The Effect of Mechanical Alteration on Repair Bond Strength of S-PRG-Filler-Based Resin Composite Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Shear Bond Strength
3.2. Failure Mode
3.3. Surface Morphology
4. Discussion
5. Conclusions
- The bonding (repair) capability of S-PRG-filler-based resin composite materials reduces over time;
- In order to obtain optimal bond strength, it is essential to mechanically modify the surface of aged S-PRG-filler-based resin composite substrate;
- Surface alteration with a fine diamond bur can enhance the repair bond strength of S-PRG-filler-based resin composite materials;
- Surface alteration with APA using 50 µ aluminum oxide can enhance the repair bond strength of aged S-PRG-filler-based resin composite materials;
- Surface alteration with APA using 90 µ glass beads can improve the repair bond strength of 24 h-aged S-PRG-filler-based resin composite materials, but it negatively affects the repair bond strength of a 1-year-old substrate;
- Surface alteration with a super-fine diamond bur has no significant effects on the repair bond strength of S-PRG-filler-based resin composite materials.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perdigão, J.; Araujo, E.; Ramos, R.Q.; Gomes, G.; Pizzolotto, L. Adhesive Dentistry: Current Concepts and Clinical Considerations. J. Esthet. Restor. Dent. 2021, 33, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Giannini, M.; Sauro, S. “Bioactivity” in Restorative Dentistry: Standing for the Use of Innovative Materials to Improve the Longevity of Restorations in Routine Dental Practice. J. Adhes. Dent. 2021, 23, 176–178. [Google Scholar] [CrossRef]
- Alexandre, M.; Sinhoreti, C.; Carvalho, D.; Salles De Oliveira, R.; Rocha, M.G.; Roulet, J.-F.; Alexandre, M.; Sinhoreti, C. Light-Curing of Resin-Based Restorative Materials: An Evidence-Based Approach to Clinical Practice Application. J. Clin. Dent. Res. 2018, 15, 44–53. [Google Scholar]
- Islam, M.S.; Huda, N.; Mahendran, S.; Aryal A C, S.; Nassar, M.; Rahman, M.M. The Blending Effect of Single-Shade Composite with Different Shades of Conventional Resin Composites—An In Vitro Study. Eur. J. Dent. 2022, 17, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Nassar, M.; Elsayed, M.A.; Jameel, D.B.; Ahmad, T.T.; Rahman, M.M. In Vitro Optical and Physical Stability of Resin Composite Materials with Different Filler Characteristics. Polymers 2023, 15, 2121. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil-Mutluay, A.; Pashley, D.; Mutluay, M.M. Long-Term Durability of Dental Adhesives. Curr. Oral Health Rep. 2015, 2, 174–181. [Google Scholar] [CrossRef]
- Islam, M.S.; Aal-Fatlah, A.A.; Alkhan, N.S.; Aryal A C, S.; Sadr, A.; Rehman, M.M. The Effect of Different Finishing Polishing Protocols on Stain Absorption and Color Stability of Resin Composite Restorations. Am. J. Dent. 2022, 35, 141–145. [Google Scholar] [PubMed]
- Alyahya, Y. A Narrative Review of Minimally Invasive Techniques in Restorative Dentistry. Saudi Dent. J. 2024, 36, 228–233. [Google Scholar] [CrossRef]
- Nassar, M.; Al-Fakhri, O.; Shabbir, N.; Islam, M.S.; Gordan, V.V.; Lynch, C.D.; Wilson, N.H.; Blum, I.R. Teaching of the Repair of Defective Composite Restorations in Middle Eastern and North African Dental Schools. J. Dent. 2021, 112, 103753. [Google Scholar] [CrossRef]
- da Costa, J.B.; Frazier, K.; Duong, M.L.; Khajotia, S.; Kumar, P.; Urquhart, O. Defective Restoration Repair or Replacement: An American Dental Association Clinical Evaluators Panel Survey. J. Am. Dent. Assoc. 2021, 152, 329–330.e2. [Google Scholar] [CrossRef]
- Mondal, K.; O’Brien, E.P.; Chen, C.; Drummond, J.L.; Hanley, L.; Rockne, K.J. Mechanical Properties of Dental Composites Aged in Different Media. Dent. Mater. 2022, 38, e14. [Google Scholar] [CrossRef]
