Experimental Evaluation of a Granular Damping Element
Abstract
:1. Introduction
Motivation and Aims
2. Materials and Methods
2.1. Theoretical Background
2.1.1. Particle Damping Technology
2.1.2. Flowability
2.2. Experimental Section
2.2.1. Material Selection
2.2.2. Specimen Preparation
2.2.3. Testing Procedure
3. Results
3.1. Angle of Repose
3.2. Uniaxial Compression
3.3. Damping Element Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Sun, C.; Liu, C.; Zheng, X.; Wu, J.; Wang, Z.; Qiu, Y. An Analytical Model of Seated Human Body Exposed to Combined Fore-Aft, Lateral, and Vertical Vibration Verified with Experimental Modal Analysis. Mech. Syst. Signal Process. 2023, 200, 110527. [Google Scholar] [CrossRef]
- Seidler, A.; Schubert, M.; Mehrjerdian, Y.; Krapf, K.; Popp, C.; van Kamp, I.; Ögren, M.; Hegewald, J. Health Effects of Railway-Induced Vibration Combined with Railway Noise—A Systematic Review with Exposure-Effect Curves. Environ. Res. 2023, 233, 116480. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Tang, X.; Jia, T.; Duan, Z.; Zhang, J.; Li, Y.; Zheng, L. Noise and Vibration Suppression in Hybrid Electric Vehicles: State of the Art and Challenges. Renew. Sustain. Energy Rev. 2020, 124, 109782. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Sheng, X.; Jiang, J.Z.; Zhou, H.; Ren, W.-X.; Zhang, Z.-H. Vibration Suppression of Bridges under Moving Loads Using the Structure-Immittance Approach. Int. J. Mech. Sci. 2021, 211, 106792. [Google Scholar] [CrossRef]
- Qiu, Y.; Zou, C.; Wu, J.; Shen, Z.; Zhong, Z. Building Vibration Measurements Induced by Train Operation on Concrete Floor. Constr. Build. Mater. 2023, 394, 132283. [Google Scholar] [CrossRef]
- Cao, R.; Ma, M.; Sun, X.; Chen, J. Transmission Characteristics of Train-Induced Vibration in Buildings Based on Wave Propagation Analysis. Constr. Build. Mater. 2023, 378, 131154. [Google Scholar] [CrossRef]
- Zhou, W.; Bi, K.; Hao, H.; Pham, T.M.; Chen, W. Development of Locally Resonant Meta-Basement for Seismic Induced Vibration Control of High-Rise Buildings. Eng. Struct. 2023, 275, 115229. [Google Scholar] [CrossRef]
- Sama, K.J.; Gur, S. Optimal Design of SMA Damper for Vibration Control of Connected Building under Random Seismic Excitation. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Gosar, A.; Emri, I.; Klemenc, J.; Nagode, M.; Oman, S. On the Vibration-Damping Properties of the Prestressed Polyurethane Granular Material. Polymers 2023, 15, 1299. [Google Scholar] [CrossRef]
- Li, F.; Peng, T. Developing a New Constitutive Model of High Damping Rubber by Combining GRU and Attention Mechanism. Polymers 2024, 16, 567. [Google Scholar] [CrossRef]
- Liu, T.; Butaud, P.; Placet, V.; Ouisse, M. Damping Behavior of Plant Fiber Composites: A Review. Compos. Struct. 2021, 275, 114392. [Google Scholar] [CrossRef]
- Pejkowski, Ł.; Seyda, J.; Nowicki, K.; Mrozik, D. Mechanical Performance of Non-Reinforced, Carbon Fiber Reinforced and Glass Bubbles Reinforced 3D Printed PA12 Polyamide. Polym. Test. 2023, 118, 107891. [Google Scholar] [CrossRef]
- Zhou, S.; Lai, Y.; Ma, J.; Liu, B.; Ni, N.; Dai, F.; Xu, Y.; Wang, Z.; Yang, X. Synchronous Improvement of Mechanical and Damping Properties of Structural Damping Composites with Polyetherimide Non-Woven Fabric Interlayers Loaded with Polydopamine and Carbon Nanotubes. Polymers 2023, 15, 3117. [Google Scholar] [CrossRef] [PubMed]
- Shaid Sujon, M.A.; Islam, A.; Nadimpalli, V.K. Damping and Sound Absorption Properties of Polymer Matrix Composites: A Review. Polym. Test. 2021, 104, 107388. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Crittenden, K.; Weiss, L.; Bardaweel, H. Experimental Modal Analysis and Characterization of Additively Manufactured Polymers. Polymers 2022, 14, 2071. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, K.; Sun, J.; Sun, Q.; Wang, L.; Li, H. Compressive Behavior and Vibration-Damping Properties of Porous Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion. J. Manuf. Process. 2021, 66, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, L. Vibration Serviceability Evaluation of Lightweight Cold-Formed Steel Floor Systems. Structures 2022, 38, 1368–1379. [Google Scholar] [CrossRef]
