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Abstract: Three-dimensional (3D) printing has various applications in many fields, such as soft
electronics, robotic systems, biomedical implants, and the recycling of thermoplastic composite
materials. Three-dimensional printing, which was only previously available for prototyping, is
currently evolving into a technology that can be utilized by integrating various materials into
customized structures in a single step. Owing to the aforementioned advantages, multi-functional
3D objects or multi-material-designed 3D patterns can be fabricated. In this study, we designed
and fabricated 3D-printed expandable structural electronics in a substrateless auxetic pattern that
can be adapted to multi-dimensional deformation. The printability and electrical conductivity of a
stretchable conductor (Ag-RTV composite) were optimized by incorporating a lubricant. The Ag-RTV
and RTV were printed in the form of conducting voxels and frame voxels through multi-nozzle
printing and were arranged in a negative Poisson’s ratio pattern with a missing rib structure, to
realize an expandable passive component. In addition, the expandable structural electronics were
embedded in a soft actuator via one-step printing, confirming the possibility of fabricating stable
interconnections in expanding deformation via a missing rib pattern.

Keywords: elastic soft material; 3D printing; negative Poisson’s ratio structure; conductive composite
material

1. Introduction

Three-dimensional (3D) printing is a promising field of emerging technology for fab-
ricating complex and customized structures [1,2]. Furthermore, it is used for research and
commercial purposes for the recycling of thermoplastic composite materials [3,4] and small-
quantity customized production, such as patient-specific tooth implants [5] and discontinued
engine parts [6]. Although 3D printing can provide an on-demand manufacturing process, it
is difficult to build multi-functional products due to its single-material-based architecture. So
as to transform this into functional 3D customized structures with embedded features such as
electronic sensing platforms, cell growth factors, structural healing factors, etc., there were
many attempts to incorporate multi-functional materials in single objects such as conductors,
elastomers, cells, and hydrogels [7–9]. Therefore, 3D printing is used for both the production
of simple structures during their initial stages [10] and in various fields such as wearable
electronics [11–13], soft actuators [14], and artificial biomedical implants [15]. Extensive re-
search has been conducted on printing various functional materials for application in these
fields [16,17]; these capabilities enable the creation of fully integrated and functional soft
electronic devices in a simplified, single step [18].
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Stretchable soft electronics can be applied in various fields, including wearable de-
vices, biomedical applications, and robotic systems [19–22]. Stretchable materials, such as
conducting polymers [23–26], ionic conductors [27], and liquid metals [28], can be used for
conformal contact in interfaces across stretchable electronics applications. Alternatively,
stretchable structures such as serpentine [29,30], mesh [31], longitudinal waves [32], and
micro-crack methods [33] are utilized to incorporate rigid chips with stretchable compo-
nents. In addition, reverse engineering methods [34], stimuli-responsive materials [35], and
self-healing materials [36,37] have been incorporated to establish conformal contact with
the biostructure. However, those strategies require the deformation of each component to
achieve conformal contact with complex structures.

However, real-world applications require both conformal contact and stability dur-
ing multidimensional deformation, which can be simply demonstrated by fabricating
a metamaterial structure with a systematically negative Poisson’s ratio from an initial
design [38–42]. However, regarding the manufacturing of electronic devices using pre-
existing auxetic structures without 3D printing, two main complex approaches were used:
(1) molding or coating the entire auxetic structure with conducting materials [43–47], and
(2) fabricating a substrate of an auxetic structure, followed by patterning a conducting line
on the top [48–50]. Method (1) has a lack of designing freedom for conducting parts in the
structure, while method (2) provides a volumetrically inefficient architecture due to the
stacking electronics, and adhesion should be thoroughly considered. The utilization of a
3D printer for multi-material printing can facilitate the segregation of both the structural
and electronic components within a singular stereographic entity [51]. This novel approach
also presents potential utility in the domain of structural electronics possessing a negative
Poisson’s ratio.