- Imazato, S.; Nakatsuka, T.; Kitagawa, H.; Sasaki, J.I.; Yamaguchi, S.; Ito, S.; Takeuchi, H.; Nomura, R.; Nakano, K. Multiple-Ion Releasing Bioactive Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler: Innovative Technology for Dental Treatment and Care. J. Funct. Biomater. 2023, 14, 236. [Google Scholar] [CrossRef] [PubMed]
- Miki, S.; Kitagawa, H.; Kitagawa, R.; Kiba, W.; Hayashi, M.; Imazato, S. Antibacterial Activity of Resin Composites Containing Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler. Dent. Mater. 2016, 32, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Wendler, M.; Belli, R.; Panzer, R.; Skibbe, D.; Petschelt, A.; Lohbauer, U. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments. Materials 2016, 9, 547. [Google Scholar] [CrossRef]
- Burke, F.J.T.; Hussain, A.; Nolan, L.; Fleming, G.J.P. Methods Used in Dentine Bonding Tests: An Analysis of 102 Investigations on Bond Strength. Eur. J. Prosthodont. Restor. Dent. 2008, 16, 158–165. [Google Scholar] [PubMed]
- Salz, U.; Bock, T. Testing Adhesion of Direct Restoratives to Dental Hard Tissue—A Review. J. Adhes. Dent. 2010, 12, 343–371. [Google Scholar] [CrossRef]
- Sinhoreti, M.A.C.; Consani, S.; De Goes, M.F.; Sobrinho, L.C.; Knowles, J.C. Influence of Loading Types on the Shear Strength of the Dentin-Resin Interface Bonding. J. Mater. Sci. Mater. Med. 2001, 12, 39–44. [Google Scholar] [CrossRef]
- Pecora, N.; Yaman, P.; Dennison, J.; Herrero, A. Comparison of Shear Bond Strength Relative to Two Testing Devices. J. Prosthet. Dent. 2002, 88, 511–515. [Google Scholar] [CrossRef]
- DeHoff, P.H.; Anusavice, K.J.; Wang, Z. Three-Dimensional Finite Element Analysis of the Shear Bond Test. Dent. Mater. 1995, 11, 126–131. [Google Scholar] [CrossRef]
- Van Noort, R.; Noroozi, S.; Howard, I.C.; Cardew, G. A Critique of Bond Strength Measurements. J. Dent. 1989, 17, 61–67. [Google Scholar] [CrossRef]
- Kouros, P.; Koliniotou-Koumpia, E.; Spyrou, M.; Koulaouzidou, E. Influence of Material and Surface Treatment on Composite Repair Shear Bond Strength. J. Conserv. Dent. 2018, 21, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Benzi, J.G.; Pucci, C.R.; Freitas, M.R.; Suzy Liporoni, P.C.; Zanatta, R.F. Bonding Performance for Repairs Using Bulk Fill and Conventional Methacrylate Composites. Int. J. Dent. 2021, 2021, 2935507. [Google Scholar] [CrossRef] [PubMed]
- Yarmohammadi, E.; Farshchian, M. In Vitro Evaluation of the Effect of Different Surface Treatments on Shear Bond Strength of New to Old Composite Restorations. Dent. Hypotheses 2020, 11, 108–111. [Google Scholar] [CrossRef]
- Oglakci, B.; Arhun, N. The Shear Bond Strength of Repaired High-Viscosity Bulk-Fill Resin Composites with Different Adhesive Systems and Resin Composite Types. J. Adhes. Sci. Technol. 2019, 33, 1584–1597. [Google Scholar] [CrossRef]
- Kiomarsi, N.; Saburian, P.; Chiniforush, N.; Karazifard, M.J.; Hashemikamangar, S.S. Effect of Thermocycling and Surface Treatment on Repair Bond Strength of Composite. J. Clin. Exp. Dent. 2017, 9, e945–e951. [Google Scholar] [CrossRef]
- Hadilou, M.; Dolatabadi, A.; Ghojazadeh, M.; Hosseinifard, H.; Alizadeh Oskuee, P.; Pournaghi Azar, F. Effect of Different Surface Treatments on the Long-Term Repair Bond Strength of Aged Methacrylate-Based Resin Composite Restorations: A Systematic Review and Network Meta-Analysis. Biomed. Res. Int. 2022, 2022, 7708643. [Google Scholar] [CrossRef] [PubMed]
- Alshali, R.Z.; Silikas, N.; Satterthwaite, J.D. Degree of Conversion of Bulk-Fill Compared to Conventional Resin-Composites at Two Time Intervals. Dent. Mater. 2013, 29, e213–e217. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Gamulin, O.; Marovic, D.; Klaric, E.; Tarle, Z. Raman Spectroscopic Assessment of Degree of Conversion of Bulk-Fill Resin Composites-Changes at 24 Hours Post Cure. Oper. Dent. 2015, 40, E92–E101. [Google Scholar] [CrossRef]
