Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MXene Suspension
2.3. Preparation of f-MXene Nanosheet Suspension
2.4. Preparation of M-fM2TPS
2.5. Characterization and Measurement
3. Results and Discussion
3.1. Characterization of MXene and f-MXene
3.2. Characterization of TPU Fiber Mats
3.3. Sensing Performance
3.4. Environmental Stability and Air Permeability
3.5. Application of M-fM2TPS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.M.; Liang, X.Y.; Ren, X.F.; Guan, W.X.; Gao, M.F.; Yang, Y.N.; Yang, Q.Y.; Gao, L.G.; Li, Y.Q.; Ma, T.L. Recent Progress in MXene-Based Materials: Potential High-Performance Electrocatalysts. Adv. Funct. Mater. 2020, 30, 2003437. [Google Scholar] [CrossRef]
- Ran, J.R.; Gao, G.P.; Li, F.T.; Ma, T.Y.; Du, A.J.; Qiao, S.Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907. [Google Scholar] [CrossRef]
- Li, K.; Liang, M.Y.; Wang, H.; Wang, X.H.; Huang, Y.S.; Coelho, J.; Pinilla, S.; Zhang, Y.L.; Qi, F.W.; Nicolosi, V.; et al. 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater. 2020, 30, 2000842. [Google Scholar] [CrossRef]
- Cao, J.M.; Wang, L.L.; Li, D.D.; Yuan, Z.Y.; Xu, H.; Li, J.Z.; Chen, R.Y.; Shulga, V.; Shen, G.Z.; Han, W. Ti3C2Tx MXene Conductive Layers Supported Bio-Derived Fex−1Sex/MXene/Carbonaceo us Nanoribbons for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries. Adv. Mater. 2021, 33, 2101535. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.H.; Choi, Y.Y.; Jo, S.B.; Myoung, J.M.; Cho, J.H. Sensing with MXenes: Progress and Prospects. Adv. Mater. 2021, 33, 2005846. [Google Scholar] [CrossRef]
- Tian, X.; Yao, L.J.; Cui, X.X.; Zhao, R.J.; Chen, T.; Xiao, X.C.; Wang, Y.D. A two-dimensional Ti3C2Tx MXene@TiO2/MoS2 heterostructure with excellent selectivity for the room temperature detection of ammonia. J. Mater. Chem. A 2022, 10, 5505–5519. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Xie, Y.M.; Cao, H.H.; Li, L.; Liu, Z.Y.; Yan, S.W.; Ma, Y.A.; Liu, W.J.; Yue, Y.; Wang, J.B.; et al. High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor. Chem. Eng. J. 2023, 453, 139823. [Google Scholar] [CrossRef]
- Wang, Y.X.; Yue, Y.; Cheng, F.; Cheng, Y.F.; Ge, B.H.; Liu, N.S.; Gao, Y.H. Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano 2022, 16, 1734–1758. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, N.S.; Liu, W.J.; Li, M.A.; Ma, Y.A.; Luo, C.; Wang, S.L.; Rao, J.Y.; Hu, X.K.; Su, J.; et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87. [Google Scholar] [CrossRef]
- Wen, D.L.; Pang, Y.X.; Huang, P.; Wang, Y.L.; Zhang, X.R.; Deng, H.T.; Zhang, X.S. Silk Fibroin-Based Wearable All-Fiber Multifunctional Sensor for Smart Clothing. Adv. Fiber Mater. 2022, 4, 873–884. [Google Scholar] [CrossRef]
- Ma, Y.N.; Liu, N.S.; Li, L.Y.; Hu, X.K.; Zou, Z.G.; Wang, J.B.; Luo, S.J.; Gao, Y.H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207. [Google Scholar] [CrossRef]
- Pei, Y.Y.; Zhang, X.L.; Hui, Z.Y.; Zhou, J.Y.; Huang, X.; Sun, G.Z.; Huang, W. Ti3C2Tx MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS Nano 2021, 15, 3996–4017. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D.B.; Shi, X.Z.; Zhang, B.; Liu, C.T.; Shen, C.Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 2021, 420, 127720. [Google Scholar] [CrossRef]