For the 3D printable structural frame materials, RTV silicone was chosen because
it is a widely commercialized silicone elastomer used for adhesive sealants, and various
types for specialized purposes are already on the market; in addition, it already has
viscoelastic properties that are directly applicable for 3D printing, with self-supporting
characteristics [52]. In addition, for the conducting fillers, we considered Ag flakes because
Ag is a noble metal that has higher conductivity than non-noble metals such as Cu or
a carbon-based conductor such as carbon nanotubes and carbon black, while the flakes
have a planar structure (2D) that can induce better percolation networks than a sphere-
like structure (0D) or wire-like structure (1D) [47,51]. Although hydrogel is also a great
candidate for soft electronics, the main difference between the two is the charge carrier,
wherein a conductive filler/silicone composite uses electrons and a hydrogel uses ions [53].
Here, electronic components using electrons were more of interest for building passive
components, such as the resistor, capacitor, and inductor used here (see Figures S10, S11,
S14 in the Supplementary Materials).

This study proposes the development of expandable voxelated auxetic structure-based
stretchable soft electronics via a rigid room-temperature-vulcanizing silicone (rRTV) frame
material and an elastic conductor (Ag-RTV) composite, consisting of silver (Ag) flakes and
soft RTV (sRTV) silicone. A 3D multi-material printer can realize structural electronics
based on the missing-rib auxetic structure without requiring a substrate. The electrically
conducting trace with the auxetic structure maintains a constant resistance under 100%
strain. Furthermore, a multi-nozzle 3D printing method can be used to produce an auxetic
structure by combining Ag-RTV conductor material and rRTV structural frame materials,
which can fabricate various passive component-based sensors, such as tactile sensors, strain
sensors, and heaters. Furthermore, simplified multi-nozzle-based one-step 3D printing
enables soft actuators, which can be embedded with various soft electronics, including
a strain sensor and interconnection. Finally, surface-mounted devices (SMD) with soft
electronics are integrated onto the soft actuators. These demonstrations indicate that
various complex structures can be printed for specific uses and can be applied to extensive
potential fields via their connectivity with various external devices.
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2. Materials and Methods
2.1. Preparation of 3D-Printed RTV-Based Ink

RTV silicone (Permatex, IL, USA), Ag flakes (4-8 µm, Alfa Aesar, Haverhill, MA, USA),
and 4-methyl-2-pentanone (TCI, Tokyo, Japan) were placed in a mixing container, based on
the experimental conditions for the desired volume fractions. The mixture was placed in a
mixer (ARE-310, THINKY, Tokyo, Japan) and evenly mixed, using the planetary centrifugal
mixing mode, at a rotation speed of 2000 rpm for 4 min. The Ag-RTV mixture was used to
fabricate the structure using a 3D printer (BIO X, Cellink, Gothenburg, Sweden). Thereafter,
the resulting structure was placed in a 120 ◦C oven for 2 h to evaporate the lubricant. Finally,
the production of the sample was completed by allowing the Ag-RTV to cure overnight in
ambient conditions (~25 ◦C).

