Hydrocarbon-Based Composite Membrane Using LCP-Nonwoven Fabrics for Durable Proton Exchange Membrane Water Electrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the SPAES50 Copolymer
2.3. Preparation of the SPAES/LCP Composite Membrane
2.4. Characterization of the Membranes
2.5. Preparation of the Membrane Electrode Assemblies (MEAs)
2.6. Electrochemical Measurements of PEMWE
3. Results and Discussion
3.1. Morphology
3.2. Water Uptake and Dimensional Change
3.3. Mechanical Properties
3.4. Proton Conductivity
3.5. Electrochemical Performance of PEMWE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shiva Kumar, S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Bareiß, K.; de la Rua, C.; Möckl, M.; Hamacher, T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Appl. Energy 2019, 237, 862–872. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Feng, Q.; Yuan, X.Z.; Liu, G.; Wei, B.; Zhang, Z.; Li, H.; Wang, H. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources 2017, 366, 33–55. [Google Scholar] [CrossRef]
- Shirvanian, P.; van Berkel, F. Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review. Electrochem. Commun. 2020, 114, 106704. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, P.K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem. Rev. 2012, 112, 2780–2832. [Google Scholar] [CrossRef]
- Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 2007, 169, 221–238. [Google Scholar] [CrossRef]
- Jung, M.; Lee, W.; Nambi Krishnan, N.; Kim, S.; Gupta, G.; Komsiyska, L.; Harms, C.; Kwon, Y.; Henkensmeier, D. Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries. Appl. Surf. Sci. 2018, 450, 301–311. [Google Scholar] [CrossRef]
- Jia, W.; Tang, B.; Wu, P. Novel Composite Proton Exchange Membrane with Connected Long-Range Ionic Nanochannels Constructed via Exfoliated Nafion–Boron Nitride Nanocomposite. ACS Appl. Mater. Interfaces 2017, 9, 14791–14800. [Google Scholar] [CrossRef]
- Smith, D.W.; Oladoyinbo, F.O.; Mortimore, W.A.; Colquhoun, H.M.; Thomassen, M.S.; Ødegård, A.; Guillet, N.; Mayousse, E.; Klicpera, T.; Hayes, W. A Microblock Ionomer in Proton Exchange Membrane Electrolysis for the Production of High Purity Hydrogen. Macromolecules 2013, 46, 1504–1511. [Google Scholar] [CrossRef]
- Choi, S.; Shin, S.-H.; Lee, D.-H.; Doo, G.; Lee, D.W.; Hyun, J.; Yang, S.H.; Man Yu, D.; Lee, J.Y.; Kim, H.-T. Oligomeric chain extender-derived poly(p-phenylene)-based multi-block polymer membranes for a wide operating current density range in polymer electrolyte membrane water electrolysis. J. Power Sources 2022, 526, 231146. [Google Scholar] [CrossRef]
- Gahlot, S.; Kulshrestha, V. Dramatic Improvement in Water Retention and Proton Conductivity in Electrically Aligned Functionalized CNT/SPEEK Nanohybrid PEM. ACS Appl. Mater. Interfaces 2015, 7, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Asensio, J.A.; Sánchez, E.M.; Gómez-Romero, P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 2010, 39, 3210–3239. [Google Scholar] [CrossRef] [PubMed]
- Makinouchi, T.; Tanaka, M.; Kawakami, H. Improvement in characteristics of a Nafion membrane by proton conductive nanofibers for fuel cell applications. J. Membr. Sci. 2017, 530, 65–72. [Google Scholar] [CrossRef]
- Ahn, S.M.; Park, J.E.; Jang, G.Y.; Jeong, H.Y.; Yu, D.M.; Jang, J.-K.; Lee, J.-C.; Cho, Y.-H.; Kim, T.-H. Highly Sulfonated Aromatic Graft Polymer with Very High Proton Conductivity and Low Hydrogen Permeability for Water Electrolysis. ACS Energy Lett. 2022, 7, 4427–4435. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, S.Y.; Hwang, D.S.; Shin, D.W.; Cho, D.H.; Lee, K.H.; Kim, T.-W.; Kim, T.-W.; Lee, M.; Kim, D.-S.; et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483. [Google Scholar] [CrossRef]
- Bae, B.; Hoshi, T.; Miyatake, K.; Watanabe, M. Sulfonated Block Poly(arylene ether sulfone) Membranes for Fuel Cell Applications via Oligomeric Sulfonation. Macromolecules 2011, 44, 3884–3892. [Google Scholar] [CrossRef]