- Vankerckhoven, H.; Lambrechts, P.; Van Beylen, M.; Davidson, C.L.; Vanherle, G. Unreacted Methacrylate Groups on the Surfaces of Composite Resins. J. Dent. Res. 1982, 61, 791–796. [Google Scholar] [CrossRef]
- Fawzy, A.S.; El-Askary, F.S.; Amer, M.A. Effect of Surface Treatments on the Tensile Bond Strength of Repaired Water-Aged Anterior Restorative Micro-Fine Hybrid Resin Composite. J. Dent. 2008, 36, 969–976. [Google Scholar] [CrossRef]
- Özcan, M.; Corazza, P.H.; Marocho, S.M.S.; Barbosa, S.H.; Bottino, M.A. Repair Bond Strength of Microhybrid, Nanohybrid and Nanofilled Resin Composites: Effect of Substrate Resin Type, Surface Conditioning and Ageing. Clin. Oral Investig. 2013, 17, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hiraishi, N.; Nassar, M.; Yiu, C.; Otsuki, M.; Tagami, J. Effect of Hesperidin Incorporation into a Self-Etching Primer on Durability of Dentin Bond. Dent. Mater. 2014, 30, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Neto, H.N.M.; Leite, J.V.C.; de Medeiros, J.M.; e Silva Campos, D.; de Araújo Ferreira Muniz, I.; De Andrade, A.K.M.; Duarte, R.M.; De Souza, G.M.; Lima, R.B.W. Scoping Review: Effect of Surface Treatments on Bond Strength of Resin Composite Repair. J. Dent. 2024, 140, 104737. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.S.; Darvell, B.W. Thermal Cycling Procedures for Laboratory Testing of Dental Restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, P.; Baur, A.; Dalvai, V.; Wiedemeier, D.B.; Attin, T.; Tauböck, T.T. Effect of Composite Age on the Repair Bond Strength after Different Mechanical Surface Pretreatments. J. Adhes. Dent. 2020, 22, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, G.; Niedzwiecki, M.; Bidjan, D.; Dieckmann, P.; Deari, S.; Attin, T.; Tauböck, T.T. Silane Effect of Universal Adhesive on the Composite-Composite Repair Bond Strength after Different Surface Pretreatments. Polymers 2020, 12, 950. [Google Scholar] [CrossRef] [PubMed]
- Yesilyurt, C.; Kusgoz, A.; Bayram, M.; Ulker, M. Initial Repair Bond Strength of a Nano-Filled Hybrid Resin: Effect of Surface Treatments and Bonding Agents. J. Esthet. Restor. Dent. 2009, 21, 251–260. [Google Scholar] [CrossRef]
- Da Costa, T.R.F.; Serrano, A.M.; Atman, A.P.F.; Loguercio, A.D.; Reis, A. Durability of Composite Repair Using Different Surface Treatments. J. Dent. 2012, 40, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Brosh, T.; Pilo, R.; Bichacho, N.; Blutstein, R. Effect of Combinations of Surface Treatments and Bonding Agents on the Bond Strength of Repaired Composites. J. Prosthet. Dent. 1997, 77, 122–126. [Google Scholar] [CrossRef]
- Shahdad, S.A.; Kennedy, J.G. Bond Strength of Repaired Anterior Composite Resins: An in Vitro Study. J. Dent. 1998, 26, 685–694. [Google Scholar] [CrossRef]
- Dall’oca, S.; Papacchini, F.; Radovic, I.; Polimeni, A.; Ferrari, M. Repair Potential of a Laboratory-Processed Nano-Hybrid Resin Composite. J. Oral Sci. 2008, 50, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Kiomarsi, N.; Espahbodi, M.; Chiniforush, N.; Karazifard, M.J.; Kamangar, S.S.H. In Vitro Evaluation of Repair Bond Strength of Composite: Effect of Surface Treatments with Bur and Laser and Application of Universal Adhesive. Laser Ther. 2017, 26, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kanzow, P.; Baxter, S.; Rizk, M.; Wassmann, T.; Wiegand, A. Effectiveness of a Universal Adhesive for Repair Bonding to Composite and Amalgam. J. Oral Sci. 2019, 61, 343–350. [Google Scholar] [CrossRef]