- Matli, P.R.; Gupta, M. Damping Characteristics of Metal Matrix Composites. In Encyclopedia of Materials: Composites; Brabazon, D., Ed.; Elsevier: Oxford, UK, 2021; pp. 415–427. ISBN 978-0-12-819731-8. [Google Scholar]
- Babar Pasha, M.; Chitti Babu, G.; Narasimha Rao, R.; Ismail, S. Damping Capacity of Magnesium Matrix Composites Fabricated by Ultrasonic-Assisted Stir Casting. Mater. Today Proc. 2023, 30, 5166–5191. [Google Scholar] [CrossRef]
- Emri, I.; von Bernstorff, B.S. Dissipative Bulk and Granular Systems Technology. European Patent Application EP 12006059, 24 August 2012. [Google Scholar]
- Matuttis, H.G.; Chen, J. Phenomenology of Granular Materials. In Understanding the Discrete Element Method; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 161–174. ISBN 978-1-118-56721-0. [Google Scholar]
- Emri, I.; von Bernstorff, B.S.; Oblak, P.; Nikonov, A. Sound Insulating Element. European Patent Application EP 3 570 274 A1, 20 November 2019. [Google Scholar]
- Emri, I.; von Bernstorff, B.S.; Oblak, P.; Nikonov, A. Sound Isolation Element; World Intellectual Property Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Emri, I.; von Bernstorff, B.S.; Oblak, P.; Nikonov, A. Sound Insulation Element; CN Intellectual Property Organization: Beijing, China, 2020.
- Emri, I.; von Bernstorff, B.S.; Oblak, P.; Nikonov, A. Sound Insulation Element; US Intellectual Property Organizationtle: Washington, DC, USA, 2021.
- Emri, I.; von Bernstorff, B.S.; Brehmer, F.; Kalamar, A.; Bek, M.; Oblak, P. Sleeper with Damping Element Based on Dissipative Bulk or Granular Technology. European Patent Application EP 12006058, 24 August 2012. [Google Scholar]
- Wong, C.X.; Daniel, M.C.; Rongong, J.A. Energy Dissipation Prediction of Particle Dampers. J. Sound Vib. 2009, 319, 91–118. [Google Scholar] [CrossRef]
- Meyer, N.; Seifried, R. Damping Prediction of Particle Dampers for Structures under Forced Vibration Using Effective Fields. Granul. Matter 2021, 23, 64. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Shi, W. Study on the Damping Effect of Particle Dampers Considering Different Surface Properties. Shock Vib. 2019, 2019, e8293654. [Google Scholar] [CrossRef]
- Olson, S.E. An Analytical Particle Damping Model. J. Sound Vib. 2003, 264, 1155–1166. [Google Scholar] [CrossRef]
- Prasad, B.B.; Duvigneau, F.; Juhre, D.; Woschke, E. Damping Performance of Particle Dampers with Different Granular Materials and Their Mixtures. Appl. Acoust. 2022, 200, 109059. [Google Scholar] [CrossRef]
- Hu, Y.; Zan, H.; Guo, Y.; Jiang, J.; Xia, Z.; Wen, H.; Peng, Z. Energy Dissipation Characteristics of Particle Dampers with Obstacle Grids. Mech. Syst. Signal Process. 2023, 193, 110231. [Google Scholar] [CrossRef]
- Koch, S.; Duvigneau, F.; Orszulik, R.; Gabbert, U.; Woschke, E. Partial Filling of a Honeycomb Structure by Granular Materials for Vibration and Noise Reduction. J. Sound Vib. 2017, 393, 30–40. [Google Scholar] [CrossRef]
- Zhang, L.; Nguyen, N.G.H.; Lambert, S.; Nicot, F.; Prunier, F.; Djeran-Maigre, I. The Role of Force Chains in Granular Materials: From Statics to Dynamics. Eur. J. Environ. Civ. Eng. 2017, 21, 874–895. [Google Scholar] [CrossRef]
- Xiao, W.; Lu, D.; Song, L.; Guo, H.; Yang, Z. Influence of Particle Damping on Ride Comfort of Mining Dump Truck. Mech. Syst. Signal Process. 2020, 136, 106509. [Google Scholar] [CrossRef]
- Jin, G.; Zhao, Z.; Liu, B.; Cun, W.; Zhao, Z.; Hou, M.; Chen, G. Design of a Particle Damper and Experimental Study on Vibration Damping of the Pipeline. Adv. Mech. Eng. 2021, 13, 16878140211044923. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, Q.; Fan, Q.; Li, Q. Studies on Dissipative Characteristics and Equivalent Model of Particle Damper in Railway Application. J. Sound Vib. 2023, 560, 117788. [Google Scholar] [CrossRef]
