Experimental Study on Humidification Coagulation and Removal of Fine Particles Using an Electrostatic Precipitator
Abstract
:1. Introduction
2. Experimental Principle and Device
2.1. Experimental Facility
2.2. Measuring Technique
2.3. Experimental Materials
3. Results and Discussion
3.1. Particle Size Distribution of Coal Dust
3.2. Morphology Analysis of Coal Dust
3.3. Influence of Humidification on Dust Coagulation
3.3.1. Influence of Coagulant Types on Dust Coagulation
3.3.2. Influence of Water Vapor Humidification on Dust Coagulation
3.3.3. Synergistic Effect of Water Vapor and PG on Dust Coagulation
3.3.4. Synergistic Effect of Water Vapor and PAM on Dust Coagulation
3.4. Influence of Water Vapor Humidification and Coagulation on Dust Removal Efficiency
3.4.1. Influence of Coagulant Type on Dust Removal Efficiency
3.4.2. Synergistic Effect of Water Vapor and PG on Dust Removal Efficiency
3.4.3. Synergistic Effect of Water Vapor and PAM on Dust Removal Efficiency
4. Conclusions
- The addition of a chemical coagulant can promote the removal of fine particles from coal combustion. After adding the coagulant, the median diameter of dust increases, and large particles increase. The coagulation effects of the four coagulants used in the experiment are PG, CMC, PAM, and PAC from the strongest to weakest, and the corresponding removal efficiencies are 96.42%, 95.73%, 94.34%, and 93.28%, respectively.
- Spraying water vapor for humidification can promote the coagulation and thickening of dust. When the injection rate of water vapor is 0 kg/h, the median diameter of coal-fired dust is 28.19 μm. When the water vapor injection rate is 3.2 kg/h, the median diameter of coal-fired dust is 36.45 μm.
- The synergistic effect of chemical coagulant and water vapor can enhance the coagulation effect. When 2.5 kg/h water vapor and 1.0 × 10−2 g/L PG synergize, the removal efficiency of coal-fired dust can reach 98.17%. When 3.2 kg/h water vapor and 1.0 × 10−2 g/L PAM synergize, the removal efficiency of coal-fired dust can reach 96.68%.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
d | Particle diameter |
D10 | Diameter when the cumulative distribution of dust is 10% |
D50 | Diameter when the cumulative distribution of dust is 50% |
D90 | Diameter when the cumulative distribution of dust is 90% |
References
- Guo, J. Research on Key Issues of Ultra Low Emission Transformation. Energy Conserv. Environ. Prot. 2023, 1, 74–76. [Google Scholar]
- Junping, P.; Xiuli, T.; Hao, L. Application and research progress of flue gas integrated ultra-low emission technology. Resour. Conserv. Environ. Prot. 2022, 9, 1–4. [Google Scholar]
- Dong, R.; Guo, Z.; Zhang, K. Study on the scaling problem in the clean smoke chamber of the dust collector in coal-fired power plants after ultra-low emission transformation. Boil. Technol. 2022, 53, 18–23. [Google Scholar]
- Qian, L.; Shi, Y.; Xu, Z. Study on the Formulation and Implementation Impact of Mandatory Local Standards for Coal-fired Power Plants in Zhejiang Province. Environ. Pollut. Prev. 2020, 42, 640–643. [Google Scholar]
- Linak, W.P.; Srivastava, R.K.; Wendt, J.O.L. Sorbent Capture of Nickel, Lead, and Cadmium in a Laboratory Swirl Flame Incinerator, 1995-1-1, 1995; Elsevier Science Publ Co., Inc.: Amsterdam, The Netherlands, 1995; pp. 241–250. [Google Scholar]
- Durham, M.D. A Special Issue from the U.S. EPA/DOE/EPRI Combined Power Plant Air Pollutant Control Symposium: The Mega Symposium and the A&WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control. J. Air Waste Manag. 2002, 52, 893. [Google Scholar]
