Mechanical Analysis of 3D Printed Polyamide Composites under Different Filler Loadings
Abstract
:1. Introduction
2. Experimental Method
2.1. Materials and PACF Preparations
2.2. Characterisation of PACF Composites
3. Effects of Filament Performance on Carbon Fibre Addition
Sample Name | Printing Temperature (°C) | Printing Speed (mm/s) | Layer Height (cm) | Tensile Strength (MPa) |
---|---|---|---|---|
S1 | 230 | 50 | 0.4 | 35.85 |
S2 | 250 | 30 | 0.1 | 31.13 |
S3 | 230 | 50 | 0.2 | 37.51 |
S4 | 210 | 70 | 0.3 | 16.28 |
S5 | 230 | 16 | 0.2 | 33.52 |
S6 | 210 | 30 | 0.1 | 26.54 |
S7 | 230 | 50 | 0.2 | 40.30 |
S8 | 196 | 50 | 0.2 | 22.99 |
S9 | 210 | 30 | 0.3 | 28.08 |
S10 | 250 | 30 | 0.3 | 25.76 |
S11 | 230 | 50 | 0.1 | 31.56 |
S12 | 250 | 70 | 0.1 | 32.50 |
S13 | 230 | 50 | 0.2 | 33.15 |
S14 | 230 | 50 | 0.2 | 37.99 |
S15 | 210 | 70 | 0.1 | 36.56 |
S16 | 230 | 83 | 0.2 | 29.38 |
S17 | 263 | 50 | 0.2 | 35.47 |
S18 | 250 | 70 | 0.3 | 41.98 |
S19 | 230 | 50 | 0.2 | 25.47 |
S20 | 230 | 50 | 0.2 | 44.17 |
4. Mechanical Performance of Printed PACF Composites
5. Conclusions and Future Perspectives on Polymeric Composite Filaments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuclourya, T.; Monroy, R.; Castillo, M.; Baca, D.; Ahmad, R. Design of a Hybrid High-Throughput Fused Deposition Modeling System for Circular Economy Applications. Clean Technol. Recycl. 2022, 2, 170–198. [Google Scholar] [CrossRef]
- Chan, B.Q.Y.; Chong, Y.T.; Wang, S.; Lee, C.J.J.; Owh, C.; Wang, F.; Wang, F.K. Synergistic Combination of 4D Printing and Electroless Metallic Plating for the Fabrication of a Highly Conductive Electrical Device. Chem. Eng. J. 2022, 430, 132513. [Google Scholar] [CrossRef]
- Hine, P.J.; Davidson, N.; Duckett, R.A.; Ward, I.M. Measuring the Fibre Orientation and Modelling the Elastic Properties of Injection-Moulded Long-Glass-Fibre-Reinforced Nylon. Compos. Sci. Technol. 1995, 53, 125–131. [Google Scholar] [CrossRef]
- Rijckaert, S.; Daelemans, L.; Cardon, L.; Boone, M.; van Paepegem, W.; de Clerck, K. Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading through Fused Filament Fabrication. Polymers 2022, 14, 298. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lei, Q.; Xing, S. Mechanical Characteristics of Wood, Ceramic, Metal and Carbon Fiber-Based PLA Composites Fabricated by FDM. J. Mater. Res. Technol. 2019, 8, 3743–3753. [Google Scholar] [CrossRef]
- Kováčová, M.; Vykydalová, A.; Špitálský, Z. Polycaprolactone with Glass Beads for 3D Printing Filaments. Processes 2023, 11, 395. [Google Scholar] [CrossRef]
- Haque, A.N.M.A.; Naebe, M.; Mielewski, D.; Kiziltas, A. Waste Wool/Polycaprolactone Filament towards Sustainable Use in 3D Printing. J. Clean. Prod. 2023, 386, 135781. [Google Scholar] [CrossRef]
- Pereira, D.F.; Branco, A.C.; Cláudio, R.; Marques, A.C.; Figueiredo-Pina, C.G. Development of Composites of PLA Filled with Different Amounts of Rice Husk Fibers for Fused Deposition Modeling. J. Nat. Fibers 2023, 20, 2129897. [Google Scholar] [CrossRef]
- Das, A.; Etemadi, M.; Davis, B.A.; McKnight, S.H.; Williams, C.B.; Case, S.W.; Bortner, M.J. Rheological Investigation of Nylon-Carbon Fiber Composites Fabricated Using Material Extrusion-Based Additive Manufacturing. Polym. Compos. 2021, 42, 6010–6024. [Google Scholar] [CrossRef]
- Saeed, K.; McIlhagger, A.; Harkin-Jones, E.; Kelly, J.; Archer, E. Predication of the In-Plane Mechanical Properties of Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites Using Classical Laminated-Plate Theory. Compos. Struct. 2021, 259, 113226. [Google Scholar] [CrossRef]
