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Abstract: Additive manufacturing has revolutionized prototyping and small-scale production in
the past years. By creating parts layer by layer, a tool-less production technology is established,
which allows for rapid adaption of the manufacturing process and customization of the product.
However, the geometric freedom of the technologies comes with a large number of process parameters,
especially in Fused Deposition Modeling (FDM), all of which influence the resulting part’s properties.
Since those parameters show interdependencies and non-linearities, choosing a suitable set to create
the desired part properties is not trivial. This study demonstrates the use of Invertible Neural
Networks (INN) for generating process parameters objectively. By specifying the desired part in the
categories of mechanical properties, optical properties and manufacturing time, the demonstrated
INN generates process parameters capable of closely replicating the desired part. Validation trials
prove the precision of the solution with measured properties achieving the desired properties to up
to 99.96% and a mean accuracy of 85.34%.

Keywords: additive manufacturing; fused deposition modeling; neural network; part quality; process
parameters; production management

1. Introduction

Additive Manufacturing (AM) is a layer-based, tool-less production technology. This
means that arbitrary, three-dimensional geometries can be manufactured on the same
machine without the need for manual set-up processes or manufacturing tools and molds.
With this technology, it is possible to produce complex shapes and to create internal
geometries inside objects which could otherwise not be manufactured. Historically, AM
is often used for prototyping; however, technological advances are making the process
suitable for larger production runs of end-use parts [1,2]. Especially Fused Deposition
Modeling (FDM), characterized by an extrusion unit depositing a molten, thermoplastic
material and joining it layer-by-layer, offers a lot of flexibility and freedom, making it the
most used technology in its domain [3].

The flexibility becomes apparent in the number of process parameters which need
to be set prior to production. Those parameters depend on the machine and the material
being used, as well as the desired part properties. They influence part strength, surface
roughness and manufacturing time, amongst other things [4–7]. Their influence on the
properties of the created parts is significant [7]. For example, a study varying raster
angles have shown a nearly 100% increase in tensile strength between the worst and best-
achieved result [8]. By varying build direction, infill percentage, manufacturing speed,
extrusion temperature, layer height and infill pattern, Alafaghani et al. were able to achieve
Young’s moduli starting from 1947.05 MPa up to 3177.53 MPa [5]. Regarding the build
orientation of the part, a 45.8% drop in tensile strength can be noted between the best and
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worst orientation [9], while manufacturing time is also greatly affected [10]. Furthermore,
process parameters have interdependencies regarding the created part properties. For
example, increasing process speed typically decreases manufacturing time but at the same
time reduces mechanical properties [6,11], while increasing nozzle temperature typically
increases mechanical properties [6]. This means that, in theory, a higher temperature
can be used to mitigate at least one downside of using a higher manufacturing speed.
However, the actual temperature increase has to be determined for each machine and for
each material. This also complicates setting process parameters systematically since they
cannot be set and locked in one by one because of interdependencies. Lastly, there is no
single best set of parameters for FDM. The best possible set of parameters always depends
on the desired outcome. For example, there is a conflict of goals regarding good mechanical
(e.g., tensile strength, Young’s modulus) and optical properties (e.g., dimensional accuracy,
surface roughness) [12]. By choosing a high-temperature level for the material extrusion,
good mechanical properties can be achieved because higher temperatures support the
interdiffusion of the polymer chains. However, this measure requires more time for the
solidification of the material, leading to a longer formable, uncontrollable state, degrading
optical properties and dimensional accuracy. Choosing a low-temperature level, on the
other hand, has the inverse effect. This way, the material solidifies quickly in its intended
position, allowing for a good surface finish and dimensional accuracy, but leaving little time
for adequate layer bonding, therefore reducing mechanical properties [12]. This example
shows the difficulty and the need for technological expert knowledge when setting up the
process. A single best manufacturing profile does not exist. Instead, adjusting the set of
parameters with regard to the desired part properties is necessary.

This leads to three superordinate goals which are in conflict with each other. The
triangle shown in Figure 1 visualizes these goals regarding part properties in FDM. The
three corner points are good mechanical properties, good optical properties and short
manufacturing time. Because of the interdependencies of process parameters and the
opposing effects those parameters can have on part properties, this triangle of goals cannot
be filled completely. For each part being produced, a trade-off has to be made. From a
productivity point of view, this means that manufacturing time should always be as low as
possible while retaining the minimum needed mechanical and optical properties.
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Figure 1. Triangle of goals for FDM, depicted as radial chart. Not all properties can be reached
optimally at the same time.

Up until now, the selection of process parameters for FDM was based on expert
knowledge [13]. Experienced users with a good knowledge of the process are typically
able to achieve adequate to good results from low-cost or even mechanically bad machines,
while inexperienced users can obtain bad to useless results from even the most expensive
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machines. This problem is increased by the fact that traditional methods to calculate
and design parts based on their intended use- and load-case cannot be applied to FDM
since the material is not homogeneously distributed in part [14]. This means that testing
material properties using a solid part and then extrapolating those values with regard
to the final geometry does not work. Furthermore, the complex phenomenon of layer
bonding cannot be modeled sufficiently to allow for simulation software to aid in designing
a part with mechanical integrity [14]. Therefore, several iterations of a part are typically
produced, varying and tuning process parameters for each iteration until the desired part
quality is achieved. For a manufacturing technology that targets low-volume or even
lot-size productions, finding process parameters experimentally increases the time and cost
significantly and is, therefore, undesirable. For example, a survey conducted in 2021 by
on-demand manufacturer Hubs shows that 64% of AM production runs only consist of
one to ten identical parts [15]. Therefore, having to find process parameters experimentally
through iterations can easily multiply the number of parts having to be produced. At the
same time, the same survey notes inadequate part quality and limited expertise as two of
the main barriers for companies to implement AM [15], further illustrating the need for an
objective method to achieve good part quality reliably. Ultimately, such a method could
speed up certification processes for AM products, which are currently facing difficulties
based on the low repeatability of current AM processes [16].

