Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymeric Solutions
2.3. Electrospinning Process
2.4. Morphology and Diameter Determination
2.5. Infrared Spectroscopy
2.6. Thermal Properties
2.7. Mechanical Properties
2.8. Swelling Ratio of Nanofiber Hydrogels
2.9. Electroactive Response
3. Results and Discussion
3.1. Morphology and Diameter Distribution of Chitosan/PVA Nanofibers
3.2. FTIR Spectroscopy
3.3. Thermal Properties
3.4. Mechanical Properties
3.5. Swelling Ratio of Chitosan/PVA Nanofiber Hydrogels
3.6. Electroactive Response of the Nanofiber Hydrogels
3.6.1. Influence of Chitosan Content on the Speed Displacement at Different pH
3.6.2. Determination of Free Amine (−NH2) by Spectra Deconvolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bar-Cohen, Y. Biomimetics: Biologically Inspired Technologies; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Kim, K.J.; Tadokoro, S. Electroactive polymers for robotic applications. Artif. Muscles Sens. 2007, 23, 291. [Google Scholar]
- Kim, J.; Kim, J.W.; Kim, H.C.; Zhai, L.; Ko, H.-U.; Muthoka, R.M. Review of Soft Actuator Materials. Int. J. Precis. Eng. Manuf. 2019, 20, 2221–2241. [Google Scholar] [CrossRef]
- Diller, E.; Pawashe, C.; Floyd, S.; Sitti, M. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int. J. Robot. Res. 2011, 30, 1667–1680. [Google Scholar] [CrossRef]
- Lum, G.Z.; Ye, Z.; Dong, X.; Marvi, H.; Erin, O.; Hu, W.; Sitti, M. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007–E6015. [Google Scholar] [CrossRef]
- Small, W.; Singhal, P.; Wilson, T.S.; Maitland, D.J. Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 2010, 20, 3356–3366. [Google Scholar] [CrossRef] [PubMed]
- Felton, S.M.; Tolley, M.T.; Shin, B.; Onal, C.D.; Demaine, E.D.; Rus, D.; Wood, R.J. Self-folding with shape memory composites. Soft Matter 2013, 9, 7688–7694. [Google Scholar] [CrossRef]
- Wehner, M.; Tolley, M.T.; Mengüç, Y.; Park, Y.-L.; Mozeika, A.; Ding, Y.; Onal, C.D.; Shepherd, R.F.; Whitesides, G.M.; Wood, R.J.; et al. Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics. Soft Robot. 2014, 1, 263–274. [Google Scholar] [CrossRef]
- De Volder, M.; Reynaerts, D. Pneumatic and hydraulic microactuators: A review. J. Micromech. Microeng. 2010, 20, 043001. [Google Scholar] [CrossRef]
- O’halloran, A.; O’malley, F.; McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 2008, 104, 071101. [Google Scholar] [CrossRef]
- Romasanta, L.; Lopez-Manchado, M.; Verdejo, R. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Prog. Polym. Sci. 2015, 51, 188–211. [Google Scholar] [CrossRef]
- Olsen, Z.J.; Kim, K.J. Design and Modeling of a New Biomimetic Soft Robotic Jellyfish Using IPMC-Based Electroactive Polymers. Front. Robot. AI 2019, 6, 112. [Google Scholar] [CrossRef]
- Jung, K.; Koo, J.C.; Nam, J.-D.; Lee, Y.K.; Choi, H.R. Artificial annelid robot driven by soft actuators. Biomimetics 2007, 2, S42. [Google Scholar] [CrossRef]
- Davidson, Z.S.; Shahsavan, H.; Aghakhani, A.; Guo, Y.; Hines, L.; Xia, Y.; Yang, S.; Sitti, M. Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Sci. Adv. 2019, 5, eaay0855. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Palza, H.; Zapata, P.A.; Angulo-Pineda, C. Electroactive Smart Polymers for Biomedical Applications. Materials 2019, 12, 277. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges; SPIE Press: Bellingham, WA, USA, 2004; Volume 136. [Google Scholar]