- Striemann, P.; Hülsbusch, D.; Niedermeier, M.; Walther, F. Optimization and Quality Evaluation of the Interlayer Bonding Performance of Additively Manufactured Polymer Structures. Polymers 2020, 12, 1166. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.Y.; Sulong, A.B.; Sahari, J.; Suherman, H. Effect of the Addition of Milled Carbon Fiber as a Secondary Filler on the Electrical Conductivity of Graphite/Epoxy Composites for Electrical Conductive Material. Compos. Part B Eng. 2015, 83, 75–80. [Google Scholar] [CrossRef]
- Mohd Radzuan, N.A.; Yusuf Zakaria, M.; Sulong, A.B.; Sahari, J. The Effect of Milled Carbon Fibre Filler on Electrical Conductivity in Highly Conductive Polymer Composites. Compos. Part B Eng. 2017, 110, 153–160. [Google Scholar] [CrossRef]
- Kamibayashi, M.; Ogura, H.; Otsubo, Y. Shear-Thickening Flow of Nanoparticle Suspensions Flocculated by Polymer Bridging. J. Colloid Interface Sci. 2008, 321, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Radzuan, N.A.M.; Sulong, A.B.; Verma, A.; Muhamad, N. Layup Sequence and Interfacial Bonding of Additively Manufactured Polymeric Composite: A Brief Review. Nanotechnol. Rev. 2021, 10, 1853–1872. [Google Scholar] [CrossRef]
- Khalid, N.N.; Mohd Radzuan, N.A.; Sulong, A.B.; Mohd Foudzi, F.; Hui, D. Adhesion Behaviour of 3D Printed Polyamide-Carbon Fibre Composite Filament. Rev. Adv. Mater. Sci. 2022, 61, 838–848. [Google Scholar] [CrossRef]
- Zhang, H.; Dickson, A.N.; Sheng, Y.; McGrail, T.; Dowling, D.P.; Wang, C.; Neville, A.; Yang, D. Failure Analysis of 3D Printed Woven Composite Plates with Holes under Tensile and Shear Loading. Compos. Part B Eng. 2020, 186, 107835. [Google Scholar] [CrossRef]
- Pejkowski, Ł.; Seyda, J.; Nowicki, K.; Mrozik, D. Mechanical Performance of Non-Reinforced, Carbon Fiber Reinforced and Glass Bubbles Reinforced 3D Printed PA12 Polyamide. Polym. Test. 2023, 118, 107891. [Google Scholar] [CrossRef]
- Blaeser, A.; Duarte Campos, D.F.; Puster, U.; Richtering, W.; Stevens, M.M.; Fischer, H. Controlling Shear Stress in 3D Bioprinting Is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv. Healthc. Mater. 2016, 5, 326–333. [Google Scholar] [CrossRef]
- Yavas, D.; Zhang, Z.; Liu, Q.; Wu, D. Interlaminar Shear Behavior of Continuous and Short Carbon Fiber Reinforced Polymer Composites Fabricated by Additive Manufacturing. Compos. Part B Eng. 2021, 204, 108460. [Google Scholar] [CrossRef]
- He, L.; Chow, W.T.; Li, H. Effects of Interlayer Notch and Shear Stress on Interlayer Strength of 3D Printed Cement Paste. Addit. Manuf. 2020, 36, 101390. [Google Scholar] [CrossRef]
- Radzuan, N.A.M.; Sulong, A.B.; Husaini, T.; Majlan, E.H.; Rosli, M.I.; Aman, M.F. Fabrication of Multi-Filler MCF/MWCNT/SG-Based Bipolar Plates. Ceram. Int. 2019, 45, 7413–7418. [Google Scholar] [CrossRef]
- Soni, U.S.; Padhiyar, B.M.; Singh, S.M.; Soni, R.B. Fused Deposition Modelling—An Extensive Review. In Proceedings of the National Conference on Emerging Research Trend in Science and Technology 2018, Bantakal, India, 27–28 April 2018; p. 10. [Google Scholar]
- Khalid, N.N.; Awang Adi, F.Z.; Mohd Radzuan, N.A.; Sulong, A.B. Shear Test Characterization of 3D Printed Polyamide Reinforced Carbon Fiber Composites. J. Kejuruter. 2023, 35, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.N.; Radzuan, N.A.; Sulong, A.B.; Mohd Foudzi, F.; Hasran, A. Rheological Test of Flowability and Diffusion Behavior of Carbon Fibre Reinforced Polyamide. J. Kejuruter. 2023, 35, 215–222. [Google Scholar] [CrossRef]
