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Abstract: The damping of spruce wood is analysed at different moisture content levels for the first
three vibration modes of tangentially and radially vibrating samples. Two methods were used to
determine the damping. The first was the vibration envelope fitting as an improved version of the
well-known logarithmic decrement, and the second was the newer and recently increasingly used
wavelet transform. Both methods showed that the damping of spruce wood first decreases and then
increases with moisture content, with the damping in the first vibration mode being about 9% higher
in the radial direction than in the tangential direction. In the second and third vibration modes,
the damping in the tangential direction was higher than in the radial direction by about 10% and
8.8%, respectively. The measured damping factors from the envelope fitting had, on average, 15.9%
higher values than those from the wavelet transform. It can be concluded from the results that the
wavelet transform is more accurate for determining the damping factor, as it enables the decoupling
of multi-degree of freedom systems if mode coupling is present.

Keywords: damping factor; wavelet transform; logarithmic decrement; relative humidity; impulse
response function; time response; natural frequency; frequency response function; Morlet wavelet;
vibration

1. Introduction

Every lightly damped structure begins to vibrate when it is exposed, either perma-
nently or temporarily, to a certain time-varying excitation [1]. While vibrations can be
desirable or undesirable, the time course of the vibration amplitude is influenced by many
factors, including damping, which can be modelled using different models depending
on the damping mechanism, whereby damping is divided into hysteretic and viscous
damping. Hysteretic damping includes damping due to the microstructure of the material,
while viscous damping depends on the vibration velocity. Thus, in the real world, the
phenomenon of damping is an aggregate of various causes of damping, which can be
evaluated as structural damping [1,2], where the damping is represented by a damping
factor, evaluated as the proportion of critical damping.

Wood damping has been the subject of numerous studies investigating the damping
of different types of wood under different conditions. As wood is used in a variety
of industries, from construction to musical instruments, knowledge of the mechanical
properties of wood and its damping characteristics is essential. The mechanical properties of
CLT panels, as well as the damping properties, were investigated by Lu et al. [3]. The effects
of moisture content on mechanical and damping properties were studied by Bremaud [4,5],
Bremaud and Gril [6], and Ahmed et al. [7]. When the wood is thermally modified, the
damping is generally reduced, as confirmed by Zauer et al. [8], who investigated the
effects of thermal modification on the damping of beech wood. Mania and Skrodzka [9]
and Danihelova et al. [10] investigated the effect of thermal modification on the damping
of spruce wood, Stanciu et al. [11] investigated the effect of ammonia treatment; and
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Buchelt et al. [12] investigated the influence of thermal modification on damping and
on the modulus of elasticity at different moisture contents. The damping properties of
different tree species used for musical instruments were studied by Wegst [13], Merhar
and Humar [14], Sproßmann et al. [15], and Gurau et al. [16]. Temperature also plays an
important role in damping the vibrations of wood. The influence of heating on the damping
properties of maple and Douglas fir was studied by Mihalcica et al. [17] and Jiang et al. [18],
who found that damping first increases and then decreases with increasing temperature.

Damping can be determined in different ways, either in the time domain or in the
frequency domain [2]. Among the methods in the time domain for systems with a single
degree of freedom (SDOF), the logarithmic decrement method is the simplest, while for
systems with multiple degrees of freedom (MDOF), the Smith least squares algorithm
(SLS) [19] and the least complex exponential squares method (LSCE) are popular. Among
the methods in frequency space, the 3 dB method is the simplest. It can be applied to
systems with one or more degrees of freedom in lightly coupled modes with minimal
crossover. However, for oscillating modes where the frequencies are very close to each
other or for strongly damped systems, the 3 dB method is rather inaccurate, as the frequency
response function (FRF) of the individual modes influences the FRF values of the other
modes. More accurate results can be achieved using curve fitting methods.