- Ghosh, T.; Das, T.; Purwar, R. Review of electrospun hydrogel nanofiber system: Synthesis, Properties and Applications. Polym. Eng. Sci. 2021, 61, 1887–1911. [Google Scholar] [CrossRef]
- Ge, G.; Wang, Q.; Zhang, Y.; Alshareef, H.N.; Dong, X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Wiener, C.G.; Hao, J.; Shatas, S.; Weiss, R.; Vogt, B.D. Tough Stretchable Physically-Cross-linked Electrospun Hydrogel Fiber Mats. ACS Appl. Mater. Interfaces 2016, 8, 22774–22779. [Google Scholar] [CrossRef] [PubMed]
- Bernal, R.A.O.; Uspenskaya, M.V.; Olekhnovich, R.O. Biopolymers and its application as electroactive polymers. Proc. Voronezh State Univ. Eng. Technol. 2021, 83, 270–277. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, M.; Dai, W.; Zhou, Y.; Xie, Z.; Liu, K.; Gao, L. Enhancement of Fe(III) to electro-response of starch hydrogel. Colloid Polym. Sci. 2020, 298, 1533–1541. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, H.; Yu, A.; Wen, D. Biodegradable Polylactide/Chitosan Blend Membranes. Biomacromolecules 2006, 7, 1362–1372. [Google Scholar] [CrossRef]
- Altınkaya, E.; Seki, Y.; Çetin, L.; Gürses, B.O.; Özdemir, O.; Sever, K.; Sarıkanat, M. Characterization and analysis of motion mechanism of electroactive chitosan-based actuator. Carbohydr. Polym. 2018, 181, 404–411. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Y.; Kim, J. Electroactive Paper Actuator Made with Chitosan-Cellulose Films: Effect of Acetic Acid. Macromol. Mater. Eng. 2007, 292, 748–753. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Song, L.; Niu, Z.; Cai, L.; Zeng, Q.; Zhang, X.; Dong, H.; Zhao, D.; Zhou, W.; et al. Superfast-Response and Ultrahigh-Power-Density Electromechanical Actuators Based on Hierarchal Carbon Nanotube Electrodes and Chitosan. Nano Lett. 2011, 11, 4636–4641. [Google Scholar] [CrossRef]
- Gautam, L.; Warkar, S.G.; Ahmad, S.I.; Kant, R.; Jain, M. A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polym. Eng. Sci. 2021, 62, 225–246. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Chen, H.-H.; Chang, S.-H.; Ni, T.-S. Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold. J. Biomater. Sci. Polym. Ed. 2012, 24, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Kazeminava, F.; Javanbakht, S.; Nouri, M.; Adibkia, K.; Ganbarov, K.; Yousefi, M.; Ahmadi, M.; Gholizadeh, P.; Kafil, H.S. Electrospun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int. J. Biol. Macromol. 2022, 214, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Uyar, T.; Kny, E. (Eds.) Electrospun Materials for Tissue Engineering and Biomedical Applications: Research, Design and Commercialization; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Mitchell, G.R. (Ed.) Electrospinning: Principles, Practice and Possibilities; Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Iacob, A.-T.; Drăgan, M.; Ionescu, O.-M.; Profire, L.; Ficai, A.; Andronescu, E.; Confederat, L.G.; Lupașcu, D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020, 12, 983. [Google Scholar] [CrossRef]
