Electric Field Effect of the Plasma-Initiated Polymerization of Methyl Methacrylate: A Negatively Charged Long-Lived Radical
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plasma-Initiated Polymerization under Electric Field
2.3. Traditional Radical Polymerization under Electric Field
2.4. Characterizations
3. Results and Discussion
3.1. Polymer Migration and Negatively Charged Radical
3.2. Molecular Weight and Its Distribution
3.3. Long-Lived Radicals in Electric Field
3.4. Traditional Radical Polymerization in Electric Field
3.5. FT-IR and 1H NMR Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Liu, Y.; Xue, S.; Xie, P.; He, J.; Koval, O.; Chen, Z.; Wang, R. Silicon Oxide Anticorrosion Coating Deposition on Alloy Steel Surface by Low Temperature Plasma. Surf. Coat. Technol. 2024, 477, 130338. [Google Scholar] [CrossRef]
- Mumtaz, S.; Khan, R.; Rana, J.N.; Javed, R.; Iqbal, M.; Choi, E.H.; Han, I. Review on the Biomedical and Environmental Applications of Nonthermal Plasma. Catalysts 2023, 13, 685. [Google Scholar] [CrossRef]
- Ranieri, P.; Sponsel, N.; Kizer, J.; Rojas-Pierce, M.; Hernández, R.; Gatiboni, L.; Grunden, A.; Stapelmann, K. Plasma Agriculture: Review from the Perspective of the Plant and Its Ecosystem. Plasma Process. Polym. 2021, 18, 2000162. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Lu, X.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.; et al. Grand Challenges in Low Temperature Plasmas. Front. Phys. 2022, 10, 1040658. [Google Scholar] [CrossRef]
- Yan, C.; Waitt, C.; Akintola, I.; Lee, G.; Easa, J.; Clarke, R.; Geng, F.; Poirier, D.; Otor, H.O.; Rivera-Castro, G.; et al. Recent Advances in Plasma Catalysis. J. Phys. Chem. C 2022, 126, 9611–9614. [Google Scholar] [CrossRef]
- Thiry, D.; Konstantinidis, S.; Cornil, J.; Snyders, R. Plasma Diagnostics for the Low-Pressure Plasma Polymerization Process: A Critical Review. Thin Solid Films 2016, 606, 19–44. [Google Scholar] [CrossRef]
- Michelmore, A.; Steele, D.A.; Whittle, J.D.; Bradley, J.W.; Short, R.D. Nanoscale Deposition of Chemically Functionalised Films via Plasma Polymerisation. RSC Adv. 2013, 3, 13540–13557. [Google Scholar] [CrossRef]
- Friedrich, J. Mechanisms of Plasma Polymerization–Reviewed from a Chemical Point of View. Plasma Process. Polym. 2011, 8, 783–802. [Google Scholar] [CrossRef]
- Osada, Y.; Bell, A.T.; Shen, M. Plasma-Initiated Polymerization of Methyl Methacrylate. J. Polym. Sci. Polym. Lett. Ed. 1978, 16, 309–311. [Google Scholar] [CrossRef]
- Osada, Y.; Takase, M.; Iriyama, Y. Effects and Role of the Solvents on the Plasma-Initiated Solution Polymerization of Vinyl Monomers. Polym. J. 1983, 15, 81–86. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, J.; Xia, Y.; Zhu, M.; Huang, J.; Wang, X. A Plasma-Initiated Graft Polymerization of Methyl Methacrylate in the Presence of a Reverse ATRP Catalyst. Plasma Chem. Plasma Process. 2019, 39, 293–309. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, Y.; Lu, X.; Ye, Y.; Huang, J.; Wang, X. Plasma-Initiated DT Graft Polymerization of Acrylic Acid on Surface of Porous Polypropylene Membrane for Pore Size Control. Plasma Chem. Plasma Process. 2014, 34, 1257–1269. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, X.; Zhu, J.; Cheng, Z. Plasma-Initiated Controlled/Living Radical Polymerization of Methyl Methacrylate in the Presence of 2-Cyanoprop-2-yl 1-dithionaphthalate (CPDN). Macromol. Rapid Commun. 2004, 25, 818–824. [Google Scholar] [CrossRef]
- Osada, Y.; Iriyama, Y.; Takase, M. Plasma-Initiated Solution Polymerization and Block Copolymerization of Water-Soluble Vinyl Monomers. Kobunshi Ronbunshu 1981, 38, 629–634. [Google Scholar] [CrossRef]