2.2. Characterization of 3D-Printed RTV-Based Inks and Electronic Components

MultiDrive rheometer (MCR 702e, AntonPaar, Graz, Austria) was used to discern
the intricate rheological properties of the ink samples. The inks were carefully placed in
a confined space between two plates with a precise gap of 0.5 mm. The sweep mode of
the rheometer was used to accurately quantify the viscosity of the inks, covering a variety
of shear rates from 0.1 to 100 s−1 at a constant temperature of 25 ◦C. Additionally, the
amplitude mode of the instrument was used to assess the storage and loss shear modulus,
encompassing a broad range of shear strain from 0.01 to 10% and an angular frequency of
10 rad/s. Samples for the feature size measurements were produced using a 3D printer
(Cellink, BIO X, Sweden) and printing was performed at various speeds ranging from
1 mm/s to 6 mm/s at 70 kPa (RTV) and 60 kPa (Ag-RTV). The samples for the conductivity
measurements were also fabricated via a 3D printer as aforementioned for feature size
measurements, while resistance was measured using a digital multimeter (DMM). The
conductivity was calculated using the measured resistance value and the dimension of
the sample. To analyze the mechanical properties of the RTV and Ag-RTV composites,
uniaxial tensile tests were executed using an Instron 3343 universal testing machine (Instron,
Norwood, MA, USA) at a fixed receding strain rate of 100%/min. For the electromechanical
properties measurements, as shown in Figure S12 in the Supplementary Materials, samples
were prepared by placing 3D-printed Ag-RTV on a Cu tape fragment, followed by multiple
layers (10–15) of protection tape covering the Ag-RTV and Cu tape to prevent resistance
changes in the contact area by jig. Then, cables were connected to both sides of the Cu
tape and the cable was connected to the DMM. The strain changed from 0% to 100% in 5%
intervals and resistance was measured at each fixed strain point with the DMM. An LCR
meter was used to measure the capacitance of the sensors and the inductance of the printed
inductor. Capacitance data were smoothed using the Origin program, with a percentile
filter (points of window = 5, boundary condition = none, percentile = 65).

2.3. Multi-material Printing for Electronics and Actuators

The process of modeling the intricately shaped, bespoke components was meticulously
executed using the computer aided design (CAD) software (Fusion 360, Autodesk, San
Francisco, CA, USA). Thereafter, the 3D models were sliced by slicer program (Repetier-
Host, Hot-World GmbH & Co. KG, Willich, Germany) which enabled the generation
of a G-code that was customized to the specific shapes of the components. The G-code
was carefully fine-tuned, which reduced the printing time. Furthermore, the finely tuned
G-code was transferred to the 3D printer (BIOX, Cellink, Gothenburg, Sweden), which is
equipped with three nozzles that are capable of simultaneously printing three different
materials. The substrate was covered with polypropylene to prevent adhesion after curing
(Figure S2 in the Supplementary Materials). Speed and pressure were modified at various
speeds ranging from 1 mm/s to 10 mm/s and at 60−100 kPa.
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3. Results
3.1. Overview of 3D-Printed Expandable Structural Electronics

Figure 1 shows the overall research strategy, which includes the concepts and 3D-
printable ink materials used for expandable structural electronics, along with the appli-
cations integrating pneumatic soft actuators. Figure 1a shows the multi-nozzle printing
of soft RTV silicone (sRTV), rigid RTV silicone (rRTV), and Ag-RTV, highlighting their
respective working principles as a frame and conductor. A hyper-elastic RTV silicone
elastomer was utilized as the frame material, especially rRTV for the control frame in the
structural electronics and sRTV for pneumatic actuators. RTV silicones involve a conden-
sation reaction between a base polymer with reactive groups and a curing agent that acts
as a catalyst to promote cross-linking at room temperature after printing, resulting in a
cured silicone rubber material [54–58]. A stretchable conductor was used for the electron
conduction pathway and was composed of Ag flakes and sRTV, with 4-methyl-2-pentanone
as a lubricant. Here, 4-methyl-2-pentanone provided excellent dispersion of the Ag flakes
in the sRTV, allowing excellent electron current flow through a percolation path of well-
dispersed Ag flakes and adequate viscoelastic properties for 3D printing. Using rRTV and
Ag-RTV within microstructures having a negative Poisson’s ratio provides stable electrical
performance under expanding deformation. Figure 1b illustrates demonstrative examples,
such as passive component-based tactile sensors, joint sensors, and heaters with 3D-printed
expandable structural electronics applied to the surface of multi-dimensionally deforming
areas on body parts such as the knee or elbow. Figure 1c shows the capability of expandable
structural electronics to be integrated with an expanding body, which is a soft robotic
system, in one-step multi-nozzle printing.
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Figure 1. The overall strategy of 3D-printed soft electronics via multi-nozzle printing fabrication.
(a) Scheme of the ink components for 3D-printed hyper-elastic soft materials. (b) Illustration of
expandable structural soft electronics application to a 3D expandable structure. (c) Scheme of a
multi-material one-step 3D-printed soft actuator with embedded soft electronics.
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3.2. Characterization of 3D-Printable Soft Electronic Inks