- Miranda, D.O.; Dorneles, M.; Oréfice, R.L. One-step process for the preparation of fast-response soft actuators based on electrospun hybrid hydrogel nanofibers obtained by reactive electrospinning with in situ synthesis of conjugated polymers. Polymer 2020, 200, 122590. [Google Scholar] [CrossRef]
- Ismail, Y.A.; Shin, M.K.; Kim, S.J. A nanofibrous hydrogel templated electrochemical actuator: From single mat to a rolled-up structure. Sens. Actuators B Chem. 2009, 136, 438–443. [Google Scholar] [CrossRef]
- Koosha, M.; Mirzadeh, H. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res. Part A 2015, 103, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Paipitak, K.; Pornpra, T.; Mongkontalang, P.; Techitdheer, W.; Pecharapa, W. Characterization of PVA-Chitosan Nanofibers Prepared by Electrospinning. Procedia Eng. 2011, 8, 101–105. [Google Scholar] [CrossRef]
- Jia, Y.-T.; Gong, J.; Gu, X.-H.; Kim, H.-Y.; Dong, J.; Shen, X.-Y. Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym. 2007, 67, 403–409. [Google Scholar] [CrossRef]
- Anicuta, S.G.; Dobre, L.; Stroescu, M.; Jipa, I. Fourier Transform Infrared (FTIR) spectroscopy for characterization of antimicrobial films containing chitosan. An. Univ. Oradea Fasc. Ecotoxicol. Zooteh. Tehnol. Ind. Aliment. 2010, 2010, 1234–1240. [Google Scholar]
- Mansur, H.; Sadahira, C.M.; Souza, A.N.; Mansur, A. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Yang, J.M.; Su, W.Y.; Leu, T.L.; Yang, M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci. 2004, 236, 39–51. [Google Scholar] [CrossRef]
- Salman, S.; Bakr, N.; Humad, H.T. Section C: Physical Sciences DSC and TGA Properties of PVA Films Filled with Na2S2O3·5H2O Salt. J. Chem. Biol. Phys. Sci. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Nunthanid, J.; Puttipipatkhachorn, S.; Yamamoto, K.; Peck, G.E. Physical Properties and Molecular Behavior of Chitosan Films. Drug Dev. Ind. Pharm. 2001, 27, 143–157. [Google Scholar] [CrossRef]
- Lewandowska, K. Miscibility and physical properties of chitosan and polyacrylamide blends. J. Mol. Liq. 2015, 209, 301–305. [Google Scholar] [CrossRef]
- Çay, A.; Miraftab, M.; Kumbasar, E.P.A. Characterization and swelling performance of physically stabilized electrospun poly(vinyl alcohol)/chitosan nanofibres. Eur. Polym. J. 2014, 61, 253–262. [Google Scholar] [CrossRef]
- Kim, G.-M.; Simon, P.; Kim, J.-S. Electrospun PVA/HAp nanocomposite nanofibers: Biomimetics of mineralized hard tissues at a lower level of complexity. Bioinspiration Biomim. 2008, 3, 046003. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, J.; Fortunati, E.; Atarés, L.; Chiralt, A.; Kenny, J.M. Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocoll. 2014, 35, 463–470. [Google Scholar] [CrossRef]
- Kumar, S.; Koh, J. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef]
- Andrade, J.; González-Martínez, C.; Chiralt, A. The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers 2020, 12, 497. [Google Scholar] [CrossRef]
- Bagherian Far, M.; Ziyadi, H. Fabrication of polyvinyl alcohol/kefiran nanofibers membrane using electrospinning. JPHCS 2016, 4, 211–2018. [Google Scholar]
- Bahrami, S.; Nouri, M. Chitosan-poly(vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties. E-Polymers 2009, 9, 1580–1591. [Google Scholar] [CrossRef]
- Abraham, A.; Soloman, P.; Rejini, V. Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties. Procedia Technol. 2016, 24, 741–748. [Google Scholar] [CrossRef]