If an MDOF system can be considered a superposition of several SDOF systems that
are more or less localised, the signal can be decomposed using specific functions to obtain
a time-scale representation instead of a time-frequency representation. When the time shift
is replaced by a translation and the frequency by dilation or scaling, the decomposition
on the time scale results in a wavelet transform (WT). The first researchers in this field
were Morlet [20], who used wavelet transform in seismology. Since then, the method has
developed rapidly [21] and is used for a variety of purposes. Today, the wavelet transform
is used to determine various modal parameters. For example, the method can be used to
determine the damping [19,22–24], the natural frequencies of oscillations [25–27], or the
mode shapes [28]. The WT has thus proven to be a very useful and accurate method for
determining various modal parameters, whereby it can be used to filter out the influence of
environmental disturbances effectively or as a filter for extracting a particular vibration
mode [19,23,29].

As mentioned, much research has been conducted on the damping of wood. What all
these studies have in common are the methods used. Almost all authors have used either
the logarithmic decrement or the 3 dB method to determine damping, both of which have a
common characteristic: they are inaccurate for coupled systems.

This article aims to present the determination of the damping of wood on the first
three bending vibration modes using the wavelet transform, which has received little
attention to date despite the extensive literature on WT. In contrast, many papers in the
literature research the damping of wood under various conditions [3–6,9,12,14,15,17], using
the predominant inaccurate methods being based on either the logarithmic decrement or
the 3 dB method. The aim is also to compare the wavelet transform with the method of
vibration envelope fitting as an improved version of the well-known logarithmic decrement
for damping determination in the first vibration mode. In addition, the degree of inaccuracy
of the second method is determined, and the usefulness of the wavelet transform for
determining the damping of wood under different conditions is confirmed.

2. Materials and Methods
2.1. Specimen Preparation

A 1 m long spruce board (Picea abies) with a cross-section of 290 mm × 55 mm and
constant growth ring width was cut into 4 smaller pieces of 245 mm length, from which
10 strictly oriented samples of 245 mm × 22 mm × 22 mm were cut (Figure 1). The
individual groups of 10 samples were then equilibrated to a constant sample mass at 22 ◦C
and relative humidity (RH) of 20%, 44%, 76%, and 88%. After the final equilibration of the
samples, they were cut to a final size of 200 mm × 20 mm × 20 mm. Additional samples
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were used to determine the equilibrium moisture content (EMC) of the wood for each
combination of relative humidity. They were weighed after equilibration, then dried to
absolute dryness at 103 ◦C and weighed again to determine the moisture content. The
equilibrium moisture content of the samples at relative humidities of 20%, 44%, 76%, and
88% was 7.2%, 9.9%, 13.3%, and 19.1%, respectively.

Polymers 2024, 16, x FOR PEER REVIEW 3 of 14 
 

 

10 strictly oriented samples of 245 mm × 22 mm × 22 mm were cut (Figure 1). The individ-
ual groups of 10 samples were then equilibrated to a constant sample mass at 22 °C and 
relative humidity (RH) of 20%, 44%, 76%, and 88%. After the final equilibration of the 
samples, they were cut to a final size of 200 mm × 20 mm × 20 mm. Additional samples 
were used to determine the equilibrium moisture content (EMC) of the wood for each 
combination of relative humidity. They were weighed after equilibration, then dried to 
absolute dryness at 103 °C and weighed again to determine the moisture content. The 
equilibrium moisture content of the samples at relative humidities of 20%, 44%, 76%, and 
88% was 7.2%, 9.9%, 13.3%, and 19.1%, respectively. 

  
Figure 1. Schematic of cutting plan: (a) cutting from board; (b) specimen distribution. 

2.2. Experimental Procedures 
2.2.1. Vibration Measurements 

The samples were freely supported at a distance of 0.22 L and 0.77 L (L-length) and 
excited with a hammer to vibrate freely at their natural frequencies. The aim was to excite 
the first three bending vibration modes. Each sample was first excited in the radial direc-
tion and then in the tangential direction. The sample was excited 10 times, and the time 
responses were measured using a Bruel & Kjaer type 4939 microphone, an NI-USB-6361 
DAQ card, and LabVIEW software with a sampling rate of 50 kHz and an acquisition time 
of 1 s. The time recordings were then analysed using the LabVIEW software. An average 
frequency spectrum with a resolution of 1 Hz was then generated from 10 repeated time 
measurements using a fast Fourier transformation (FFT), and the frequencies for the first 
three vibration modes were determined. 