To enable the implementation of soft electronics via 3D printing, optimization is
required for both the electrical characteristics of the ink material as an electronic device and
its rheological characteristics in order to produce a stacked structure. Figure 2 shows the
characterization process, which includes material optimization and mechanical property
testing for the application of sRTV and Ag-RTV ink materials via the 3D printer. Figure 2a
and Figure S4 in the Supplementary Materials show the real images of the printed 3D
structures of RTV frame materials and Ag-RTV conductor materials. Commercial RTV
silicone typically exhibits rheological properties that are suitable for 3D printing; thus,
separate optimization is not essential. However, for Ag-RTV mixed with Ag flakes in sRTV,
various optimizations are required to achieve the desired structure, as shown in Figure 2a.
Figure 2b shows the addition of Ag flakes to the sRTV at various volume fractions for
optimizing the conductivity of Ag-RTV. Furthermore, a percolation threshold was observed
at a volume fraction of 17.5% Ag-RTV, confirming the rapidly increased conductivity.
Furthermore, the higher the volume fraction of Ag flakes, the greater the percolation path,
resulting in ~102 S/cm conductivity, becoming saturated after a certain volume fraction
(~30%). Figure 2c shows an experiment aimed at optimizing the volume fraction of lubricant
to improve the printability of Ag-RTV while securing electrical conductivity. To aid the
dispensing of Ag flakes in the sRTV silicone, 4-methyl-2-pentanone was used as a lubricant,
which blends well in silicone elastomers [59]. Dispensed line structures, including Ag
flakes and various 4-methyl-2-pentanones in sRTV, underwent lubricant vaporization at
120 ◦C, and the resulting conductivity was measured at room temperature. Ag-RTV with a
volume ratio of 40% of lubricant showed excellent dispensing through the nozzle without
clogging, and the dispensed line stacked well. Despite the increase in the lubricant-reduced
conductivity of Ag-RTV, ~30 S/cm was reached at a 40% lubricant percentage, which is
applicable for electronics. After the lubricant dried out, the ratio between the Ag flakes
and sRTV became 31 vol% and 69 vol%, which showed good conductivity previously.
Showing 3D printability with a securing conductivity condition for 3D printable Ag-RTV
was determined as [Ag flake: sRTV: 4-methyl-2-pentanone = 18:40:42] in the volume fraction.
Figure 2d,e shows the rheological properties of the optimized Ag-RTV, sRTV. The viscosity
at a shear rate of 10s−1 was 210 Pas and 103 Pas, while the yield shear stress was 2.6 Pa
and 1.01 Pa for Ag-RTV and sRTV, respectively, which showed a shear thinning behavior
applicable for 3D printing under low pressure (<100 kPa). Figure 2f displays the difference
in feature size as a function of printing speed for the Ag-RTV and sRTV at the minimum
dispensing pressure for each ink (Ag-RTV, 90 kPa; sRTV, 80 kPa) with a 27-gauge conical
nozzle, and the printed line width was optimized to 300 µm for each ink. Figure 2g,h
displays optical microscope (OM) images of the sRTV and Ag-RTV, respectively, at the
same line width. As was evident from the images, both inks can be printed at a uniform
line width. A tensile test was performed on 3D-printed Ag-RTV and sRTV samples. As
shown in Figure 2i, the sRTV (blue) exhibited hyper-elastic mechanical properties with an
elastic modulus of 83.59 kPa and a fracture occurring at a strain of approximately 650%.
The Ag-RTV (red) exhibited a reduced elastic range of approximately 20% and a fracture
occurring at approximately 350% strain, which was attributed to the reduced volume
of sRTV and increased stress points due to the addition of the Ag flakes and lubricant.
The evaporation of the lubricant also resulted in the formation of pores, which served as
additional fracture points. SEM images of the Ag-RTV before and after tensile fracture
revealed that the Ag flakes were uniformly dispersed in the ink, resulting in a degradation
of the mechanical properties (Figure S8 in the Supplementary Materials). Linear alignment
and the partial agglomeration of Ag flakes were observed after fracture, indicating the
migration of Ag flakes owing to external mechanical force. The rheological properties,
the 3D-printed structure, and the mechanical properties of rRTV are further displayed in
Figures S4 and S5 in the Supplementary Materials.
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Figure 2. Characterization of ink materials. (a) Real images of the 3D-printed structure using RTV
(left) and Ag-RTV (right) inks. (b) Conductivity changes of Ag-RTV with various volume fractions of
Ag flakes. (c) Conductivity changes of Ag-RTV with various volume fractions of lubricant (methyl-
pentanone). (d) Plot of the apparent viscosity versus shear rate for RTV (blue) and Ag-RTV (red)
inks. (e) Comparison of the storage modulus G′ (solid line) and loss modulus G” (dashed line) as
a function of shear stress for RTV (blue) and Ag-RTV (red). (f) Experimental measurements of the
printing resolution according to the printing speed (RTV, blue; Ag-RTV, red). (g,h) Line width of the
optical microscopic image of (g) RTV and (h) Ag-RTV. (i) Stress-strain behavior of the RTV (red) and
Ag-RTV composites (blue).