To overcome the described challenges in setting the correct process parameters, more
data has to be acquired on all relevant parameters and their effect on the resulting part’s
properties. By including non-linearities and interdependencies, trial designs become very
large. For example, even by limiting the regarded process parameters to the eleven parame-
ters identified by Dey et al. to be most important [7] and including part cooling, which is
not mentioned in [7] but has been proven to have a large impact on part quality [12,17], a
twelve-dimensional trial plan is necessary. With only three set points for each parameter
to be able to detect basic non-linearities, this would result in 312 = 531,441 trial points.
With this amount of data, it becomes increasingly difficult for humans to detect and un-
derstand all results, correlations, causes and interdependencies that can be derived from
test results. Even if conclusions can be drawn, using them to actively set and achieve
desired part properties requires additional work. Therefore, in this study, an artificial
intelligence approach, specifically an Invertible Neural Network (INN)—a technology
which has previously not been used in a manufacturing-related context—is used to analyze
and evaluate the influence of a subset of relevant process parameters on the resulting part
properties. In comparison to other Machine Learning (ML) based approaches, this also
enables the inverse use-case of directly generating process parameters to achieve defined
part properties.

2. Related Work

Finding and setting appropriate process parameters in AM and in other complex
manufacturing technologies is often performed by empirical modeling, varying one or
more process parameters in a limited range, and observing the effects on the manufactured
parts [17–23]. However, as stated in Section 1 regarding the specific challenge in parameter
generation for FDM, varying all relevant parameters results in an unmanageable quantity
of trials. To limit the necessary number of trials, the design of the experimental methods is
utilized, i.e., Q-optimal trial design [24] or I-optimal trial design [25]. Other approaches
base their trials on a face-centered central composite design [26]. Oftentimes, mathemat-
ical functions are fitted based on the acquired results [25], sometimes using algorithms
inspired by nature, i.e., a bacterial foraging optimization algorithm [27] or evolutionary
algorithms [28]. These approaches typically work well for the exact regarded use-case but
cannot adapt easily to changing conditions, such as different machines of the same category
or different materials. Even for the same conditions, an added process parameter which
has previously not been regarded may disrupt the model since parameters for complex
manufacturing technologies generally have interdependencies, potentially rendering the
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model unusable. Furthermore, most studies regarding process set-up in AM only investi-
gate optimizing one or two quality figures, disregarding the effect on other quality figures
and, therefore, not considering the trade-off in quality.

To address these issues, newer approaches by Jagadish et al. [29], Jang et al. [30],
and Hsieh [31] try to use machine learning-based techniques to perform parameter op-
timization in different manufacturing processes. Jagadish et al. report a 95% accuracy
when comparing predicted parameters for a green manufacturing process to experimental
results [29], while Jang et al. achieved an error of less than 1% between prediction and
experimental validation for reducing cutting forces in a milling process [30]. Regarding
plastics processing, Hopmann et al. demonstrated an approach for setting parameters in
injection moulding using artificial neural networks [32]. The study uses a feed-forward
neural network, therefore having to check all possible combinations using a brute force
approach to then pick a combination of parameters based on the result closest to the desired
outcome. The approach demonstrated in this paper omits the need to check every possible
combination by introducing Invertible Neural Networks (INN) to production technology,
vastly increasing decision speed. Using an INN for parameter generation in FDM also
addresses the specific challenges this manufacturing process poses.

3. Materials and Methods
3.1. Problem Definition

In the context of manufacturing processes, the quality prediction and process parame-
ter proposal problems can be described as the search for two different mapping functions.
The first is related to the forward process and relates process parameters and quality
measurements. The second is the inverse process which relates quality measurements to
process parameters.

The quality prediction function fy models the well-understood forward process
X → Y from a vector x ε RP containing P process parameters to a vector y ε RQ con-
taining Q quality measurements. fy summarizes the physical process of setting up a
machine with a set of parameters xi, executing the predefined manufacturing operation
and obtaining the set of quality measurements yi from the manufactured part.

Similarly, the parameter proposal function fx denotes the reverse mapping Y → X . In
this mapping, for a desired set of quality measurements yi a set of manufacturing parame-
ters xi is recommended. fx often denotes an optimization over a forward process simulation
or the proposals of an expert, which are used to set up a machine or manufacturing process.