- Yap, Y.L.; Toh, W.; Koneru, R.; Lin, R.; Chan, K.I.; Guang, H.; Chan, W.Y.B.; Teong, S.S.; Zheng, G.; Ng, T.Y. Evaluation of Structural Epoxy and Cyanoacrylate Adhesives on Jointed 3D Printed Polymeric Materials. Int. J. Adhes. Adhes. 2020, 100, 102602. [Google Scholar] [CrossRef]
- Scherrer, N.C.; Kocsis, M.; Dariz, P.; Gervais, C. Sequential SEM Imaging of Microbial Calcite Precipitation Consolidation Treatment. Eur. Phys. J. Plus 2021, 136, 504. [Google Scholar] [CrossRef]
- Hakimian, E.; Sulong, A.B. Analysis of Warpage and Shrinkage Properties of Injection-Molded Micro Gears Polymer Composites Using Numerical Simulations Assisted by the Taguchi Method. Mater. Des. 2012, 42, 62–71. [Google Scholar] [CrossRef]
- Baz, B.; Aouad, G.; Remond, S. Effect of the Printing Method and Mortar’s Workability on Pull-out Strength of 3D Printed Elements. Constr. Build. Mater. 2020, 230, 117002. [Google Scholar] [CrossRef]
- Hietala, M.; Oksman, K. Pelletized Cellulose Fibres Used in Twin-Screw Extrusion for Biocomposite Manufacturing: Fibre Breakage and Dispersion. Compos. Part A Appl. Sci. Manuf. 2018, 109, 538–545. [Google Scholar] [CrossRef]
- Rybak, A.; Malinowski, L.; Adamus-Wlodarczyk, A.; Ulanski, P. Thermally Conductive Shape Memory Polymer Composites Filled with Boron Nitride for Heat Management in Electrical Insulation. Polymers 2021, 13, 2191. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, L.; Yang, S. Polymer Composites with Expanded Graphite Network with Superior Thermal Conductivity and Electromagnetic Interference Shielding Performance. Chem. Eng. J. 2021, 404, 126437. [Google Scholar] [CrossRef]
- Cicala, G.; Giordano, D.; Tosto, C.; Filippone, G.; Recca, A.; Blanco, I. Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties with Printing Quality. Materials 2018, 11, 1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasir, M.H.M.; Taha, M.M.; Razali, N.; Ilyas, R.A.; Knight, V.F.; Norrrahim, M.N.F. Effect of Chemical Treatment of Sugar Palm Fibre on Rheological and Thermal Properties of the PLA Composites Filament for FDM 3D Printing. Materials 2022, 15, 8082. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Gilmer, E.L.; Biria, S.; Bortner, M.J. Importance of Polymer Rheology on Material Extrusion Additive Manufacturing: Correlating Process Physics to Print Properties. ACS Appl. Polym. Mater. 2021, 3, 1218–1249. [Google Scholar] [CrossRef]
- Mackay, M.E. The Importance of Rheological Behavior in the Additive Manufacturing Technique Material Extrusion. J. Rheol. 2018, 62, 1549–1561. [Google Scholar] [CrossRef]
- Khandavalli, S.; Rothstein, J.P. Extensional Rheology of Shear-Thickening Fumed Silica Nanoparticles Dispersed in an Aqueous Polyethylene Oxide Solution. J. Rheol. 2014, 58, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Todoroki, A.; Oasada, T.; Ueda, M.; Matsuzaki, R.; Hirano, Y. Reinforcing in the Lay-up Direction with Self-Heating for Carbon Fiber Composites Fabricated Using a Fused Filament Fabrication 3D Printer. Compos. Struct. 2021, 266, 113815. [Google Scholar] [CrossRef]
- Ramian, J.; Ramian, J.; Dziob, D. Thermal Deformations of Thermoplast during 3D Printing: Warping in the Case of ABS. Materials 2021, 14, 7070. [Google Scholar] [CrossRef]
- Belei, C.; Joeressen, J.; Amancio-Filho, S.T. Fused-Filament Fabrication of Short Carbon Fiber-Reinforced Polyamide: Parameter Optimization for Improved Performance under Uniaxial Tensile Loading. Polymers 2022, 14, 1292. [Google Scholar] [CrossRef]