3.3. A 3D-Printed Microstructure with a Negative Poisson’s Ratio for Expandable Soft Electronics

Figure 3 presents the negative Poisson’s ratio patterns for expandable structures
that are produced via the 3D-printing of rRTV and calculates the Poisson’s ratio of the
expandable structure, based on the strain changes. The geometrical determination of the
unit cell of the structure, both missing-rib and modified missing-rib forms, is shown in
Figure S7 in the Supplementary Materials. The distance (r) of the pattern was 2.121 mm and
the pattern feature size was 0.4 mm. Figure 3a shows the three types of expandable structure
arrays, which are composed of simple unit cells. Each pattern type was photographed using
a DSLR camera equipped with a macro-lens, with the structure changing as the engineering
strain increased from 0 to 20% along the x-axis at 2.5% intervals. A marker was placed
at the 1/4, 2/4, and 3/4 positions on the y-axis to enable the calculation of the change in
engineering strain using Image J software (National Institutes of Health, Bethesda, USA),
while the average and standard deviation are displayed on a graph (Figure 3b). Figure 3c
indicates the Poisson’s ratio changes of each of the three types of expandable structures,
shown according to the strain change. The Poisson’s ratio of pattern type 1 changed from
−0.1448 (2.5%) to −0.0185 (20%), while for pattern type 2, it appeared to be maintained
at −0.3. The Poisson’s ratio of pattern type 3 decreased overall, with the absolute value
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of the Poisson’s ratio increasing from −0.452 (2.5%) to −0.6 (15%) and converging to
−0.457 (20%). When sRTV and rRTV were used, respectively, in pattern type 1 to measure
the Poisson’s ratio with strain dependency, the Poisson’s ratio had a positive value (an
average of ~0.05), according to the vertical strain in the case of sRTV (Figure S9 in the
Supplementary Materials). Therefore, the spring constant of sRTV for the auxetic effect was
not appropriate, while the moduli of Ag-RTV and rRTV were similar and could provide
auxetic effects (Ag-RTV, 708.2 kPa, and rRTV, 977.1 kPa).
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Figure 3. A 3D-printed negative Poisson’s structure using RTV silicone. (a) Photographs of various
3D-printed negative Poisson’s structures using RTV silicone. Different types of missing-rib structures
for types 1 to 3 with a line width of 0.4 mm. (b) Real images of the RTV negative Poisson’s structure
deformation with various strains (left, 0%; center, 10%; right, 20%). (c) Poisson’s ratio calculation
graph for the various structures.