These functions are learned from a set M of n ε N measured data points. By following
the learning process, which is stated as an optimization problem, the two functions’ pa-
rameters θx and θy that maximize a loss are found. This loss L (ex: r2, or negative Mean
Squared Error (MSE)) measures how well fy and fx model the historical data given the set
of parameters θx and θy. Thus, the overall naïve definition of these problems is the search
for fy, fx, θx and θy, as follows:

y = fy
(
x; θy

)
(1)

x = fx(y; θx) (2)

θy, θx = max
θy , θx

(
n

∑
i

Ly
(
yi, fy

(
x; θy

))
+ Lx(xi, fx(y; θx))

)
(3)

For the dataset M = {(x0, y0), (x1, y1), . . . , (xn, yn)}n of n ε N measured data points.
From a data science point of view, the forward process X → Y is well understood and

unambiguous. In contrast, the inverse process Y → X is often ambiguous and ill-defined.
One of the reasons for this is the loss of information on the forward process. A set of
quality measurements is, more often than not, insufficient to describe the dynamics of the
physical process. Another reason is the presence of non-monotonic behaviors in the forward
process, resulting in multiple sets of parameters yielding the same quality measurements.
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The lost or hidden information is thus described as a latent vector z ε RH containing H
variables which are important to fully describe the manufacturing process, and which
were not measured in the data. Examples of these variables are heat loss, residual stress
and resulting microstructure of the materials in additive manufacturing, as well as other
unknown dynamics of the physical system.

In order to correct fx, the direct and inverse relationship between the manufacturing
parameters and the latent variables must also be considered. This adds the complexity
of having to estimate fz which models X → Z . The new latent variables must also be
considered in fx in order to model Y, Z → X . It must also be mentioned that the real
semantic meaning of the resulting vector space Z may not be understood unless the learning
of fz is constrained to enforce specific process knowledge. With the latent variables added to
the model, the problem definition becomes the search for fy, fx, fz, θx, θy, and θz, as follows:

y = fy
(
x; θy

)
(4)

z = fz(x; θz) (5)

x = fx(y, z; θx) (6)

θy, θz, θx = max
θy , θz , θx

(
n

∑
i

Ly
(
yi, fy

(
x; θy

))
+ Lx(xi, fx(y, fz(x; θz); θx))

)
(7)

For the dataset M = {(x0, y0), (x1, y1), . . . , (xn, yn)}n of n ε N measured data points,
which do not contain measures of the latent variables z.

3.2. Invertible Neural Networks

Invertible Neural Networks (INN) prove to be a viable solution for joint quality predic-
tion and parameter proposal problems. These networks were introduced by Ardizzone et al.
in order to cope with ambiguous inverse problems [33]. In their work, Dinh et al. introduce
“affine coupling layers”, which are the basic building blocks of the models [34]. These
layers define a basic invertible equation which has the same number of inputs and outputs.
This contributes to the conservation of the information present in the modeled process.

The usage of these networks requires the redefinition of the initially stated problem.
First, the desired output vector of the network will be the concatenation of the quality
measurements, the latent variables and a padding y′ =

[
z, py, y

]
. Similarly, the input of the

network will be the concatenation of the manufacturing parameters and an extra padding
x′ =

[
x, py

]
. The selected dimension of z will define the expected latent variables to encode

any extra information in the output, and the dimensions of px and py will allow the network
to have larger information encodings between layers. Thus, in order to solve jointly fy, fx,
and fz, an invertible neural network is used finn.

y′ =
[
z, py, y

]
= finn

(
x′; θ

)
(8)

x′ = [x, px] = finn
−1(y′; θ

)
(9)

In the current work, two joined affine coupling layers are used as the basic layer of
the models. In these layers, the input vector is split into two vectors u1 and u2 which are
used to compute the output vectors v1 and v2. The general architecture of the network is
illustrated in Figure 2.
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As shown by Ardizzone et al., the base layer function is naturally invertible and
allows the forward and inverse learning of the transform functions t1, t2, s1, and s2 for each
layer [33]. These double affine coupling layers are subsequently stacked while shuffling
the vectors between layers.

Forward equations:
v1 = u1 � exp(s2(u2)) + t2(u2) (10)

v2 = u2 � exp(s1(u1)) + t1(u1) (11)

Inverse equations:

u2 = (v2 − t1(v1))� exp(−s1(v1)) (12)

u1 = (v1 − t2(u2))� exp(−s2(u2)) (13)

The training process of these networks considers performance metrics (losses) for both
forward and inverse use of the model, for x, y and z. It must also be noted that the latent
variables vector z is not part of the dataset and thus has to be randomly generated for each
datapoint from a normal distribution with mean 0 and variance 1, zi ∼ N (0, 1). The
padding vectors px and py are generated with normal distributions close to zero (ex: mean
0 and variance 1 × 10−2).

During the training process, the first step is to use the network to estimate ŷ′. The
second step uses the estimated ŷ′ with a small noise (ex: ynoise ∼ N (0, 0.01)) and the
inverse of the model to estimate x̂′. The third step generates a new latent variable z2 and
replaces it in ŷ′ in order to generate x̂′2.

ŷ′ =
[
ẑ, p̂y, ŷ

]
= finn

(
x′; θ

)
= finn([x, px]; θ) (14)

x̂′ = [x̂, p̂x] = finn
−1([ẑ, p̂y, ŷ

]
; θ
)

(15)

x̂′2 = [x̂2, p̂x2] = finn
−1([z2, p̂y, ŷ

]
; θ
)

(16)

These three predictions help compute the three losses of the network Lx, Ly, Lz. The
first two supervised MSE losses help approximate X → Y, Z and Y, Z → X . The third
unsupervised Maximum Mean Discrepancy (MMD) loss enables a gradual emergence of
structure in the latent space Z, and enforces the independence between z and y, so that the
same information is not encoded twice [33]. All losses are scaled after the first epoch and
the importance of the inverse unsupervised loss (λzi) is decreased through training.