2.2.2. Damping Determination Based on Fitting the Oscillation Envelope 
The first method to determine the damping factor for the first vibration mode was 

logarithmic decrement or fitting the oscillation envelope. When using logarithmic decre-
ment, the damping factor is determined from two or more time-positioned amplitudes of 
oscillations in the system with one degree of freedom, defined as [2]: 𝛿 = 𝑙𝑛 𝑋𝑋ା = 2 𝑛 𝜋 𝜁ඥ1 − 𝜁ଶ. (1) 

The term δn is called the logarithmic decrement, ζ is the damping factor, and Xi and 
Xi+n are the amplitudes at locations i and i + n, respectively, as shown in Figure 2. 

Figure 1. Schematic of cutting plan: (a) cutting from board; (b) specimen distribution.

2.2. Experimental Procedures
2.2.1. Vibration Measurements

The samples were freely supported at a distance of 0.22 L and 0.77 L (L-length) and
excited with a hammer to vibrate freely at their natural frequencies. The aim was to
excite the first three bending vibration modes. Each sample was first excited in the radial
direction and then in the tangential direction. The sample was excited 10 times, and the time
responses were measured using a Bruel & Kjaer type 4939 microphone, an NI-USB-6361
DAQ card, and LabVIEW software with a sampling rate of 50 kHz and an acquisition time
of 1 s. The time recordings were then analysed using the LabVIEW software. An average
frequency spectrum with a resolution of 1 Hz was then generated from 10 repeated time
measurements using a fast Fourier transformation (FFT), and the frequencies for the first
three vibration modes were determined.

2.2.2. Damping Determination Based on Fitting the Oscillation Envelope

The first method to determine the damping factor for the first vibration mode was
logarithmic decrement or fitting the oscillation envelope. When using logarithmic decre-
ment, the damping factor is determined from two or more time-positioned amplitudes of
oscillations in the system with one degree of freedom, defined as [2]:

δn = ln
Xi

Xi+n
=

2 n π ζ√
1 − ζ2

. (1)

The term δn is called the logarithmic decrement, ζ is the damping factor, and Xi and
Xi+n are the amplitudes at locations i and i + n, respectively, as shown in Figure 2.
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This method is reliable and accurate in a linear system with one degree of freedom.
However, if the time course of the oscillation is influenced by various factors, such as the
coupling of other vibration modes or measurement noise, the time response does not take
on the ideal theoretical form, which means that the method is no longer sufficiently accurate.
The method can be improved by taking several consecutive vibration amplitudes and then
fitting the envelope using the least squares method, which was done in this experiment.

The measured time response of the damped natural vibration was considered an
impulse response function with one degree of freedom, which can be written as follows:

x(t) = A0e−ζωt cos
(√

1 − ζ2ωt − ϕ

)
, (2)

where A0 is the residual amplitude, ζ is the damping factor, ω is the natural frequency of
the undamped vibration, and ϕ is the phase shift. For fitting the envelope, the first part of
the equation is considered:

A(t) = A0e−ζωt, (3)

where the damping factor is determined from an exponential fit using the least squares method.

2.2.3. Damping Determination Based on Wavelet Transform

The second method for determining the damping factor was a wavelet transform,
which was explained in detail by Staszewski [19]. The wavelet transform, which provides
a time-frequency representation of the time signal x(t) by a linear transformation, can be
written as [19,21]: (

Wgx
)
(a, b) =

1√
a

∫ +∞

−∞
x(t)g∗

(
t − b

a

)
dt, (4)

where a is the scale/dilation parameter that determines the width of the wavelet, and
b is the translation parameter defining the position of the wavelet function in the time
domain, while g*(t) is the conjugate complex function of the basic wavelet function g(t).
Each wavelet transform is normalised by the factor 1/