- Chuenweravanich, J.; Kuphasuk, W.; Saikaew, P.; Sattabanasuk, V. Bond Durability of a Repaired Resin Composite Using a Universal Adhesive and Different Surface Treatments. J. Adhes. Dent. 2022, 24, 67–76. [Google Scholar] [CrossRef]
- Ugurlu, M.; Husain, N.A.H.; Özcan, M. Repair of Bulk-Fill and Nanohybrid Resin Composites: Effect of Surface Conditioning, Adhesive Promoters, and Long-Term Aging. Materials 2022, 15, 4688. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, N.C.; Moecke, S.E.; Caneppele, T.M.F.; Perote, L.C.C.C.; Batista, G.R.; Huhtalla, M.F.R.L.; Torres, C.R.G. Bond Strength of Composite Resin Restoration Repair: Influence of Silane and Adhesive Systems. J. Contemp. Dent. Pract. 2019, 20, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Mehari, K.; Parke, A.S.; Gallardo, F.F.; Vandewalle, K.S. Assessing the Effects of Air Abrasion with Aluminum Oxide or Glass Beads to Zirconia on the Bond Strength of Cement. J. Contemp. Dent. Pract. 2020, 21, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Arao, N.; Yoshida, K.; Sawase, T. Effects of Air Abrasion with Alumina or Glass Beads on Surface Characteristics of CAD/CAM Composite Materials and the Bond Strength of Resin Cements. J. Appl. Oral Sci. 2015, 23, 629–636. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and Hydrolytic Effects in Dental Polymer Networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Islam, S.; Hiraishi, N.; Nassar, M.; Yiu, C.; Otsuki, M.; Tagami, J. Effect of Natural Cross-Linkers Incorporation in a Self-Etching Primer on Dentine Bond Strength. J. Dent. 2012, 40, 1052–1059. [Google Scholar] [CrossRef]
- Nagano, D.; Nakajima, M.; Takahashi, M.; Ikedad, M.; Hosaka, K.; Sato, K.; Prasansuttiporn, T.; Foxton, R.M.; Tagami, J. Effect of Water Aging of Adherend Composite on Repair Bond Strength of Nanofilled Composites. J. Adhes. Dent. 2018, 20, 30375582. [Google Scholar] [CrossRef] [PubMed]
Group | Mechanical Surface Alteration Protocol |
---|---|
1 | Phosphoric acid etching |
2 | Fine diamond bur + phosphoric acid etching |
3 | APA (alumina 50 micron) + phosphoric acid etching |
4 | APA (glass beads 90 micron) + phosphoric acid etching |
5 | Super-fine diamond bur + phosphoric acid etching |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | p | |
---|---|---|---|---|---|---|
24 h-aged substrate | 13.85 ± 0.54 A,a | 17.46 ± 2.22 A,b | 15.33 ± 1.75 A,ab | 15.89 ± 2.69 A,ab | 13.76 ± 2.27 A,a | 0.001 |
1 year-aged substrate | 10.86 ± 0.92 B,a | 12.47 ± 1.34 B,b | 12.16 ± 1.66 B,ab | 9.65 ± 1.66 B,a | 10.96 ± 1.1 B,a | 0.001 |
p | 0.008 | 0.001 | 0.004 | 0.001 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Aryal A C, S.; El Bahra, S.; Abuhajjeh, A.J.; Al Mofleh, A.M.; Padmanabhan, V.; Rahman, M.M. The Effect of Mechanical Alteration on Repair Bond Strength of S-PRG-Filler-Based Resin Composite Materials. Polymers 2024, 16, 1488. https://doi.org/10.3390/polym16111488
Islam MS, Aryal A C S, El Bahra S, Abuhajjeh AJ, Al Mofleh AM, Padmanabhan V, Rahman MM. The Effect of Mechanical Alteration on Repair Bond Strength of S-PRG-Filler-Based Resin Composite Materials. Polymers. 2024; 16(11):1488. https://doi.org/10.3390/polym16111488
Chicago/Turabian StyleIslam, Md Sofiqul, Smriti Aryal A C, Shadi El Bahra, Abdullah Jamal Abuhajjeh, Akram Mohammad Al Mofleh, Vivek Padmanabhan, and Muhammed Mustahsen Rahman. 2024. "The Effect of Mechanical Alteration on Repair Bond Strength of S-PRG-Filler-Based Resin Composite Materials" Polymers 16, no. 11: 1488. https://doi.org/10.3390/polym16111488
APA StyleIslam, M. S., Aryal A C, S., El Bahra, S., Abuhajjeh, A. J., Al Mofleh, A. M., Padmanabhan, V., & Rahman, M. M. (2024). The Effect of Mechanical Alteration on Repair Bond Strength of S-PRG-Filler-Based Resin Composite Materials. Polymers, 16(11), 1488. https://doi.org/10.3390/polym16111488