- Chen, T.D.; Yang, G.C.; Li, Y.Y.; Li, Z.P.; Ma, L.M.; Yang, S.R.; Wang, J.Q. Temperature-adaptable pressure sensors based on MXene-coated GO hierarchical aerogels with superb detection capability. Carbon 2022, 200, 47–55. [Google Scholar] [CrossRef]
- Liu, Y.C.Y.; Sheng, Z.; Huang, J.L.; Liu, W.Y.; Ding, H.Y.; Peng, J.F.; Zhong, B.W.; Sun, Y.H.; Ouyang, X.P.; Cheng, H.Y.; et al. Moisture-resistant MXene-sodium alginate sponges with sustained superhydrophobicity for monitoring human activities. Chem. Eng. J. 2022, 432, 134370. [Google Scholar] [CrossRef]
- Song, D.K.; Zeng, M.J.; Min, P.; Jia, X.Q.; Gao, F.L.; Yu, Z.Z.; Li, X.F. Electrically conductive and highly compressible anisotropic MXene-wood sponges for multifunctional and integrated wearable devices. J. Mater. Sci. Technol. 2023, 144, 102–110. [Google Scholar] [CrossRef]
- Liu, Z.R.; Zhang, Y.L.; Song, Y.X.; Lu, Y.; Liu, T.; Zhang, J.C. A wearable 3D pressure sensor based on electrostatic self-assembly MXene/chitosan sponge and insulating PVP spacer. Nanotechnology 2023, 34, 455502. [Google Scholar] [CrossRef]
- Xia, H.; Wang, L.; Zhang, H.; Wang, Z.H.; Zhu, L.; Cai, H.L.; Ma, Y.H.; Yang, Z.; Zhang, D.Z. MXene/PPy@PDMS sponge-based flexible pressure sensor for human posture recognition with the assistance of a convolutional neural network in deep learning. Microsyst. Nanoeng. 2023, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.H.; Su, C.L.; Bi, S.Y.; Huang, Y.L.; Li, J.N.; Shao, H.Q.; Jiang, J.H.; Chen, N.L. Ti3C2Tx @nonwoven Fabric Composite: Promising MXene-Coated Fabric for Wearable Piezoresistive Pressure Sensors. ACS Appl. Mater. Interfaces 2022, 14, 9632–9643. [Google Scholar] [CrossRef]
- Chang, K.Q.; Meng, J.; Guo, M.H.; Li, L.; Liu, T.X.; Huang, Y.P. Flexible and breathable MXene fabrics for highly sensitive human motion monitoring. Chem. Eng. J. 2023, 474, 145532. [Google Scholar] [CrossRef]
- Li, Q.M.; Yin, R.; Zhang, D.B.; Liu, H.; Chen, X.Y.; Zheng, Y.J.; Guo, Z.H.; Liu, C.T.; Shen, C.Y. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 2020, 8, 21131–21141. [Google Scholar] [CrossRef]
- Cheng, H.N.; Yang, C.; Chu, J.Y.; Zhou, H.S.; Wang, C.X. Multifunctional Ti3C2Tx MXene/nanospheres/Ti3C2Tx MXene/thermoplastic polyurethane electrospinning membrane inspired by bean pod structure for EMI shielding and pressure sensing. Sens. Actuators A-Phys. 2023, 353, 114226. [Google Scholar] [CrossRef]
- Wu, Z.G.; Wei, L.S.; Tang, S.W.; Xiong, Y.T.; Qin, X.Q.; Luo, J.W.; Fang, J.W.; Wang, X.Y. Recent Progress in Ti3C2Tx MXene-Based Flexible Pressure Sensors. ACS Nano 2021, 15, 18880–18894. [Google Scholar] [CrossRef]
- Zhao, L.J.; Wang, L.L.; Zheng, Y.Q.; Zhao, S.F.; Wei, W.; Zhang, D.W.; Fu, X.Y.; Jiang, K.; Shen, G.Z.; Han, W. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 2021, 84, 105921. [Google Scholar] [CrossRef]
- Sun, S.X.; Yuan, R.X.; Ling, S.W.; Zhou, T.T.; Wu, Z.Q.; Fu, M.Y.; He, H.N.; Li, X.L.; Zhang, C.H. Self-Healable, Self-Adhesive and Degradable MXene-Based Multifunctional Hydrogel for Flexible Epidermal Sensors. ACS Appl. Mater. Interfaces 2024, 16, 7826–7837. [Google Scholar] [CrossRef]