- Jung, M.S.; Kim, T.-H.; Yoon, Y.J.; Kang, C.G.; Yu, D.M.; Lee, J.Y.; Kim, H.-J.; Hong, Y.T. Sulfonated poly(arylene sulfone) multiblock copolymers for proton exchange membrane fuel cells. J. Membr. Sci. 2014, 459, 72–85. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, J.; Han, J.; Kim, K.; Park, S.; Kim, S.; Park, H.S.; Cho, Y.-H.; Lee, J.-C.; Sung, Y.-E. High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer. J. Membr. Sci. 2021, 620, 118871. [Google Scholar] [CrossRef]
- Han, S.-Y.; Yu, D.M.; Mo, Y.-H.; Ahn, S.M.; Lee, J.Y.; Kim, T.-H.; Yoon, S.J.; Hong, S.; Hong, Y.T.; So, S. Ion exchange capacity controlled biphenol-based sulfonated poly(arylene ether sulfone) for polymer electrolyte membrane water electrolyzers: Comparison of random and multi-block copolymers. J. Membr. Sci. 2021, 634, 119370. [Google Scholar] [CrossRef]
- Shin, D.W.; Guiver, M.D.; Lee, Y.M. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chem. Rev. 2017, 117, 4759–4805. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Mistri, E.A.; Banerjee, S.; Komber, H.; Voit, B. Highly Fluorinated Sulfonated Poly(arylene ether sulfone) Copolymers: Synthesis and Evaluation of Proton Exchange Membrane Properties. Ind. Eng. Chem. Res. 2013, 52, 2772–2783. [Google Scholar] [CrossRef]
- Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. [Google Scholar] [CrossRef]
- Ko, T.; Kim, K.; Jung, B.-K.; Cha, S.-H.; Kim, S.-K.; Lee, J.-C. Cross-Linked Sulfonated Poly(arylene ether sulfone) Membranes Formed by in Situ Casting and Click Reaction for Applications in Fuel Cells. Macromolecules 2015, 48, 1104–1114. [Google Scholar] [CrossRef]
- Yoon, K.R.; Lee, K.A.; Jo, S.; Yook, S.H.; Lee, K.Y.; Kim, I.-D.; Kim, J.Y. Mussel-Inspired Polydopamine-Treated Reinforced Composite Membranes with Self-Supported CeOx Radical Scavengers for Highly Stable PEM Fuel Cells. Adv. Funct. Mater. 2019, 29, 1806929. [Google Scholar] [CrossRef]
- Lu, S.; Xiu, R.; Xu, X.; Liang, D.; Wang, H.; Xiang, Y. Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)–poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 2014, 464, 1–7. [Google Scholar] [CrossRef]
- Yu, D.M.; Yoon, S.; Kim, T.-H.; Lee, J.Y.; Lee, J.; Hong, Y.T. Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. J. Membr. Sci. 2013, 446, 212–219. [Google Scholar] [CrossRef]
- Ayers, K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes. Curr. Opin. Chem. Eng. 2021, 33, 100719. [Google Scholar] [CrossRef]
- Zhang, X.; Trieu, D.; Zheng, D.; Ji, W.; Qu, H.; Ding, T.; Qiu, D.; Qu, D. Nafion/PTFE Composite Membranes for a High Temperature PEM Fuel Cell Application. Ind. Eng. Chem. Res. 2021, 60, 11086–11094. [Google Scholar] [CrossRef]
- Hong, S.J.; Yoon, S.J.; Kim, T.-H.; Lee, J.Y.; Oh, S.-G.; Hong, Y.T.; So, S.; Yu, D.M. Alcohol-Treated Porous PTFE Substrate for the Penetration of PTFE-Incompatible Hydrocarbon-Based Ionomer Solutions. Langmuir 2021, 37, 3694–3701. [Google Scholar] [CrossRef]
- Hong, S.J.; Jung, H.Y.; Yoon, S.J.; Oh, K.-H.; Oh, S.-G.; Hong, Y.T.; Yu, D.M.; So, S. Constrained hydrocarbon-based ionomers in porous Poly(tetrafluoroethylene) supports for enhanced durability of polymer electrolyte membrane fuel cells and water electrolyzers. J. Power Sources 2022, 551, 232221. [Google Scholar] [CrossRef]
- Noh, Y.S.; Jeong, H.Y.; Yoon, S.J.; Kim, H.-J.; Hong, Y.T.; Choi, J.; So, S.; Yu, D.M. Multilayered hydrocarbon ionomer/PTFE composite electrolytes with enhanced performance for energy conversion devices. Int. J. Hydrogen Energy 2023, 48, 5288–5300. [Google Scholar] [CrossRef]
- Yu, D.M.; Yoon, K.; Yoon, Y.J.; Kim, T.-H.; Lee, J.Y.; Hong, Y.T. Fabrication and Properties of Reinforced Membranes Based on Sulfonated Poly(arylene ether sulfone) Copolymers for Proton-Exchange Membrane Fuel Cells. Macromol. Chem. Phys. 2012, 213, 839–846. [Google Scholar] [CrossRef]
- Wiles, K.B.; Wang, F.; McGrath, J.E. Directly copolymerized poly(arylene sulfide sulfone) disulfonated copolymers for PEM-based fuel cell systems. I. Synthesis and characterization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 2964–2976. [Google Scholar] [CrossRef]