- Bhingare, N.H.; Prakash, S.; Jatti, V.S. A Review on Natural and Waste Material Composite as Acoustic Material. Polym. Test. 2019, 80, 106142. [Google Scholar] [CrossRef]
- Cares Pacheco, M.-G.; Jiménez Garavito, M.-C.; Ober, A.; Gerardin, F.; Silvente, E.; Falk, V. Effects of Humidity and Glidants on the Flowability of Pharmaceutical Excipients. An Experimental Energetical Approach during Granular Compaction. Compaction. Int. J. Pharm. 2021, 604, 120747. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhu, W.; Zhu, X.; Yi, X.; Yao, J.; Yuan, X.; Chen, F.; Han, X. Development of Hydroxyapatite/Polycaprolactone Composite Biomaterials for Laser Powder Bed Fusion: Evaluation of Powder Characteristics, Mechanical Properties and Biocompatibility. Polymers 2024, 16, 731. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.A.; Castaneda, D.I.; Ewoldt, R.H.; Lange, D.A. Vibration of Fresh Concrete Understood through the Paradigm of Granular Physics. Cem. Concr. Res. 2019, 115, 31–42. [Google Scholar] [CrossRef]
- Garzó, V. Towards a Better Understanding of Granular Flows. J. Fluid Mech. 2023, 968, F1. [Google Scholar] [CrossRef]
- Saleh, K.; Golshan, S.; Zarghami, R. A Review on Gravity Flow of Free-Flowing Granular Solids in Silos—Basics and Practical Aspects. Chem. Eng. Sci. 2018, 192, 1011–1035. [Google Scholar] [CrossRef]
- Bek, M.; Gonzalez-Gutierrez, J.; Moreno Lopez, J.A.; Bregant, D.; Emri, I. Apparatus for Measuring Friction inside Granular Materials—Granular Friction Analyzer. Powder Technol. 2016, 288, 255–265. [Google Scholar] [CrossRef]
- Venkatesh, R.; Bek, M.; Voloshin, A.; Emri, I. A New Methodology for Measuring the Flowability of Granular Materials. Mater. Today Proc. 2018, 5, 26693–26696. [Google Scholar] [CrossRef]
- Kulkarni, P.A.; Berry, R.J.; Bradley, M.S.A. Review of the Flowability Measuring Techniques for Powder Metallurgy Industry. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2010, 224, 159–168. [Google Scholar] [CrossRef]
- Just, M.; Medina Peschiutta, A.; Hippe, F.; Useldinger, R.; Baller, J. Determination of the Angle of Repose of Hard Metal Granules. Powder Technol. 2022, 407, 117695. [Google Scholar] [CrossRef]
- Beakawi Al-Hashemi, H.M.; Baghabra Al-Amoudi, O.S. A Review on the Angle of Repose of Granular Materials. Powder Technol. 2018, 330, 397–417. [Google Scholar] [CrossRef]
- de Silva, C.W. (Ed.) Vibration Damping, Control, and Design; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780429146343. [Google Scholar]
Physical Property | Unit | Carbon Steel | POM |
---|---|---|---|
Young’s modulus (E) | GPa | (200–210) | (2.5–3.5) |
Poisson’s ratio (ν) | / | (0.29–0.33) | (0.36–0.4) |
Density (ρ) | kg/m3 | 7850 | 1420 |
Spec. | Material | Mass [g] | Diameter [mm] | Volume Ratio [/] |
---|---|---|---|---|
1 | Carbon steel | 141.74 | 2.0 | 0.531 |
2 | Carbon steel | 142.35 | 1.5 | 0.552 |
3 | Carbon steel | 142.97 | 1.0 | 0.521 |
4 | POM | 39.30 | 2.0 | 0.579 |
5 | POM | 40.17 | 1.5 | 0.582 |
6 | POM | 38.91 | 1.0 | 0.585 |
7 | NR + SBR | 57.01 | / | / |
Granular Material | Granule Diameter [mm] | Angle of Repose [°] |
---|---|---|
CS | 2.0 | 18.25 |
CS | 1.5 | 21.20 |
CS | 1.0 | 26.45 |
POM | 2.0 | 17.21 |
POM | 1.5 | 19.75 |
POM | 1.0 | 28.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avdić, S.; Nagode, M.; Klemenc, J.; Oman, S. Experimental Evaluation of a Granular Damping Element. Polymers 2024, 16, 1440. https://doi.org/10.3390/polym16101440
Avdić S, Nagode M, Klemenc J, Oman S. Experimental Evaluation of a Granular Damping Element. Polymers. 2024; 16(10):1440. https://doi.org/10.3390/polym16101440
Chicago/Turabian StyleAvdić, Sanel, Marko Nagode, Jernej Klemenc, and Simon Oman. 2024. "Experimental Evaluation of a Granular Damping Element" Polymers 16, no. 10: 1440. https://doi.org/10.3390/polym16101440
APA StyleAvdić, S., Nagode, M., Klemenc, J., & Oman, S. (2024). Experimental Evaluation of a Granular Damping Element. Polymers, 16(10), 1440. https://doi.org/10.3390/polym16101440