- Wang, C.Y.; Ma, C.G.; Wu, X.Y.; Li, M.N.; Lu, S.N.; Dai, P.B. Electrically Conductive AgNPs/TPU-Electrospun Fibers with Hierarchical Microstructures by a One-Step Method for a High-Performance Flexible Pressure Sensor. ACS Appl. Electron. Mater. 2023, 5, 6334–6344. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.Z.; Wang, D.Y.; Xu, Z.Y.; Zhang, H.; Chen, X.Y.; Wang, Z.H.; Xia, H.; Cai, H.L. Efficient Fabrication of TPU/MXene/Tungsten Disulfide Fibers with Ultra-Fast Response for Human Respiratory Pattern Recognition and Disease Diagnosis via Deep Learning. ACS Appl. Mater. Interfaces 2023, 15, 37946–37956. [Google Scholar] [CrossRef] [PubMed]
- Du, W.W.; Li, Z.K.; Zhao, Y.L.; Zhang, X.; Pang, L.L.; Wang, W.; Jiang, T.; Yu, A.F.; Zhai, J.Y. Biocompatible and breathable all-fiber-based piezoresistive sensor with high sensitivity for human physiological movements monitoring. Chem. Eng. J. 2022, 446, 137268. [Google Scholar] [CrossRef]
- Iqbal, A.; Hong, J.; Ko, T.Y.; Koo, C.M. Improving oxidation stability of 2D MXenes: Synthesis, storage media, and conditions. Nano Converg. 2021, 8, 9. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.J.; Kim, Y.J.; Lim, Y.; Chae, Y.; Lee, B.J.; Kim, Y.T.; Han, H.; Gogotsi, Y.; Ahn, C.W. Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 2020, 8, 573–581. [Google Scholar] [CrossRef]
- Chen, Y.X.; Jiang, Y.; Feng, W.Q.; Wang, W.; Yu, D. Construction of sensitive strain sensing nanofibrous membrane with polydopamine-modified MXene/CNT dual conductive network. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 635, 128055. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Weng, L.; Guo, K.; Guan, L.Z.; Wang, X.M.; Wu, Z.J. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceram. Int. 2022, 48, 4977–4985. [Google Scholar] [CrossRef]
- Riazi, H.; Anayee, M.; Hantanasirisakul, K.; Shamsabadi, A.A.; Anasori, B.; Gogotsi, Y.; Soroush, M. Surface Modification of a MXene by an Aminosilane Coupling Agent. Adv. Mater. Interfaces 2020, 7, 1902008. [Google Scholar] [CrossRef]
- Lee, G.S.; Yun, T.; Kim, H.; Kim, I.H.; Choi, J.; Lee, S.H.; Lee, H.J.; Hwang, H.S.; Kim, J.G.; Kim, D.W.; et al. Mussel Inspired Highly Aligned Ti3C2Tx MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano 2020, 14, 11722–11732. [Google Scholar] [CrossRef] [PubMed]
- Echols, I.J.; Yun, J.; Cao, H.; Thakur, R.M.; Sarmah, A.; Tan, Z.; Littleton, R.; Radovic, M.; Green, M.J.; Lutkenhaus, J.L. Conformal Layer-by-Layer Assembly of Ti3C2T z MXene-Only Thin Films for Optoelectronics and Energy Storage. Chem. Mater. 2022, 34, 4884–4895. [Google Scholar] [CrossRef]
- Dong, H.; Sun, J.C.; Liu, X.M.; Jiang, X.D.; Lu, S.W. Highly Sensitive and Stretchable MXene/CNTs/TPU Composite Strain Sensor with Bilayer Conductive Structure for Human Motion Detection. ACS Appl. Mater. Interfaces 2022, 14, 15504–15516. [Google Scholar] [CrossRef]
- Wang, X.F.; Yu, J.H.; Cui, Y.X.; Li, W. Research progress of flexible wearable pressure sensors. Sens. Actuators A-Phys. 2021, 330, 112838. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, T.J.; Cao, S.J.; Xia, X.; Bi, Y.; Xiao, X.L. A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film. Appl. Phys. A-Mater. Sci. Process. 2021, 127, 10. [Google Scholar] [CrossRef]