3.4. Three-Dimensionally Printed Control Frames for Expandable Soft Electronics and
Their Applications

In the context of printing an expandable structure, variable expandable electronics
were enabled by the partially printed conductor (Ag-RTV). Figure 4 shows an example
of an expandable soft electronic device application. Figure 4a,b shows images of the
printed conductor, where Figure 4a shows a non-structured printed resistor and Figure 4b
displays an expandable-structure-based resistor. Figure 4c shows the resistance change
of two different resistors when the strain was applied from 0 to 100% (non-structured is
in red; expandable-structured is in blue). Regarding non-structured resistors, resistance
continued to increase with the strain. After 60% of strain, a rapid increase in resistance
was observed owing to the decreased percolation path of the Ag flakes as the polymer
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was stretched. Regarding the expandable-structured resistor, the change in resistance was
insignificant despite 100% strain being applied. Furthermore, the stretch deformation
of the polymer could be reduced. Figure 4d shows a photograph (left) and a magnified
view (right) of a capacitor-type strain sensor, based on a structure wherein RTV forms the
structure on the x-axis and Ag-RTV forms the electrode on the y-axis. Figure 4e presents
the measured capacitance values of the sensor under different applied pressures. The
capacitance remained at 6 pF under no external force but decreased to approximately
4 pF when pressed with one finger and decreased to 2 pF when pressed with two fingers,
demonstrating the sensor’s variable pressure sensitivity.
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Poisson’s auxetic sample using RTV and Ag-RTV silicone. (c) Plot of resistance change (R/R0) versus
strain (non-structured is in red; auxetic-structured is in blue). (d) Real images of an auxetic-structured
capacitor-typed strain sensor array (full view, left; enlarged view, right). (e) Capacitance changes of
sensor arrays, depending on the pressure. (f) Image of an auxetic-structured capacitor-type strain
sensor array with conformal contact on the knee. (g) Capacitance changes of the sensor arrays
according to the various knee angles. (h) Photographs of a 3D-printed auxetic-structured resistor-
based heater on the fabric. (i) Temperature variations of a 3D-printed resistive heater measured by an
infrared (IR) camera (heater off, left; heater on, right).
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Figure 4f shows an image of an electronic device attached to the knee to measure
the capacitance change according to the strain. Figure 4g shows the data measuring the
capacitance change according to the leg angle change after attachment. A capacitance of
approximately 6 pF was maintained when the leg was not moved, while a capacitance of
approximately 20 pF was confirmed when the leg angle was changed by approximately 45◦.
A large change in the leg angle of approximately 90◦ resulted in an increased capacitance
of 20 pF. The distance between the two electrodes forming the capacitor and the conformal
contact of the fabric increased according to the knee movement, which increased the
capacitance. Figure 4h shows a photograph of an expandable-structured resistor-type
heater. The expandable structure could function stably as an electronic device because of
the negligible change in resistance to 100% strain. Figure 4i shows the IR image when the
heater is turned on/off. When the heater is off (left), the overall temperature is between
20 and 30 ◦C. However, when the heater was operated under 1 MHz and 30 Vpp conditions
(right), the overall temperature of the heater was between 50 and 60 ◦C, with a local
temperature of up to 80 ◦C. This confirmed the operability and applicability of deformable
electronics using the 3D-printing fabrication method. In addition, the inductor, which is an
essential passive electronic component for wireless operation or wireless power transfer,
was printed using Ag-RTV and sRTV and showed a resistance of 128 Ω and an inductance
of 73.5 µH at 1 MHz, with 0.136 Q (Figure S14 in the Supplementary Materials).

3.5. Fully 3D-Printed Soft Actuators Embedded in Expandable Soft Electronics

Figure 5 shows the fabrication process and presents various application demonstra-
tions highlighting the potential of one-step manufacturing to simultaneously create a
3D-structured soft actuator and a soft electronic device. Figure 5a shows an exploded
view schematic of the 3D-printed actuators and sensors, which have been integrated into
the strain limiter of the soft actuator. The pneumatic actuator was fabricated using sRTV,
which is highly deformable, with a thick bottom designed to function as a strain limiter.
Figure S3 shows other possible structures for soft pneumatic actuators, such as a triangular
(1-channel) or hexagonal (3-channel) structure. For the control frame, deformation occurs
in a controlled direction using rRTV, while for the soft electronics, Ag-RTV was used to
facilitate electronic operation. Figure 5b shows a photograph of an actuator integrated
with electronics fabricated using a 3D printing method. Two types of electronics were
integrated into the actuator: a non-structured, resistor-based strain sensor composed of
Ag-RTV (left) and an expandable-structured, deformation-resistive electrode composed of
rRTV and Ag-RTV (right). Figure 5c,d displays the resistance changes in the embedded
electronics during actuator operation.