- Harrison, W.L.; Wang, F.; Mecham, J.B.; Bhanu, V.A.; Hill, M.; Kim, Y.S.; McGrath, J.E. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 2264–2276. [Google Scholar] [CrossRef]
- Park, J.-y.; Kim, T.-H.; Kim, H.J.; Choi, J.-H.; Hong, Y.T. Crosslinked sulfonated poly(arylene ether sulfone) membranes for fuel cell application. Int. J. Hydrogen Energy 2012, 37, 2603–2613. [Google Scholar] [CrossRef]
- Ko, H.-n.; Yu, D.M.; Choi, J.-H.; Kim, H.-J.; Hong, Y.T. Synthesis and characterization of intermolecular ionic cross-linked sulfonated poly(arylene ether sulfone)s for direct methanol fuel cells. J. Membr. Sci. 2012, 390–391, 226–234. [Google Scholar] [CrossRef]
- Zavorotnaya, U.M.; Ponomarev, I.I.; Volkova, Y.A.; Modestov, A.D.; Andreev, V.N.; Privalov, A.F.; Vogel, M.; Sinitsyn, V.V. Preparation and Study of Sulfonated Co-Polynaphthoyleneimide Proton-Exchange Membrane for a H2/Air Fuel Cell. Materials 2020, 13, 5297. [Google Scholar] [CrossRef]
- Soboleva, T.; Xie, Z.; Shi, Z.; Tsang, E.; Navessin, T.; Holdcroft, S. Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. J. Electroanal. Chem. 2008, 622, 145–152. [Google Scholar] [CrossRef]
- Kang, S.H.; Jang, J.-K.; Jeong, H.Y.; So, S.; Hong, S.-K.; Hong, Y.T.; Yoon, S.J.; Yu, D.M. Polyacrylonitrile/Phosphazene Composite-Based Heat-Resistant and Flame-Retardant Separators for Safe Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 2452–2461. [Google Scholar] [CrossRef]
- Yuk, S.; Yuk, J.; Kim, T.-H.; Hong, Y.T.; Lee, D.-H.; Hyun, J.; Choi, S.; Doo, G.; Lee, D.W.; Kim, H.-T. External reinforcement of hydrocarbon membranes by a three-dimensional interlocking interface for mechanically durable polymer electrolyte membrane fuel cells. J. Power Sources 2019, 415, 44–49. [Google Scholar] [CrossRef]
- Peckham, T.J.; Holdcroft, S. Structure-Morphology-Property Relationships of Non-Perfluorinated Proton-Conducting Membranes. Adv. Mater. 2010, 22, 4667–4690. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Dang, J.; Zhou, G.; Wang, Y.; Zhang, Y.; Qu, L.; Wu, W. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 2020, 602, 117978. [Google Scholar] [CrossRef]
- Klose, C.; Saatkamp, T.; Münchinger, A.; Bohn, L.; Titvinidze, G.; Breitwieser, M.; Kreuer, K.-D.; Vierrath, S. All-Hydrocarbon MEA for PEM Water Electrolysis Combining Low Hydrogen Crossover and High Efficiency. Adv. Energy Mater. 2020, 10, 1903995. [Google Scholar] [CrossRef]
- Wei, G.; Xu, L.; Huang, C.; Wang, Y. SPE water electrolysis with SPEEK/PES blend membrane. Int. J. Hydrogen Energy 2010, 35, 7778–7783. [Google Scholar] [CrossRef]
- Asghari, S.; Mokmeli, A.; Samavati, M. Study of PEM fuel cell performance by electrochemical impedance spectroscopy. Int. J. Hydrogen Energy 2010, 35, 9283–9290. [Google Scholar] [CrossRef]
- Voronova, A.; Kim, H.-J.; Jang, J.H.; Park, H.-Y.; Seo, B. Effect of low voltage limit on degradation mechanism during high-frequency dynamic load in proton exchange membrane water electrolysis. Int. J. Energy Res. 2022, 46, 11867–11878. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.H.; Jeong, H.Y.; Yoon, S.J.; So, S.; Choi, J.; Kim, T.-H.; Yu, D.M. Hydrocarbon-Based Composite Membrane Using LCP-Nonwoven Fabrics for Durable Proton Exchange Membrane Water Electrolysis. Polymers 2023, 15, 2109. https://doi.org/10.3390/polym15092109
Kang SH, Jeong HY, Yoon SJ, So S, Choi J, Kim T-H, Yu DM. Hydrocarbon-Based Composite Membrane Using LCP-Nonwoven Fabrics for Durable Proton Exchange Membrane Water Electrolysis. Polymers. 2023; 15(9):2109. https://doi.org/10.3390/polym15092109
Chicago/Turabian StyleKang, Seok Hyeon, Hwan Yeop Jeong, Sang Jun Yoon, Soonyong So, Jaewon Choi, Tae-Ho Kim, and Duk Man Yu. 2023. "Hydrocarbon-Based Composite Membrane Using LCP-Nonwoven Fabrics for Durable Proton Exchange Membrane Water Electrolysis" Polymers 15, no. 9: 2109. https://doi.org/10.3390/polym15092109
APA StyleKang, S. H., Jeong, H. Y., Yoon, S. J., So, S., Choi, J., Kim, T. -H., & Yu, D. M. (2023). Hydrocarbon-Based Composite Membrane Using LCP-Nonwoven Fabrics for Durable Proton Exchange Membrane Water Electrolysis. Polymers, 15(9), 2109. https://doi.org/10.3390/polym15092109