Lx = λx MSE
(

y′, ŷ′
)

(17)
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Ly = λy MSE
(

y′, ŷ′
)

(18)

Lz = λz f MMD([z, y], [ẑ, ŷ]) + λzi MMD
(

x̂′, x̂′2
)

(19)

Thus, the training of the invertible neural network for the joint quality prediction and
parameter proposal problems can be denoted as:

θt = max
Θ

(
n

∑
i

λx MSE
(

y′, ŷ′
)
+ λy MSE

(
y′, ŷ′

)
+ λz f MMD([z, y], [ẑ, ŷ]) + λzi MMD

(
x̂′, x̂′2

))
(20)

3.3. Synthetic Data

Finding correlations via an artificial neural network requires data for training. In
combination with the long production times in AM as compared to other production
technologies, a complete classification of the process takes a lot of time. To validate the
presented approach before conducting all required trials, a synthetic data set based on
previously determined correlations can be used. In this study, values for build orientation,
infill pattern, infill density, manufacturing speed, nozzle temperature and layer height are
regarded as input parameters. They are correlated to the output measurements of part
strength, dimensional error, surface roughness and manufacturing time. The correlations
are based on the findings of Alafaghani et al. [5], Thrimurthulu et al. [35], Akande [36] and
Walsh [6] and are summarized in Table 1.

Table 1. Correlations used to create synthetic data on influence of FDM process parameters.
↑ indicates increase, ↓ indicates decrease.

Input Parameter Output Measurement

Build orientation is Z Strength ↓
Infill density ↑ Strength ↑

Manufacturing speed ↑ Strength indifferent
Nozzle temperature ↑ Strength ↑

Layer height ↑ Strength ↑
Infill pattern is hexagonal Strength ↑

Layer height ↑ Dimensional error ↑
Infill density ↑ Dimensional error indifferent

Manufacturing speed ↑ Dimensional error ↑
Nozzle temperature ↑ Dimensional error ↑

Infill pattern Dimensional error indifferent
Infill density ↑ Manufacturing time ↑

Infill pattern is linear Manufacturing time ↓
Infill pattern is hexagonal Manufacturing time ↑

Manufacturing speed ↑ Manufacturing time ↓
Nozzle temperature ↑ Manufacturing time indifferent

Layer height ↑ Manufacturing time ↓
Infill density ↑ Surface roughness indifferent
Infill pattern Surface roughness indifferent

Manufacturing speed ↑ Surface roughness ↑
Nozzle temperature very high or very low Surface roughness ↑

Layer height ↑ Surface roughness ↑

This way, only linear correlations are regarded, which does not necessarily reflect the
actual relation between process parameters and measured part properties. Furthermore,
since the correlations are compiled from multiple publications, no interdependencies
between process parameters can be detected. Because of this compilation, a mixture of
experiments and procedures is regarded, which means that the results are not necessarily
comparable and transferable between studies. Therefore, this table of correlations shall
be regarded as an artificial case combining relevant results from multiple studies. It
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cannot be used as a complete classification of the process. It can, however, be used to
validate the approach of generating a suitable set of process parameters via an invertible
neural network. To increase the accuracy of the predicted process parameters, a complete
classification considering non-linearities and parameter interdependencies is still necessary.

3.4. Data Acquisition

To apply the described procedure to a real manufacturing scenario, the process has
to be characterized. For a manageable scope of trials, four FDM process parameters are
chosen, which are known to have interdependencies regarding part quality, and which
affect mechanical and optical part properties as well as manufacturing time. The chosen
parameters are nozzle temperature (TN), manufacturing speed (vM), part cooling (CP) and
build orientation (OB). For each parameter, a typical range is chosen, which is divided into
five equally spaced test points. This means that for nozzle temperature, the distinct values
190 ◦C, 200 ◦C, 210 ◦C, 220 ◦C and 230 ◦C are evaluated. Manufacturing speed is varied
between 20 mm/s, 35 mm/s, 50 mm/s, 65 mm/s and 80 mm/s, while part cooling is set
to 0%, 25%, 50%, 75% and 100%. To account for non-linearities and interdependencies,
those three parameters are varied around the centre point of TN = 210 ◦C, vM = 50 mm/s
and CP = 50%, creating a three-dimensional trial set-up in the shape of a star pattern (see
Figure 3, left). Additionally, the extreme points in the corners were tested (see Figure 3,
right). In combination, this represents a central composite design.
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Since build orientation is typically not a parameter with a continuous range but
rather depends on the part’s shape, the distinct orientations lying (specimen in the x-y-
plane) and standing (specimen in the x-z-plane) were manufactured for each trial point.
Intermediate orientations are technically possible but would require support material to
be manufactured. Since the usage of support material increases manufacturing time and
needed material significantly while reducing surface quality, its usage should generally
be avoided. Therefore, intermediate orientations are not regarded in these trials. All
other process parameters were kept at a fixed value throughout the study, according
to Table 2. This design of experiments—varying four process parameters with known
interdependencies with all other parameters kept constant—allows the validation of the
proposed method in a manageable time frame while allowing for easy extension of the
learned model when more tests are carried out, i.e., more parameters have been varied in a
larger study.
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Table 2. Process parameters that have not been varied during the study.