- Park, W.H.; Jeong, L.; Yoo, D.I.; Hudson, S. Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 2004, 45, 7151–7157. [Google Scholar] [CrossRef]
- Hang, A.T.; Tae, B.; Park, J.S. Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: Fabrication and characterization. Carbohydr. Polym. 2010, 82, 472–479. [Google Scholar] [CrossRef]
- Duan, B.; Yuan, X.; Zhu, Y.; Zhang, Y.; Li, X.; Zhang, Y.; Yao, K. A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur. Polym. J. 2006, 42, 2013–2022. [Google Scholar] [CrossRef]
- Sorlier, P.; Denuzière, A.; Viton, C.; Domard, A. Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2001, 2, 765–772. [Google Scholar] [CrossRef]
- Shamsudeen, R.K.; Jayakumari, V.G.; Rajeswari, R.; Mukundan, T. Polyelectrolyte hydrogels of chitosan and polyacrylamide: A comparison of electroactive characteristics. Indian J. Eng. Mater. Sci. 2012, 19, 331–337. [Google Scholar]
- Shiga, T.; Kurauchi, T. Deformation of polyelectrolyte gels under the influence of electric field. J. Appl. Polym. Sci. 1990, 39, 2305–2320. [Google Scholar] [CrossRef]
- Shiga, T.; Hirose, Y.; Okada, A.; Kurauchi, T. Bending of poly(vinyl alcohol)–poly(sodium acrylate) composite hydrogel in electric fields. J. Appl. Polym. Sci. 1992, 44, 249–253. [Google Scholar] [CrossRef]
- Shang, J.; Shao, Z.; Chen, X. Electrical Behavior of a Natural Polyelectrolyte Hydrogel: Chitosan/Carboxymethylcellulose Hydrogel. Biomacromolecules 2008, 9, 1208–1213. [Google Scholar] [CrossRef]
- Choudhury, N.A.; Ma, J.; Sahai, Y. High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells. J. Power Sources 2012, 210, 358–365. [Google Scholar] [CrossRef]
- Duarte, M.; Ferreira, M.; Marvão, M.; Rocha, J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef]
- Gupta, K.; Jabrail, F.H. Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydr. Polym. 2006, 66, 43–54. [Google Scholar] [CrossRef]
- Kasaai, M.R. A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr. Polym. 2008, 71, 497–508. [Google Scholar] [CrossRef]
- Branca, C.; D’Angelo, G.; Crupi, C.; Khouzami, K.; Rifici, S.; Ruello, G.; Wanderlingh, U. Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer 2016, 99, 614–622. [Google Scholar] [CrossRef]
- Malek, A.; Abderraouf, G. Synthesis and characterization of the composite material PVA/Chitosan/5% sorbitol with different ratio of chitosan. Int. J. Mech. Mechatron. Eng. 2017, 17, 15–28. [Google Scholar]
Sample | Chitosan (wt.%) | PVA (wt.%) | Mean (µm) | Morphology |
---|---|---|---|---|
Cs-5 | 2.5 | 5 | 0.617 ± 0.1 | High presence of particles and fibers |
Cs-6 | 3 | 5 | 0.539 ± 0.09 | Presence of beads, with a high formation of uniform fibers |
Cs-7 | 3.5 | 5 | 0.523 ± 0.09 | High presence of beads, with a uniform fiber formation |
Cs-8 | 4 | 5 | 0.581 ± 0.1 | Uniform fiber formation |
Sample | Chitosan (wt.%) | PVA (wt.%) | First Mass Loss (%) to 50–158 | Second Mass Loss (%) to 180–375 | Third Mass Loss (%) to 375–530 | First Stage 1st Peak (°C) | First Stage 2nd Peak (°C) | Second Stage 1st Peak (°C) | Second Stage 2nd Peak (°C) | Third Stage (°C) |
---|---|---|---|---|---|---|---|---|---|---|
PVA | - | - | 4 | 90.53 | - | 81 | - | 304 | - | - |
Chit | - | - | 5 | 49.68 | - | 67 | - | 299 | - | - |