- Hogg, C.R. Characterization of Airborne Particles and Droplets: Relation to Amount of Airborne Dust and Dust Collection Efficiency. Part. Part. Syst. Charact. Meas. Descr. Part. Prop. Behav. Powders Other Disperse Syst. 2002, 19, 38–46. [Google Scholar]
- Baldrey, K.E. Advanced Flue Gas Conditioning As a Retrofit Upgrade to Enhance PM Collection from Coal-Fired Electric Utility Boilers; ADA Environmental Solutions, LLC (US): Greenwood Village, CO, USA, 2003. [Google Scholar]
- Wei, F.; Zhang, J.; Wang, C.; Chuguang, Z. Research progress in promoting agglomeration of ultrafine particles during coal combustion. Coal Convers. 2003, 3, 27–31. [Google Scholar]
- Wei, F.; Zhang, J.; Zheng, C. Study on the formation mechanism of fine particles during pulverized coal combustion. Environ. Pollut. Control. Technol. Equip. 2004, 5, 6–10. [Google Scholar]
- Zhang, J.; Wei, F.; Zhao, Y. PM_(2.5) and PM_(10) Experimental study on one-dimensional combustion of discharged furnace coal. J. Eng. Thermophys. 2005, s1, 257–260. [Google Scholar]
- Wei, F.; Zhang, J.; Zheng, C. Simulation Study on Coal-fired Ultrafine Particle Agglomeration. J. Eng. Thermophys. 2005, s1, 515–518. [Google Scholar]
- Chen, J.; Zhang, J.; Wei, F. Model of coal-burning ultrafine particles spray agglomeration. J. Coal 2005, 5, 90–94. [Google Scholar]
- Zhao, Y.; Wei, F. Experimental Study on the Agglomeration Promotion Mechanism of Ultrafine Particles in Coal Combustion. J. Chem. Eng. 2007, 58, 2876–2881. [Google Scholar]
- Rajniak, P.; Mancinelli, C.; Chern, R.T.; Stepanek, F.; Farber, L.; Hill, B.T. Experimental study of wet granulation in fluidized bed: Impact of the binder properties on the granule morphology—ScienceDirect. Int. J. Pharm. 2007, 334, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Yang, L.; Yan, J.; Bao, J.; Shen, X. Experimental investigation on removal of coal-fired fine particles by a condensation scrubber. Chem. Eng. Process. Process Intensif. 2009, 48, 1353–1360. [Google Scholar] [CrossRef]
- Bao, J.; Yang, L.; Yan, J. Experimental Study on Demercurization Performance of Wet Flue Gas Desulfurization System. Chin. J. Chem. 2010, 27, 2242–2248. [Google Scholar] [CrossRef]
- Forbes, E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques. Int. J. Miner. Process. 2011, 99, 1–10. [Google Scholar] [CrossRef]
- Balakin, B.V.; Kutsenko, K.V.; Lavrukhin, A.A.; Kosinski, P. The collision efficiency of liquid bridge agglomeration. Chem. Eng. Sci. 2015, 137, 590–600. [Google Scholar] [CrossRef]
- Balakin, B.V.; Shamsutdinova, G.; Kosinski, P. Agglomeration of solid particles by liquid bridge flocculants: Pragmatic modelling. Chem. Eng. Sci. 2015, 122, 173–181. [Google Scholar] [CrossRef]
- Bin, H.; Yi, Y.; Liang, C.; Yuang, Z.; Roszak, S.; Yang, L. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators. Powder Technol. 2018, 335, 186–194. [Google Scholar] [CrossRef]
- Hu, B.; Yang, Y.; Lei, Z.; Ao, S.; Cai, L.; Linjun, Y.; Roszak, S. Experimental and DFT studies of PM2.5 removal by chemical agglomeration. Fuel 2018, 212, 27–33. [Google Scholar]
- Jaworek, A.; Marchewicz, A.; Sobczyk, A.T.; Krupa, A.; Czech, T. Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission. Prog. Energy Combust. 2018, 67, 206–233. [Google Scholar] [CrossRef]
- Sadighzadeh, A.; Mohammadpour, H.; Omidi, L.; Jafari, M.J. Application of acoustic agglomeration for removing sulfuric acid mist from air stream. Sustain. Environ. Res. 2018, 28, 20–24. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, W.; Wu, H.; Shen, A.; Yuan, Z.; Yang, L. Investigation on the relationship of droplet atomization performance and fine particle abatement during the chemical agglomeration process. Fuel 2019, 245, 65–77. [Google Scholar] [CrossRef]