√
a, which ensures that the integral

energy is independent of the dilation parameter a.
The wavelet function g(t) must satisfy the admissibility condition [21]:

Cg =
∫ +∞

−∞

|G(ω)|2

|ω| dω < ∞, (5)

where G(ω) is the Fourier transform of g(t). To satisfy the time-frequency localisation of
g(t), the wavelet must also satisfy the following condition:∫ +∞

−∞
|g(t)|dt < ∞. (6)
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Similarly, the function x(t) analysed must decay to zero over time to satisfy the condition:∫ +∞

−∞
|x(t)|2dt < ∞. (7)

If the above conditions are satisfied, the signal x(t) can be regenerated by an inverse
wavelet transform as:

x(t) =
1

Cg

∫ +∞

−∞

∫ +∞

−∞

(
Wgx

)
(a, b)

1√
a

g∗
(

t − b
a

)
da db

a2 . (8)

If the signal x(t) can be written as a superposition of signals, the wavelet transform
can also be written as a linear superposition:(

Wg

N

∑
i=1

αixi

)
(a, b) =

N

∑
i=1

αi(Wgxi)(a, b). (9)

In the case of the function x(t), which describes the vibration with the frequency ω,
the following relationship applies:

a =
ω0

ω
, (10)

where ω0 is the wavelet frequency.
An alternative notation of wavelet transform can be obtained by transforming the

signal x(t) and the wavelet function g(t) in frequency space:

(
Wgx

)
(a, b) =

√
a
∫ +∞

−∞
X(ω)G∗(aω)ejωbdω, (11)

where X(ω) and G*(aω) are the Fourier transforms of x(t) and g*(t), respectively.
Depending on the purpose of the wavelet transform, various wavelet functions can be

used [29–31], while the Morlet wavelet has proven to be very useful for determining the
modal parameters of vibrating systems:

g(t) = ejω0te−t2/2. (12)

Here, ω0 is the wavelet frequency, while the spectrum of a dilated Morlet wavelet in
frequency space is defined as:

G(aω) = e−(aω−ω0)
2
. (13)

However, since the Morlet wavelet does not fulfil the admissibility conditions
(Equation (5)) over the entire frequency range, as G(0) > 0 results in Cg = ∞, values ω0 > 5
are used in practice.

In certain cases of a distributed mass system, the system can be treated as a decoupled
multi-degree of freedom system, where the time response of the free vibration can be
written as the sum of the individual single-degree of freedom system responses:

x(t) =
N

∑
i=1

Aie−ζiωit cos
(√

1 − ζi
2ωit − ϕi

)
, (14)

where Aj is residue amplitude, ζj is damping ratio, ωj is the undamped angular frequency,
and ϕj is the phase shift for each decoupled mode i. Considering that the response can also
be written as the sum of analytical signals, where only the real part is taken, Equation (14)
can also be written as:

x(t) =
N

∑
i=1

Aie−ζiωite(
√

1−ζi
2ωit−ϕi)j. (15)
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If only the modulus of the wavelet transform of the function x(t) (Equation (15)) is
required, the solution can be approximated as:∣∣∣∣∣

(
Wg

N

∑
i=1

xi

)
(a, b)

∣∣∣∣∣ ≈ N

∑
i=1

Aie−ζiωib
∣∣∣∣G ∗

(
±j ai ωi

√
1 − ζi

2
)∣∣∣∣. (16)

Further, taking only a specific vibration mode i with a natural frequency ωi, each
vibration mode can be decoupled into a single mode:

∣∣(Wgxi
)
(ai, b)

∣∣ ≈ Aie−ζiωib
∣∣∣∣G ∗

(
±j ai ωi

√
1 − ζi

2
)∣∣∣∣. (17)

Applying the logarithm to Equation (17), the final solution is:

ln
∣∣(Wgxi

)
(a, b)

∣∣ ≈ −ζiωib + ln
(

Ai

∣∣∣∣G ∗
(
±j ai ωi

√
1 − ζi

2
)∣∣∣∣). (18)

Equation (18) can be used to determine the damping factor ζi for each decoupled mode
from the slope of the straight line of the wavelet modulus cross-section

∣∣(Wgxi
)
(ai, b)

∣∣, for
a given value of the dilation parameter ai, related to the natural frequency ωi of the system,
plotted on a semi-logarithmic scale.

