV. Their highest increase
was obtained in the radial direction regardless of the species. From a qualitative point
of view, it can be concluded that the UV and thermal treatment led to an improvement
in the acoustic and elastic parameters of the wood selected for musical instruments, as
characterized by the relatively low thickness (maximum 4 mm) studied in this paper. In
agreement with the above findings, the literature data [17,24,25,28,48–53] confirm that the
ultrasound velocity and dynamic elastic modulus of the aged wood shift to higher values
when compared to that of recently produced wood.

In Figure 16, the stiffness rate of change for all samples is represented, which is
calculated as a percentage difference between the values at successive exposure durations.
It can be observed that the samples from class A, both spruce and sycamore maple, show
the same trend for the elasticity modulus in both the longitudinal and radial directions.
The most important changes occur at the beginning of the exposure (after 72 h), and then a
decrease in the rate of change is recorded. After 300 h, in the case of the sycamore maple
samples, the rate of change of the analyzed parameter increases again. In the class D
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samples, the most important changes in the longitudinal direction occur from 200 h of
aging onwards.
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4. Conclusions

The aim of this paper was to analyze the changes induced via exposure to UV radi-
ation and temperature on the physical, chemical, and acoustic properties of two quality
classes (A and D) of spruce and sycamore maple wood. The main results are summarized
as follows:

• The UV treatment induced an increase in the total color change, which was more
accentuated in spruce compared to sycamore maple. However, the differences in the
color change between the two quality classes (A and D) were insignificant;

• The FTIR results indicated a more advanced aging process for spruce compared to
maple under the same experimental conditions. This difference resulted mostly from
the formation of more carbonyl-containing chromophores by oxidative processes,
which is in good accordance with the greater color changes measured in the spruce
samples compared to the sycamore maple samples;

• A wavier surface after the UV treatment increased the area of exposure and degrada-
tion, and this was more pronounced for quality class A;

• For both species, the sound speed increased after the UV treatment in thee longitudinal
as well as in the radial direction. UV exposure improved the sound speed to the
greatest extent for quality class A (of the two species) and for radial direction sound
propagation. The quality class A samples registered a sound speed increase in the
radial direction of 14.5% (spruce) and 15.5% (maple) when compared to class D (9.7%
spruce; 11.5% sycamore maple). The sound velocity increased by app. 5–6% in the
longitudinal direction;

• The most important changes in the stiffness of the class A boards (spruce and sycamore
maple) occurred in the first 72 h of exposure to thermal and UV radiation and after
200 h for the class D samples.
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27. Mania, P.; Gąsiorek, M. Acoustic Properties of Resonant Spruce Wood Modified Using Oil-Heat Treatment (OHT). Materials 2020,
13, 1962. [CrossRef] [PubMed]

28. Dinulică, F.; Stanciu, M.D.; Savin, A. Correlation between Anatomical Grading and Acoustic–Elastic Properties of Resonant
Spruce Wood Used for Musical Instruments. Forests 2021, 12, 1122. [CrossRef]

29. Dinulica, F.; Savin, A.; Stanciu, M.D. Physical and Acoustical Properties of Wavy Grain Sycamore Maple (Acer pseudoplatanus L.)
Used for Musical Instruments. Forests 2023, 14, 197. [CrossRef]

30. Tismanar, I.; Obreja, A.C.; Buiu, O.; Duta, A. VIS-active TiO2—graphene oxide composite thin films for photocatalytic applications.
Appl. Surf. Sci. 2020, 538, 147833. [CrossRef]
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