Process Parameter Value

Nozzle Diameter 0.4 mm
Extrusion multiplier 1

Extrusion width 0.48 mm
Retraction 4.9 mm at 55 mm/s

Layer height 0.2 mm
Top solid layers 3

Bottom solid layers 3
Perimeters 2

Perimeter direction Inside-out
First layer height 150%
First layer width 120%
First layer speed 50%

Start points X = 0; Y = 500
Skirt 1 Outline (only lying specimen)
Brim 10 Outlines (only standing specimen)

Infill Rectilinear at 50% infill density; 20% overlap; 120% width;
alternating between 45◦ and −45◦ each layer

Support No support
Heated bed 50 ◦C

All parts for evaluation are produced on an Ender 3 FDM-3D-printer manufactured
by Shenzhen Creality 3D Technology Co., Ltd., Shenzhen, China, using natural Polylactic
Acid (PLA) from manufacturer Fillamentum Manufacturing Czech s.r.o., Hulín, Czech
Republic. PLA is chosen since it is one of the most used polymers in AM [37], allowing for
broad usability of the generated results. In total, five samples are manufactured for each
process point to avoid pollution of the results by outliers. To avoid influences of very short
layer times, the five samples are printed simultaneously on the same build plate. G-code
is prepared using the slicing software Simplify3D in version 4.1.2. For each set of parts,
the manufacturing time, as well as the supposed weight of the parts as calculated by the
path planning software, is noted, and later compared to the measured values. Furthermore,
ambient temperature and humidity are recorded for each test point.

The test geometry to be produced is a tensile test specimen chosen according to DIN
EN ISO 527. From this standard, the 1BA test specimen is chosen since it represents a
typical test geometry for quantifying the properties of plastic parts and can be produced
relatively quickly because of its size. The standard defines the testing zone’s width as 5 mm
and its thickness as ≥2 mm. For this study, a thickness of 5 mm was chosen, matching
the width of the parts. The test geometry and the manufacturing set-up are displayed in
Figure 4.

The tensile test allows for determining tensile strength and Young’s modulus—which
are important values to determine part strength—among other characteristics. Before
testing the parts using a Z100 tensile testing machine by manufacturer ZwickRoell GmbH &
Co.KG, Ulm, Germany, their width and thickness are measured at three points of the testing
zone and averaged. Additionally, part weight is measured. For those three values, the
deviation from their respective target values is calculated. By defining dimensional accuracy
ADim and weight accuracy AWeight according to Equations (21) and (22), respectively,
measured values can be converted into quality indicators for comparing parts and training
the INN. To calculate ADim, the measured width ameas and measured thickness bmeas
of the specimen are set in relation to their respective supposed values, asupp and bsupp.
Accordingly, AWeight is calculated from the measured weight of the specimen wmeas and its
supposed weight wsupp as calculated by the path planning software.

ADim = 100%−
∣∣asupp − ameas

∣∣
asupp

· 100%−
∣∣bsupp − bmeas

∣∣
bsupp

· 100% (21)
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AWeight =
wmeas

wsupp
· 100% (22)Polymers 2023, 15, x FOR PEER REVIEW 10 of 20 
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Figure 4. Five tensile test specimens according to DIN EN ISO 527 in lying (left) and standing
orientation (right).

This procedure creates the following set (Table 3), which is later used to train the INN.
In total, 210 sets of process parameters and corresponding part properties are recorded.

Table 3. Data used to train the INN.

Values/Range

Input that is varied

Nozzle temperature [◦C] 190; 200; 210; 220; 230
Manufacturing speed [mm/s] 20; 35; 50; 65; 80

Part cooling [%] 0; 25; 50; 75; 100
Build orientation [-] lying, standing

Input that is not varied Every process parameter from
Table 2 -

Input that cannot be
influenced

Ambient temperature [◦C] 24.8 to 29.9
Humidity [%] 34 to 52

Output

Tensile strength [MPa] 11.4 to 46.1
Young’s modulus [MPa] 1872 to 2501

Elongation at tensile strength [%] 0.52 to 2.5
Dimensional accuracy [%] 85.2 to 99.8

Weight accuracy [%] 86.3 to 97.5
Manufacturing time [s] 571.6 to 1573

4. Validation and Results

To validate the accuracy of the presented INN for process parameter generation, five
scenarios are tested, covering different areas of the triangle of goals described in Section 1,
Introduction. For each scenario, a set of desired part properties is chosen as input into
the previously trained INN. The INN then suggests those process parameters which will
most likely produce the desired part properties or part properties close to the desired ones.
Furthermore, since it is highly unlikely that the INN finds a set of parameters which fits
the desired scenario perfectly and without deviation, a forward calculation is conducted to
estimate the resulting part properties based on the suggested process parameters. The parts
are manufactured according to the generated parameters and evaluated in the same way as
before when creating the training dataset for the INN. Afterwards, the results are compared
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to the desired input part properties (input accuracy) and to the predicted properties based
on the suggested parameters (prediction accuracy). This allows a comparative evaluation of
the algorithm. According to Equation (23), input accuracy AInput is defined as the accuracy
of the measured values VMeasurement compared to the desired values (input) VINN, Input the
INN is supposed to reach.

AInput = 100%−
∣∣VINN, Input −VMeasurement

∣∣
VMeasurement

· 100% (23)

Prediction accuracy APrediction is defined according to Equation (24) as the accuracy of
the measured values when compared to the predicted values VINN, Prediction based on the
generated process parameters.

APrediction = 100%−
∣∣VINN, Prediction −VMeasurement

∣∣
VMeasurement

· 100% (24)

Both accuracy definitions are related to the measured value in the denominator to
make them easily comparable.