- Li, R.; Li, C.; Zhuang, J.; Zhu, H.; Fang, L.; Sun, D. Mechanistic Influence of Chemical Agglomeration Agents on Removal of Inhalable Particles from Coal Combustion. Acs. Omega 2020, 5, 25906–25912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, S. A method for humidifying fine particles of coking coal: Agglomeration characteristics and dust dynamics analysis. Powder Technol. 2021, 394, 1039–1049. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Liu, X.; Wu, H.; Guan, Q.; Zeng, G.; Yang, L. Improving the electrostatic precipitation removal efficiency on fine particles by adding wetting agent during the chemical agglomeration process. Fuel Process. Technol. 2022, 230, 107202. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, J. Research progress in pectin polysaccharides. Food Mach. 2004, 6, 4. [Google Scholar]
- Yang, B.; Sun, B. Research progress in the synthesis of polyacrylamide. Contemp. Chem. Ind. 2017, 46, 286–288. [Google Scholar]
- Wu, S.; Ke, P.; Huang, J. Research progress in sodium carboxymethyl cellulose. Chem. Eng. Equip. 2018, 10, 246–247. [Google Scholar]
- Liu, Y.; Hu, B.; Zhou, L.; Jiang, Y.; Yang, L. Improving the Removal of Fine Particles with an Electrostatic Precipitator by Chemical Agglomeration. Energy Fuel 2016, 30, 8441–8447. [Google Scholar] [CrossRef]
Name | Experimental Parameters |
---|---|
Gas flow (m3/h) | 10,000 |
Water pump motor power (kW) | 7.5 |
Fan motor power (kW) | 15 |
Working voltage of ESP (kV) | 45 |
Polar matching | BS barbed wire, 480C |
Electric field wind speed (m/s) | 1.1 |
Number of electric field channels | 4 |
Relative humidity of air (%) | 20~60 |
Dust collector size (length × width × height) (m) | 2.8 × 1.4 × 5.8 |
Duct diameter (mm) | 500 |
Gas temperature (°C) | 18~25 |
Inlet dust content (mg/m3) | 120 |
Reagent Name | Molecular Weight | Characteristics | Specifications | Manufacturer |
---|---|---|---|---|
Pectin (PG) | 1 × 104~4 × 105 [29] | natural organic polysaccharide | Analytically pure | Inner MongoliaFufeng Biotechnology Co., Ltd. Zhalantun City, Inner Mongolia, China |
Non ionic polyacrylamide (PAM) | 1.2 × 107~1.5 × 107 [30] | Organic polysaccharide | Analytically pure | Tianjin Kemio Chemical Reagent Co., Ltd. Tianjin, China |
Sodium carboxymethyl cellulose (CMC) | 2.42 × 106 [31] | natural organic polysaccharide | Analytically pure | Tianjin Kemio Chemical Reagent Co., Ltd. Tianjin, China |
Polyaluminum Chloride (PAC) | 1500~3000 [32] | inorganic polymer flocculant | Analytically pure | Tianjin Kemio Chemical Reagent Co., Ltd. Tianjin, China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Zhai, X.; Han, Y.; Chen, H.; Li, H. Experimental Study on Humidification Coagulation and Removal of Fine Particles Using an Electrostatic Precipitator. Polymers 2023, 15, 2065. https://doi.org/10.3390/polym15092065
Xiao L, Zhai X, Han Y, Chen H, Li H. Experimental Study on Humidification Coagulation and Removal of Fine Particles Using an Electrostatic Precipitator. Polymers. 2023; 15(9):2065. https://doi.org/10.3390/polym15092065
Chicago/Turabian StyleXiao, Lichun, Xiaoyu Zhai, Yingying Han, Hongrui Chen, and Hengtian Li. 2023. "Experimental Study on Humidification Coagulation and Removal of Fine Particles Using an Electrostatic Precipitator" Polymers 15, no. 9: 2065. https://doi.org/10.3390/polym15092065
APA StyleXiao, L., Zhai, X., Han, Y., Chen, H., & Li, H. (2023). Experimental Study on Humidification Coagulation and Removal of Fine Particles Using an Electrostatic Precipitator. Polymers, 15(9), 2065. https://doi.org/10.3390/polym15092065