Cs-5 | 2.5 | 5 | 10.2 | 59.18 | 13.06 | 56.6 | 113.4 | 270.5 | 310 | 431 |
Cs-6 | 3 | 5 | 8.7 | 59.66 | 14 | 56 | 111.21 | 267.0 | 310 | 430 |
Cs-7 | 3.5 | 5 | 8 | 60.4 | 14.98 | 56.3 | 106.6 | 265.8 | 309 | 428 |
Cs-8 | 4 | 5 | 11.1 | 59.1 | 15 | 55.95 | 120.5 | 263.9 | - | 428 |
Sample | Chitosan (wt.%) | PVA (wt.%) | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|
Cs-5 | 2.5 | 5 | 299.7 ± 7.65 | 3.84 ± 0.39 | 3.37 ± 0.29 |
Cs-6 | 3 | 5 | 402.8 ± 4.07 | 4.27 ± 0.59 | 3.24 ± 0.46 |
Cs-7 | 3.5 | 5 | 439.35 ± 10.45 | 6.42 ± 0.8 | 5.92 ± 0.69 |
Cs-8 | 4 | 5 | 648.45 ± 12.04 | 2.82 ± 0.27 | 3.12 ± 0.42 |
Sample | Hydrogen Bond Types | Abbreviation | Wavenumber/cm−1 | Relative Strength/% | |
---|---|---|---|---|---|
Cs-5 | Primary ammonium | I | −NH+3 | ~3100 cm−1 | 6.31 |
Intermolecular hydrogen bond | II | OH…ether O | ~3200 cm−1 | 13.14 | |
Amide | III | −CONH− | ~3240 cm−1 | 15.11 | |
Intermolecular association | IV | N2−H1…O5/N2−H2…O1 | ~3335 cm−1 | 43.90 | |
Free amine | V | −NH2 | ~3408 cm−1 | 3.66 | |
Multimer (Intermolecular association) | VI | O6H…N2* | ~3462 cm−1 | 16.48 | |
Free hydroxyl | VII | −OH | ~3580 cm−1 | 1.36 | |
Cs-6 | Primary ammonium | I | −NH+3 | ~3100 cm−1 | 4.23 |
Intermolecular hydrogen bond | II | OH…ether O | ~3200 cm−1 | 17.30 | |
Amide | III | −CONH− | ~3240 cm−1 | 13.64 | |
Intermolecular association | IV | N2−H1…O5/N2−H2…O1 | ~3335 cm−1 | 42.91 | |
Free amine | V | −NH2 | ~3408 cm−1 | 3.79 | |
Multimer (Intermolecular association) | VI | O6H…N2* | ~3462 cm−1 | 17.01 | |
Free hydroxyl | VII | −OH | ~3580 cm−1 | 1.08 | |
Cs-7 | Primary ammonium | I | −NH+3 | ~3100 cm−1 | 5.54 |
Intermolecular hydrogen bond | II | OH…ether O | ~3200 cm−1 | 15.72 | |
Amide | III | −CONH− | ~3240 cm−1 | 14.54 | |
Intermolecular association | IV | N2−H1…O5/N2−H2…O1 | ~3335 cm−1 | 41.62 | |
Free amine | V | −NH2 | ~3408 cm−1 | 4.29 | |
Multimer (Intermolecular association) | VI | O6H…N2* | ~3462 cm−1 | 16.95 | |
Free hydroxyl | VII | −OH | ~3580 cm−1 | 1.21 | |
Cs-8 | Primary ammonium | I | −NH+3 | ~3100 cm−1 | 5.94 |
Intermolecular hydrogen bond | II | OH…ether O | ~3200 cm−1 | 16.67 | |
Amide | III | −CONH− | ~3240 cm−1 | 14.85 | |
Intermolecular association | IV | N2−H1…O5/N2−H2…O1 | ~3335 cm−1 | 39.15 | |
Free amine | V | −NH2 | ~3408 cm−1 | 4.59 | |
Multimer (Intermolecular association) | VI | O6H…N2* | ~3462 cm−1 | 17.82 | |
Free hydroxyl | VII | −OH | ~3580 cm−1 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olvera Bernal, R.A.; Olekhnovich, R.O.; Uspenskaya, M.V. Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators. Polymers 2023, 15, 2037. https://doi.org/10.3390/polym15092037
Olvera Bernal RA, Olekhnovich RO, Uspenskaya MV. Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators. Polymers. 2023; 15(9):2037. https://doi.org/10.3390/polym15092037
Chicago/Turabian StyleOlvera Bernal, Rigel Antonio, Roman Olegovich Olekhnovich, and Mayya Valerievna Uspenskaya. 2023. "Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators" Polymers 15, no. 9: 2037. https://doi.org/10.3390/polym15092037
APA StyleOlvera Bernal, R. A., Olekhnovich, R. O., & Uspenskaya, M. V. (2023). Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators. Polymers, 15(9), 2037. https://doi.org/10.3390/polym15092037