The validation scenarios are chosen based on the fact that not all part characteristics
can be optimized at the same time. For scenario 1, good mechanical properties and a short
manufacturing time are demanded, allowing for poor optical properties (Figure 5, top).
Figure 5, left, shows the triangle of goals for scenario 2, where good optical properties and
a short manufacturing time are demanded while accepting poor mechanical properties. In
scenario 3, the demand for good mechanical and optical properties combined, therefore
allowing for a long manufacturing time (Figure 5, right).

Polymers 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 5. Scenario 1 to 3 used to validate the accuracy of the demonstrated INN. Each scenario favors 
two distinct part qualities while allowing a compromise in the third. The gray area shows the fulfil-
ment of each quality category. 

The exact target values for “good” and “poor” properties are determined based on 
the range of results acquired in the trials for training the INN. For each part property, the 
highest and lowest values and the interval in between were determined. “Good” values 𝑉ௗ are defined as the upper 5% of the interval between the lowest and highest meas-
ured values (𝑉௪ and 𝑉, respectively) of the training set according to Equation (25), 
while “poor” values 𝑉 are defined as the lower 5% of the interval (Equation (26)). Be-
cause manufacturing time is desired to be low, the criteria for good and poor are reversed 
for this quality characteristic. 𝑉ௗ = 𝑉௪ + 0.95 ⋅ (𝑉 − 𝑉௪) (25) 𝑉 = 𝑉௪ + 0.05 ⋅ (𝑉 − 𝑉௪) (26) 

In the fourth scenario, it is tested whether medium properties for all regarded part 
characteristics can be achieved (Figure 6, left). Here, the middle of each interval 𝑉ௗ௨ 
is used to calculate the desired values (Equation (27)). 𝑉ௗ௨ = 𝑉௪ + 0.5 ⋅ (𝑉 − 𝑉௪) (27) 

Finally, in scenario 5, it is evaluated whether above-average properties can be 
achieved for all regarded part characteristics (Figure 6, right). Here, 𝑉௩ ௩  de-
scribes the upper 20% of the interval between the lowest and highest value, according to 
Equation (28). 

Figure 5. Scenario 1 to 3 used to validate the accuracy of the demonstrated INN. Each scenario
favors two distinct part qualities while allowing a compromise in the third. The gray area shows the
fulfilment of each quality category.



Polymers 2023, 15, 1884 12 of 18

The exact target values for “good” and “poor” properties are determined based on
the range of results acquired in the trials for training the INN. For each part property, the
highest and lowest values and the interval in between were determined. “Good” values
Vgood are defined as the upper 5% of the interval between the lowest and highest measured
values (Vlow and Vhigh, respectively) of the training set according to Equation (25), while
“poor” values Vpoor are defined as the lower 5% of the interval (Equation (26)). Because
manufacturing time is desired to be low, the criteria for good and poor are reversed for this
quality characteristic.

Vgood = Vlow + 0.95 · (Vhigh −Vlow ) (25)

Vpoor = Vlow + 0.05 · (Vhigh −Vlow ) (26)

In the fourth scenario, it is tested whether medium properties for all regarded part
characteristics can be achieved (Figure 6, left). Here, the middle of each interval Vmedium is
used to calculate the desired values (Equation (27)).

Vmedium = Vlow + 0.5 · (Vhigh −Vlow ) (27)
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Finally, in scenario 5, it is evaluated whether above-average properties can be achieved
for all regarded part characteristics (Figure 6, right). Here, Vabove average describes the upper
20% of the interval between the lowest and highest value, according to Equation (28).

Vabove average = Vlow + 0.8 · (Vhigh −Vlow ) (28)

In the regarded use-case of FDM, mechanical properties relate to the part characteristics
of Young’s modulus, tensile strength, and elongation at tensile strength, while optical
properties relate to the dimensional accuracy as defined in Section 3.4, data acquisition.
Since it cannot be indisputably said how weight accuracy influences mechanical and optical
properties as well as manufacturing time, weight accuracy is always demanded to be at
Vmedium for each validation trial.

The INN architecture used in these experiments was consistent with the number of
inputs and outputs described previously. Moreover, the latent space z was fixed to six
dimensions. Including the padding, each complete input and output vector had a total
size of 30 which was evaluated through four double affine coupling layers. The transform
functions t1, t2, s1, and s2 for each layer were a set of 512 linear units, then a Relu activation
function, and finally 30 linear units. The INN was trained for 100 epochs with batches of
20 shuffled data points. All hyperparameters were selected through a grid search.
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Under these conditions, the target values for the parts being produced according to
the parameters generated by the INN are shown in Table 4. For scenarios 2 and 3, target
values needed to be adjusted for the INN to generate results. Using the calculated values
according to Equations (25) and (26) of 621.67 s and 1522.93 s, respectively, no matching
process parameters were found.

Table 4. Target values for the produced parts as input into the INN for parameter generation.
Adjusted values deviating from the described procedure are marked with *.