The curve of the maximum value of the WT modulus in the time-frequency plane is
called the wavelet ridge ar(b), and the modulus values corresponding to the points in the
curve are called the wavelet skeleton. There are different algorithms for ridge extraction.
The most common one uses the local maxima of the WT modulus, which provides accurate
values only for linear ridges. More precise values can be obtained from the phase function,
as proposed by Tchamitchian and Toressani [32],

∂Ω(a, b)
∂a

= 0, (19)

where Ω(a,b) is the phase of the wavelet transform.
In the experiment, the natural frequency of the damped oscillation ω was first de-

termined from the frequency spectrum, then the corresponding dilation factor a was
calculated, and finally, the damping factor was evaluated using Equation (18). The entire
analysis was conducted using LabView software, in which the corresponding analysis code
was programmed.

2.3. Statistical Analysis

The significant differences in damping factors were verified by the ANOVA (F-test)
analysis using SPSS software, where 5% was taken for the level of significance (p-value).

3. Results and Discussion
3.1. Damping Factor in 1st Vibration Mode

The damping factors for the first vibration mode obtained from fitting the envelope
and the wavelet transform are shown in Figure 3.

The damping factor determined from the time response envelope fit shows the highest
values in all sample groups, while the damping determined from the WT shows lower
values everywhere, on average 15.9%. The damping in the radial direction is higher than in
the tangential direction and generally increases with wood moisture content, except at the
lowest wood moisture content of 7.2%, where the damping is slightly higher than at 9.9%
moisture content.

For vibrations in the radial direction at an EMC of 7.2%, the damping factor from the
envelope and WT is, on average, 0.0064 and 0.0057, respectively, while in the tangential
direction, it is 0.0057 and 0.0048, respectively. The damping then decreases slightly at an
EMC of 9.9% and then increases with rising moisture content. At the highest EMC of 19.1%
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in the radial direction, the damping factor from the envelope and WT averages 0.0090 and
0.0065, respectively, and 0.0063 and 0.0060, respectively, in the tangential direction.
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Figure 3. Damping factors at different EMCs, directions of vibration (R—radial, T—tangential),
and damping factor determination methods for 1st vibration mode (env. fit—envelope fitting,
WT—wavelet transform). The vertical lines represent the standard deviation. The columns with the
same letter do not differ significantly from each other at a p-value of 0.05.

Table 1 shows the results of the statistical analysis, which confirms that the method
used to determine the damping factor, the vibration direction of the sample, and the
EMC significantly influence the damping factors. A post hoc analysis was carried out
to determine statistical differences between the groups, which can be seen in Figure 3.
Groups that do not differ statistically at a p-value of 5% are labelled with the same letters.
According to the analysis, the damping factors determined by envelope fitting and WT do
not differ significantly in the radial direction for EMCs of 7.2% and 9.9%, while they differ
significantly only for EMCs of 13.3% and 19.1%. In the tangential direction, in contrast, the
damping factors determined with the two methods do not differ significantly for all EMCs.

Table 1. Results of statistical analysis for the 1st vibration mode.

Type III Sum of Squares df Mean Square F p

Determination method 3.75 × 10−5 1 3.75 × 10−5 21.019 0.000
Vibration direction 2.86 × 10−5 1 2.86 × 10−5 16.041 0.000

EMC 5.90 × 10−5 3 1.97 × 10−5 11.006 0.000

Despite the obvious tendency for damping to increase with the moisture content of
the wood, the post hoc analysis showed that most groups did not differ significantly from
each other when using the same method to determine damping, nor did they differ in
the direction of vibration. Thus, there is only a statistically significant difference between
the 19.1% EMC and the other EMC for the envelope fitting method in the radial direction
of vibration and between the 19.1% EMC and the 9.9% EMC for the WT method in the
radial direction.