- Abderrafai, Y.; Hadi Mahdavi, M.; Sosa-Rey, F.; Hérard, C.; Otero Navas, I.; Piccirelli, N.; Lévesque, M.; Therriault, D. Additive Manufacturing of Short Carbon Fiber-Reinforced Polyamide Composites by Fused Filament Fabrication: Formulation, Manufacturing and Characterization. Mater. Des. 2022, 214, 110358. [Google Scholar] [CrossRef]
- Tanveer, M.Q.; Haleem, A.; Suhaib, M. Effect of Variable Infill Density on Mechanical Behaviour of 3-D Printed PLA Specimen: An Experimental Investigation. SN Appl. Sci. 2019, 1, 1701. [Google Scholar] [CrossRef] [Green Version]
- Fayazbakhsh, K.; Movahedi, M.; Kalman, J. The Impact of Defects on Tensile Properties of 3D Printed Parts Manufactured by Fused Filament Fabrication. Mater. Today Commun. 2019, 18, 140–148. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, Y.; Wang, K.; Gao, G.; Ahzi, S. Synergistic Reinforcement of Polyamide-Based Composites by Combination of Short and Continuous Carbon Fibers via Fused Filament Fabrication. Compos. Struct. 2019, 207, 232–239. [Google Scholar] [CrossRef]
- Ehrmann, G.; Ehrmann, A. Pressure Orientation-Dependent Recovery of 3D-Printed PLA Objects with Varying Infill Degree. Polymers 2021, 13, 1275. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, M.; Guo, Z.; Sang, L.; Hou, W. Investigation of Processing Parameters on Tensile Performance for FDM-Printed Carbon Fiber Reinforced Polyamide 6 Composites. Compos. Commun. 2020, 22, 100478. [Google Scholar] [CrossRef]
- Sezer, H.K.; Eren, O. FDM 3D Printing of MWCNT Re-Inforced ABS Nano-Composite Parts with Enhanced Mechanical and Electrical Properties. J. Manuf. Process. 2019, 37, 339–347. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Contact Angle, Adhesion and Friction Properties of Micro-and Nanopatterned Polymers for Superhydrophobicity. Nanotechnology 2006, 17, 4970–4980. [Google Scholar] [CrossRef]
- Eustathopoulos, N.; Sobczak, N.; Passerone, A.; Nogi, K. Measurement of Contact Angle and Work of Adhesion at High Temperature. J. Mater. Sci. 2005, 40, 2271–2280. [Google Scholar] [CrossRef]
- Kang, B.; Hyeon, J.; So, H. Facile Microfabrication of 3-Dimensional (3D) Hydrophobic Polymer Surfaces Using 3D Printing Technology. Appl. Surf. Sci. 2020, 499, 143733. [Google Scholar] [CrossRef]
- Hou, Y.; Panesar, A. Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites. Polymers 2023, 15, 773. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Radzuan, N.A.; Khalid, N.N.; Foudzi, F.M.; Rajendran Royan, N.R.; Sulong, A.B. Mechanical Analysis of 3D Printed Polyamide Composites under Different Filler Loadings. Polymers 2023, 15, 1846. https://doi.org/10.3390/polym15081846
Mohd Radzuan NA, Khalid NN, Foudzi FM, Rajendran Royan NR, Sulong AB. Mechanical Analysis of 3D Printed Polyamide Composites under Different Filler Loadings. Polymers. 2023; 15(8):1846. https://doi.org/10.3390/polym15081846
Chicago/Turabian StyleMohd Radzuan, Nabilah Afiqah, Nisa Naima Khalid, Farhana Mohd Foudzi, Nishata Royan Rajendran Royan, and Abu Bakar Sulong. 2023. "Mechanical Analysis of 3D Printed Polyamide Composites under Different Filler Loadings" Polymers 15, no. 8: 1846. https://doi.org/10.3390/polym15081846
APA StyleMohd Radzuan, N. A., Khalid, N. N., Foudzi, F. M., Rajendran Royan, N. R., & Sulong, A. B. (2023). Mechanical Analysis of 3D Printed Polyamide Composites under Different Filler Loadings. Polymers, 15(8), 1846. https://doi.org/10.3390/polym15081846