- Johnson, D.R.; Osada, Y.; Bell, A.T.; Shen, M. Studies of the Mechanism and Kinetics of Plasma-Initiated Polymerization of Methyl Methacrylate. Macromolecules 1981, 14, 118–124. [Google Scholar] [CrossRef]
- Rumbach, P.; Bartels, D.M.; Sankaran, R.M.; Go, D.B. The Solvation of Electrons by an Atmospheric-Pressure Plasma. Nat. Commun. 2015, 6, 7248. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, Z.; Xia, Y.; Rui, J.; Zhu, M.; Ren, H.; Huang, J. Controlled Radical Polymerization Initiated by Solvated Electrons. Macromol. Rapid Commun. 2023, 44, 2300416. [Google Scholar] [CrossRef] [PubMed]
- Carraher Jr, C.E. Carraher’s Polymer Chemistry, 10th ed.; CRC Press: Boca Raton, the USA, 2017. [Google Scholar]
- Heravi, M.M.; Nazari, A. Samarium (II) Iodide-Mediated Reactions Applied to Natural Product Total Synthesis. RSC Adv. 2022, 12, 9944–9994. [Google Scholar] [CrossRef] [PubMed]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A.; Abe, A.; Bloch, D.R. Polymer Handbook, 4th ed.; Wiley: New York, the USA, 1999. [Google Scholar]
- Lan, J.; Kapil, V.; Gasparotto, P.; Ceriotti, M.; Iannuzzi, M.; Rybkin, V.V. Simulating the Ghost: Quantum Dynamics of the Solvated Electron. Nat. Commun. 2021, 12, 766. [Google Scholar] [CrossRef]
- Matamoros-Ambrocio, M.; Sánchez-Mora, E.; Gómez-Barojas, E.; Luna-López, J.A. Synthesis and Study of the Optical Properties of PMMA Microspheres and Opals. Polymers 2021, 13, 2171. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, W.; Zhang, X.; Han, D.; Liu, W.; Jia, J. Pyrolysis and Combustion Behavior Study of PMMA Waste from Micro-Scale to Bench-Scale Experiments. Fuel 2022, 319, 123717. [Google Scholar] [CrossRef]
- Ma, H.; Wan, X.; Chen, X.; Zhou, Q.F. Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 143–151. [Google Scholar] [CrossRef]
Polymerization Time (h) | Anode | Cathode | ||
---|---|---|---|---|
Conversion (%) | Molecular Weight (×10−5) | Conversion (%) | Molecular Weight (×10−5) | |
4 | 2.6 | 1.852 | 1.7 | 1.423 |
8 | 4.9 | 4.030 | 4.1 | 3.671 |
12 | 9.4 | 5.514 | 7.5 | 5.286 |
16 | 11.2 | 6.521 | 10.6 | 6.332 |
20 | 13.3 | 7.849 | 12.8 | 7.728 |
Polymerization | DC Voltage (kV) | Electrode | mm (%) | mr (%) | rr (%) |
---|---|---|---|---|---|
PIP | 24 | anode | 5.5 | 37.4 | 57.1 |
24 | cathode | 5.1 | 36.9 | 58.0 | |
16 | anode | 5.6 | 37.5 | 57.9 | |
16 | cathode | 4.9 | 36.3 | 58.7 | |
— | — | 4.6 | 37.7 | 57.7 | |
RP | 24 | anode | 5.6 | 36.5 | 58.0 |
24 | cathode | 4.7 | 36.8 | 58.5 | |
— | — | 4.7 | 37.3 | 58.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rui, J.; Cheng, S.; Ren, H.; Cui, S.; Huang, J. Electric Field Effect of the Plasma-Initiated Polymerization of Methyl Methacrylate: A Negatively Charged Long-Lived Radical. Polymers 2024, 16, 1497. https://doi.org/10.3390/polym16111497
Rui J, Cheng S, Ren H, Cui S, Huang J. Electric Field Effect of the Plasma-Initiated Polymerization of Methyl Methacrylate: A Negatively Charged Long-Lived Radical. Polymers. 2024; 16(11):1497. https://doi.org/10.3390/polym16111497
Chicago/Turabian StyleRui, Jiayu, Siru Cheng, He Ren, Sheng Cui, and Jian Huang. 2024. "Electric Field Effect of the Plasma-Initiated Polymerization of Methyl Methacrylate: A Negatively Charged Long-Lived Radical" Polymers 16, no. 11: 1497. https://doi.org/10.3390/polym16111497
APA StyleRui, J., Cheng, S., Ren, H., Cui, S., & Huang, J. (2024). Electric Field Effect of the Plasma-Initiated Polymerization of Methyl Methacrylate: A Negatively Charged Long-Lived Radical. Polymers, 16(11), 1497. https://doi.org/10.3390/polym16111497