- Qin, R.; Hu, M.; Li, X.; Yan, L.; Wu, C.; Liu, J.; Gao, H.; Shan, G.; Huang, W. A highly sensitive piezoresistive sensor based on MXenes and polyvinyl butyral with a wide detection limit and low power consumption. Nanoscale 2020, 12, 17715–17724. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, F.; Li, M.Y.; Wang, X.Q.; Chen, S.J.; Yu, J.Y. Flexible Stannum-Doped SrTiO3 Nanofiber Membranes for Highly Sensitive and Reliable Piezoresistive Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 52811–52821. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.Y.; Zheng, Y.J.; Zhang, D.B.; Zhao, Y.; Wang, C.F.; Pan, C.F.; Liu, C.T.; Shen, C.Y. Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber /MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Adv. Funct. Mater. 2021, 31, 2008006. [Google Scholar] [CrossRef]
- Guan, H.; Meng, J.W.; Cheng, Z.Y.; Wang, X.Q. Processing Natural Wood into a High-Performance Flexible Pressure Sensor. ACS Appl. Mater. Interfaces 2020, 12, 46357–46365. [Google Scholar] [CrossRef]
- Xue, B.; Xie, H.Y.; Zhao, J.X.; Zheng, J.M.; Xu, C.Y. Flexible Piezoresistive Pressure Sensor Based on Electrospun Rough Polyurethane Nanofibers Film for Human Motion Monitoring. Nanomaterials 2022, 12, 723. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.Y.; Liu, Y.; Yang, C.Q.; Liu, W.Z.; Qi, M.Y.; Zhang, D.Z. PDMS Film-Based Flexible Pressure Sensor Array with Surface Protruding Structure for Human Motion Detection and Wrist Posture Recognition. ACS Appl. Mater. Interfaces 2024, 16, 2554–2563. [Google Scholar] [CrossRef]
- Shi, J.D.; Wang, L.; Dai, Z.H.; Zhao, L.Y.; Du, M.D.; Li, H.B.; Fang, Y. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small 2018, 14, 1800819. [Google Scholar] [CrossRef]
- dos Santos, A.; Pinela, N.; Alves, P.; Santos, R.; Fortunato, E.; Martins, R.; Aguas, H.; Igreja, R. Piezoresistive E-Skin Sensors Produced with Laser Engraved Molds. Adv. Electron. Mater. 2018, 4, 1800182. [Google Scholar] [CrossRef]
- Bae, G.Y.; Pak, S.W.; Kim, D.; Lee, G.; Kim, D.; Chung, Y.; Cho, K. Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array. Adv. Mater. 2016, 28, 5300–5306. [Google Scholar] [CrossRef]
- Ge, J.; Sun, L.; Zhang, F.R.; Zhang, Y.; Shi, L.A.; Zhao, H.Y.; Zhu, H.W.; Jiang, H.L.; Yu, S.H. A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties. Adv. Mater. 2016, 28, 722–728. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Yang, Q.; Song, S.; Pan, Y.; Xue, H.; Li, J. Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances. Polymers 2024, 16, 1337. https://doi.org/10.3390/polym16101337
Zheng Z, Yang Q, Song S, Pan Y, Xue H, Li J. Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances. Polymers. 2024; 16(10):1337. https://doi.org/10.3390/polym16101337
Chicago/Turabian StyleZheng, Zhong, Qian Yang, Shuyi Song, Yifan Pan, Huan Xue, and Jing Li. 2024. "Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances" Polymers 16, no. 10: 1337. https://doi.org/10.3390/polym16101337
APA StyleZheng, Z., Yang, Q., Song, S., Pan, Y., Xue, H., & Li, J. (2024). Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances. Polymers, 16(10), 1337. https://doi.org/10.3390/polym16101337