Figure 5c shows data from the non-structured, resistor-based strain sensor, revealing a
1.1-fold increase in resistance during pneumatic actuation, compared to initial resistance.
This confirms the sensor’s potential for use as a strain sensor. The data also show that
the resistance increases as the actuation is repeated and a strain beyond the elastic range
of Ag-sRTV is applied. In the same structured actuator, when pneumatic actuation was
applied, a similar bending angle showed about a 20% strain variation [60]. In Figure S13
in the Supplementary Materials, a sharp increase in resistance is observed at a 20% strain
for the non-structured conductor. Microscopically, as seen in the SEM image of Figure S8
in the Supplementary Materials, the Ag flakes align in the direction of the strain, which
creates gaps between them and leads to a decrease in the percolation path. This result
causes a sharp increase in resistance when the actuation occurs. Figure 5d shows data
measuring the change in electrode resistance during the pneumatic deformation of the
actuator when embedded with an expandable-structured electrode. Furthermore, the
electrode’s resistance did not change, even after multiple actuations were performed. This
demonstrates the potential use of the electrode as an electronic device by structurally
suppressing the material’s intrinsic resistance. Figure 5e shows a photograph of a surface-
mounted device (SMD) chip being operated through the embedded stretchable conductor
of a fabricated SOF actuator. Therefore, various and complex structures can be printed for
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specific uses and can be extended to potential fields of application via connectivity with
external devices, such as SMD chips.
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Figure 5. Fully 3D-printed perceptive soft actuator and electronics, via RTV and Ag-RTV. (a) Scheme
of the inner structure of a 3D-printed soft actuator using hyper-elastic RTV and Ag-RTV. (b) Scheme
of the exploded view of soft actuators and embedded electronics with various structures. (c) Real
images of micro-LED operation using a 3D-printed soft actuator and electronics. (d) Resistance
change (R/R0) of non-structured resistor-based strain sensors versus the actuation of a 3D-printed
soft actuator. (e) Resistance change (R/R0) of an auxetic-structured resistor-based strain sensor versus
the actuation of a 3D-printed soft actuator.

4. Discussion

In this study, we proposed three types of 3D printable ink materials for expandable
structural electronics, with three types of missing-rib structures. Firstly, for 3D printable
materials, Ag-RTV is used as a stretchable conductor, with high-strength elastic rRTV as
a control frame and hyper-elastic sRTV as an object frame for the pneumatic actuator in
this case. Secondly, for the structures, other patterns possessing negative Poisson’s ratio
can be used in expandable electronics to prevent changes in the cross-section area of the
conductor, which may result from the opening of cells in the pattern [47]. Patterns that
possess a negative Poisson’s ratio, such as re-entrant, rotational, chiral, and crumpled
sheets, can be used for this purpose. The missing-rib structure was chosen because it
divided the pattern into rows and columns and allowed for its systematic design and
modification [61–64]. We demonstrated the fabrication of expandable structural electronics
via multi-material printing, such as capacitor-type strain sensors and resistor-type heaters.
Our one-step 3D-printing process simplified the manufacturing system and enabled the
realization of soft actuators that can be embedded in various structured electronics. Our
findings show the potential of these 3D printable ink materials and expandable structures
for the development of soft and stretchable electronics.

5. Conclusions
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- A stereographically designed missing-rib-structured tactile sensor, strain sen-
sor, heater, and monolithically integrated sensors/interconnection embedded
pneumatic soft actuator were demonstrated.
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