Irrespective of the differences in the values of the damping factors determined using
the various methods, the results are consistent with the literature, which has determined
that the damping factor increases with wood moisture content [7,33]. An initial decrease
in damping with increasing EMC and then an increase is also reported [5,6], where the
damping factor for spruce with 12% EMC was 0.0042.
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Similar results were obtained by Buchelt et al. [12], who determined lower EMC values
at similar relative humidities. For example, the EMCs at 26%, 50%, 65%, and 85% RH were
3.2%, 7.8%, 11.6%, and 16.9%, respectively, while in our study at 20%, 44%, 76%, and 88%
RH, the EMCs were 7.2%, 9.9%, 13.3%, and 19%, respectively. Buchelt, therefore, gives
damping as tanδ of 0.00734, 0.00642, 0.00736, and 0.0095 at the above EMCs, corresponding
to damping factors of 0.00367, 0.00321, 0.00368, and 0.00475, respectively. The resulting
damping is lower than our values, and Buchelt does not specify the direction of vibration,
while the dependence of damping on EMC is the same as in our study, i.e., damping first
decreases and then increases with EMC.

To identify the differences between the damping factors determined with the envelope
curve of the vibration amplitudes and the WT method, the individual measurements in
which there were significant differences in the damping factor were analysed in detail. A
typical example of such a case is shown in Figure 4. The figure shows the vibration of a
sample with 7.2% EMC vibrating in the radial direction at a natural frequency of 2778 Hz.
The latter can be seen in the frequency spectrum in Figure 5, where an additional frequency
of 2860 Hz with a significantly lower amplitude is also present and causes the beating of
the time response in Figure 4. Further analysis revealed that the frequency of 2860 Hz
belongs to the torsional vibrations of the sample. This means that when the sample was
excited in the radial direction, a slight torsional vibration was also excited. In several
further experiments, attempts were made to excite only the vibration in the radial direction,
but a slight torsional vibration was almost always present. Despite the small amplitude of
the torsional vibration, it contributes significantly to the error in determining the damping
factor, as the amplitudes of the torsional vibration are added to the amplitudes of the
bending vibration. Figure 4 also shows the envelope points of the vibration amplitudes
together with the exponential fit, which was determined using the least squares method.
From this, the damping factor was determined using Equation (3) and was 0.007.
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The damping factor determined by the wavelet transform for the same sample was
0.00496. The contour plot of the WT can be seen in Figure 6, where the decay of the
amplitude of the natural vibration at a frequency of 2778 Hz is clearly visible. The cross-
section of the wavelet transform for the values of the dilation related to the analysed modal
frequencies of 2778 Hz, plotted in a semi-logarithmic plot, is shown in Figure 7. The
damping factor determined from the slope of the linear part using Equation (18) is 0.00496,
which is significantly less than 0.0074 and determined from the envelope fit of the time
response. This is because the WT only takes into account the vibrations at 2778 Hz, while
other frequencies have been filtered out.
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It should be noted that in some samples, the torsional vibration was not excited, and
only the fundamental natural frequency of the first bending vibration mode was present.
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In this case, the damping factors determined with the envelope fit and the WT method
were almost the same. There were very few such cases, as in most instances, a torsional
vibration was excited in addition to the bending vibration, which could not be avoided
due to the square cross-section of the specimen. A good example of this can be seen in
Figures 8 and 9, the first showing the time response with the natural frequency of 2822 Hz
together with the fitted envelope, and the second showing the frequency spectrum. The
corresponding damping factor determined from the envelope fit and wavelet transform
was 0.0048 and 0.0046, respectively.
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3.2. Damping Factor in Higher Vibration Modes

Figure 10 shows the damping factors of the first three vibration modes, which were
determined using the WT method, as the envelope curve for the second and third vibration
modes could not be evaluated due to the dominant amplitude of the first vibration mode
in the time behaviour. Table 2 shows the results of the statistical analysis. The magnitude
of the damping factor is significantly influenced by the vibration mode, the direction of
vibration, and the moisture content of the wood.
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vibration modes (1st, 2nd, 3rd). The vertical lines represent the standard deviation. The columns
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Table 2. Results of statistical analysis for the first three vibration modes.