Validation Trial Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Young’s modulus [MPa] 2470.00 1903.00 2470.00 2187.00 2375.00
Tensile strength [MPa] 44.40 13.10 44.40 28.80 39.20

Elongation at tensile strength [%] 2.40 0.62 2.40 1.51 2.10
Dimensional accuracy [%] 85.90 99.10 99.10 92.50 96.90

Weight accuracy [%] 91.90 91.90 91.90 91.90 91.90
Manufacturing time [s] 622.00 1000.00 * 1100.00 * 1072.00 772.00

To achieve the desired part properties, the INN generated the following sets of process
parameters (Table 5, top). A forward calculation is conducted to estimate the resulting part
properties when using the generated process parameters. The predicted values are shown
in Table 5, bottom. The calculation took less than one second on a regular office laptop,
showing its benefit in terms of decision speed.

Table 5. Process parameters generated by the INN based on input from Table 4 and predicted part
properties when using the generated parameters.

Validation Trial Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Nozzle temperature [◦C] 218 222 202 215 201
Manufacturing speed [mm/s] 36.8 92 47.8 34.1 68

Part cooling [%] 24 100 12 73 19
Build orientation [-] lying standing lying standing lying

Young’s modulus [MPa] 2468 1996 2433 2190 2374
Tensile strength [MPa] 44.40 14.80 40.20 29.00 39.10

Elongation at tensile strength [%] 2.64 0.64 2.30 1.51 2.08
Dimensional accuracy [%] 86.10 99.10 93.70 92.70 94.60

Weight accuracy [%] 92.02 91.77 91.80 91.84 91.63
Manufacturing time [s] 622.00 1111.00 985.00 1076.00 771.00

After manufacturing and evaluating five parts per scenario according to the procedure
described in Section 3.4, data acquisition, and obtained results can be compared according
to Equations (23) and (24). The results are summarized in Table 6.

Regarding the mean values over all the scenarios, the best input and prediction
accuracies can be achieved for part weight with values of 98.38% and 98.45%, respectively.
For closely matching the desired input (input accuracy), the category manufacturing time is
the least accurate, with a mean value of 71.1%. In terms of prediction accuracy, elongation
at tensile strength produces the lowest accuracy at 75.1%.

Analyzing the accuracy values for individual scenarios shows the potential for im-
proving the INN’s accuracy. The INN’s input accuracy is visualized in the radar chart in
Figures 5–7, allowing a more in-depth analysis of the individual scenarios and the INN’s
capability of generating suitable manufacturing parameters to create desired part qualities.
The gray band represents the area between the best and worst prediction accuracy for each
part characteristic. The same observations can be made for prediction accuracy; however,
because input accuracy is more relevant to a real manufacturing use-case, it is focused on
in the following evaluation.
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Table 6. Results of accuracy analysis, listing input (Equation (23)) and prediction accuracy
(Equation (24)) for all scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Overall

min max min max min max min max min max min max Mean Median

Young’s
modulus

Input
accuracy [%] 88.74 92.33 87.70 95.72 86.90 92.23 91.73 99.26 83.64 86.42 83.64 99.26 89.85 90.56

Prediction accuracy [%] 88.83 92.41 91.98 99.60 88.60 93.85 91.58 99.12 83.68 86.47 83.68 99.60 91.04 91.58

Tensile
strength

Input
accuracy [%] 94.29 97.22 43.67 47.46 90.91 96.74 69.09 97.87 96.08 99.49 43.67 99.49 84.11 94.79

Prediction accuracy [%] 94.29 97.22 49.33 53.62 93.49 98.77 68.18 97.16 95.83 99.49 49.33 99.49 85.16 94.29

Elongation/
at tensile
strength

Input
accuracy [%] 85.71 88.89 32.63 44.29 82.76 85.71 74.17 99.33 72.41 75.00 32.63 99.33 73.96 82.76

Prediction accuracy [%] 94.29 97.78 33.68 45.71 79.31 82.14 74.17 99.33 71.72 74.29 33.68 99.33 75.10 79.31

Dimensional
accuracy

Input
accuracy [%] 97.25 99.88 99.29 99.90 90.13 90.86 93.81 94.39 88.36 90.88 88.36 99.90 94.65 94.39

Prediction accuracy [%] 97.01 99.88 99.29 99.90 96.12 96.81 94.02 94.59 91.01 93.47 91.01 99.90 96.39 96.58

Weight
accuracy

Input
accuracy [%] 96.90 97.73 95.96 99.41 99.60 99.96 96.34 99.74 98.84 99.24 95.96 99.96 98.38 98.48

Prediction accuracy [%] 97.03 97.86 95.82 99.55 99.71 99.98 96.27 99.80 99.14 99.54 95.82 99.98 98.45 98.41

Manufacturing
time

Input
accuracy [%] 86.75 86.75 85.56 85.56 29.03 29.03 85.91 85.91 68.26 68.26 29.03 86.75 71.10 85.56

Prediction accuracy [%] 86.75 86.75 95.05 95.05 46.91 46.91 86.23 86.23 68.43 68.43 46.91 95.05 76.67 86.23
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Scenario 1 is meant to have good mechanical properties and a low manufacturing
time while accepting inferior optical properties. Figure 7, left, shows that the generated
process parameters are capable of producing the desired output closely, with the highest
accuracy achieved in terms of setting the actual geometry at 99.88%. Even in the worst
case of elongation at tensile strength, the INN was capable of matching the desired part
characteristics to 85.71%.

In scenario 2, good optical properties and a low manufacturing time are demanded
while accepting inferior mechanical properties. Here, the parameters generated by the INN
are able to reproduce the categories of Young’s modulus, dimensional accuracy, weight
accuracy and manufacturing time closely, as shown in Figure 7, right. However, the
generated process parameters do not produce the desired results in the categories of tensile
strength and elongation at tensile strength, with accuracy values being as low as 43.67%
and 32.63%, respectively.