Source Type III Sum of Squares df Mean Square F p

Vibration mode 0.000306 2 0.000153 120.487 0.000
Vibration
direction 6.99 × 10−6 1 6.99 × 10−6 5.510 0.020

EMC 0.000105 3 3.5 × 10−5 27.624 0.000

Figure 10 also shows the results of the post hoc analysis. Groups that do not differ
significantly at p = 5% are labelled with the same letter. The damping factors have the
lowest values for the first vibration mode and then increase for higher vibration modes
in both radial and tangential directions. The average values of the damping factors for
the first vibration mode in the radial direction are higher than the damping factors in the
tangential direction by about 9%, although the statistical analysis shows that there are no
significant differences between them for all EMCs. However, the opposite is true for the
higher vibration modes: the damping factors in the tangential direction are greater than the
damping factors in the radial direction, namely 10.3% for the second vibration mode and
8.8% for the third vibration mode.

The average ratio of the damping factors between the second and first and the third
and first vibration modes is 1.2 and 1.42 in the radial direction and 1.49 and 1.72 in the
tangential direction. The statistical analysis showed no significant influence of EMC on the
ratios of the damping factor, while the vibration direction had a significant influence. There
is also a significant difference between the ratios for the third-to-first and the second-to-first
modes of vibration.

Mania and Skrodzka [9] came to a similar conclusion when the damping of unmod-
ified and modified spruce wood for the first 10 vibration modes using the 3 dB method
was determined. For unmodified spruce wood with a moisture content of 9.5%, Mania
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determined the 1st, 2nd, and 3rd vibration mode damping factors of 0.0047, 0.0048, and
0.0060, respectively. The values for the first vibration mode are similar to ours, while
the damping factors for the second and third vibration modes are much lower than in
this study.

The results of this study thus represent an important contribution to the understanding
of damping in wood, especially in industries where damping plays an important role. One
such industry is certainly the music industry, for which damping is an important factor in
the manufacture of musical instruments.

Many studies investigate the damping of different tree species under various wood
moisture content and wood modifications. Based on the damping factor, the authors then
calculate various coefficients that are used to categorise the tree species into groups. A
very popular indicator among researchers is the Acoustic Conversion Efficiency (ACE),
which refers to the sound energy emitted by a musical instrument and is calculated from
the modulus of elasticity, wood density, and damping factor [4]. Various authors have thus
categorised several tree species into groups with different damping or ACE values [4,6,7,15],
generally not indicating the direction of vibration, where the damping value of the first
vibration mode was taken. For a more precise categorisation, however, the damping of the
higher vibration modes should also be taken into account.

4. Conclusions

This work used the WT method to determine the damping at different moisture
contents of the spruce wood for the first three vibration modes. In addition, the envelope
fitting method was used for the first vibration mode. The following conclusions can be
drawn from the results:

• The damping factor determined with the wavelet transform is more accurate than
the logarithmic decrement or the envelope fitting method when coupling with other
modes is present since the wavelet transform allows the decoupling of MDOF sys-
tems into single modes and serves as a filter that also filters out the noise added
during the measurement.

• The damping factor increases with the EMC for all vibration modes and vibration
directions.

• The damping factors for the first vibration mode, determined by fitting the envelope,
showed, on average, 15.9% higher values than the damping factors determined with
the WT method, which is mainly due to the higher amplitudes resulting from the
coupling with other vibration modes.

• The damping factor in the first vibration mode is, on average, 9% higher in the
radial direction than in the tangential direction, while the opposite is true for the
higher vibration modes. Thus, the damping factor in the tangential direction is higher
than in the radial direction by 10% and 8.8% for the second and third vibration
modes, respectively.
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