Scenario 3, where manufacturing time was traded for good mechanical and optical
properties, generally shows a good accuracy between 82.76% and 99.96%. The only outlier
here is manufacturing time, with an accuracy as low as 29.03% (Figure 8, left).
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INN are able to reproduce the categories of Young’s modulus, dimensional accuracy, 
weight accuracy and manufacturing time closely, as shown in Figure 7, right. However, 
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43.67% and 32.63%, respectively. 
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For scenario 4, where the generation of parameters for creating a part with good
medium properties for all categories is demanded, accuracy is good for the categories
Young’s modulus, dimensional accuracy, weight accuracy and manufacturing time, as
shown in Figure 8, right. The categories tensile strength and elongation at the break still
deliver high accuracies of 97.87% and 99.33%, respectively, in the best cases. However,
they can be as low as 69.09% and 74.17%, respectively, showing a larger possible range of
accuracies for those categories. This can be attributed to a higher standard deviation or,
more precisely, one individual outlier in the measured values of this validation trial.

For scenario 5, where it is demanded to create an above-average part, input accuracy
can be considered good for tensile strength (between 96.08% and 99.49%), dimensional
accuracy (between 88.36% and 90.88%) and weight accuracy (between 98.84% and 99.24%).
The input accuracy for Young’s modulus is slightly worse at between 83.64% and 86.42%,
followed by the input accuracy for elongation at break at between 72.41% and 75% and
manufacturing time at 68.26% (Figure 9, left).
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Regarding the input accuracy over all scenarios, Figure 9, right, shows that Young’s
modulus, dimensional accuracy and weight accuracy can be closely set according to target
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values when using the presented INN. For categories of tensile strength, elongation at
tensile strength and manufacturing time, certain cases still produce a highly accurate
result with accuracy values above 99%. However, in the worst cases, accuracies can drop
significantly to values as low as 29.03%.

5. Summary, Discussion and Outlook

In this study, a method for using invertible neural networks is applied to a manufactur-
ing environment for the first time to automatically generate process parameters based on
desired part properties. This is achieved by training an INN using process parameters and
corresponding measured part properties. The results of the validation trials show that the
presented method is well suited for generating process parameters from a limited dataset
to achieve desired part properties. This way, it is possible to objectify decision-making
in manufacturing environments while at the same time improving decision quality and
decision speed. By objectifying the process set-up for a manufacturing process, constant
high-quality production can be maintained because expert knowledge is not bound to
individuals. Furthermore, the presented tool can be used to train new employees quickly
by showing the effect of process parameters on part quality directly.

In general, the demonstrated INN shows good accuracy in regard to how closely the
parts manufactured according to the generated parameters achieve the desired properties,
with a mean overall input accuracy of 85.34%. For most cases, it is even higher, reaching up
to 99.96% accuracy. The lower mean value is mostly due to the results of scenarios 2 and
3, where inferior mechanical properties and higher manufacturing times were accepted,
respectively. Here, the high deviation from otherwise higher accuracy values can be at-
tributed to the artificial construction of the sets of desired part properties. For the cases
where one or more attributes were accepted to yield lower results (e.g., set to the lower 5%
of the interval) to benefit other factors, those values were deliberately set low, sometimes
worse than they would need to be. Given all other constraints, it is difficult to produce
parts with such low values for certain categories. This shows the current limitation of
the demonstrated INN: all values have to be set, even if certain characteristics take on a
subordinate role for the application. As shown in scenarios 2 and 3, this can lead to the
overdetermination of the problem when no adequate set of process parameters can be found
that accurately reproduces the desired part. Evidence can be found when comparing the
desired part quality figures with the INN’s predictions based on its suggested parameters.
For example, in scenario 3, where manufacturing time was supposed to be high, the INN
struggled to generate a fitting set of process parameters. While the desired manufacturing
time was set to 1100 s per part, the INN predicted that it would only achieve a close match
of all quality characteristics when producing the part in 985 s. When manufacturing the
validation samples, it only took 643.4 s per part for this scenario. This is why, in those cases
of overdetermination, prediction accuracy is significantly higher than input accuracy. In
a real use-case, it is more likely to define certain important part qualities and leave those
that are less relevant unspecified. However, this does not mean that those characteristics
are desired to be as poor as possible. They should still be as good as possible under the
given restrictions. Therefore, in the next steps, the shown solution needs to be extended
by combining INNs with optimization problems. That way, it will be possible to leave out
certain part quality characteristics when defining the desired part quality. The INN will
then generate a set of process parameters which closely fit the specified quality characteris-
tics while maximizing the unspecified ones. This more closely accounts for a real-world
scenario while also solving the current problem of overdetermining the task, ultimately
resulting in higher accuracy values. Given those expansions, prediction quality would
only depend on the quality of the training data. Therefore, the method could be applied
to different polymers, from amorphous to highly crystalline, while prediction quality is
expected to stay very high. Additionally, user acceptance and industrial integration of a
tool suggesting suitable process parameters for a manufacturing process provide further
research perspectives. Based on the presented method’s speed of calculating suitable pro-
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cess parameters given a set of desired part properties, it is possible to run the algorithm
on low-power computing hardware, edge devices or directly on the manufacturing ma-
chine. This further improves decision speed, decision implementation and automation in
manufacturing and shall therefore be investigated in future studies.
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