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Abstract: Only 0.1% of polyurethanes available on the market are from renewable sources. With
increasing concern about climate change, the substitution of monomers derived from petrochemical
sources and the application of eco-friendly synthesis processes is crucial for the development of
biomaterials. Therefore, polyhydroxyurethanes have been utilized, as their synthesis route allows for
the carbonation of vegetable oils with carbon dioxide and the substitution of isocyanates known for
their high toxicity, carcinogenicity, and petrochemical origin. In this study, polyhydroxyurethanes
were obtained from carbonated soybean oil in combination with two diamines, one that is aliphatic
(1,4-butadiamine (putrescine)) and another that is cycloaliphatic (1,3-cyclohexanobis(methylamine)).
Four polyhydroxyurethanes were obtained, showing stability in hydrolytic and oxidative media,
thermal stability above 200 ◦C, tensile strength between 0.9 and 1.1 MPa, an elongation at break
between 81 and 222%, a water absorption rate up 102%, and contact angles between 63.70 and 101.39.
New formulations of bio-based NIPHUs can be developed with the inclusion of a cycloaliphatic
diamine (CHM) for the improvement of mechanical properties, which represents a more sustainable
process for obtaining NIPHUs with the physicochemical, mechanical, and thermal properties required
for the preparation of wound dressings.

Keywords: non-isocyanate polyhydroxyurethanes; soybean oil; wound dressing

1. Introduction

There is growing demand for biomaterials, especially polyurethanes, for tissue engi-
neering that can mimic tissue properties and behavior. Even though different polyurethanes
have been proposed and investigated, with many being commercially available, less than
0.1% of the total polyurethanes currently available on the market come from renewable
sources [1]. Common synthesis routes for polyurethanes involve the use of polyols and iso-
cyanates [2]. The source of these monomers is petrochemical [3], and isocyanates have been
found to be toxic, especially aromatic isocyanates, due to their degradation products [4].

One of the areas in which polyurethanes have been used is wound dressing applica-
tions, as they have advantages such as biocompatibility, mechanical properties similar to
those of human skin, and flexibility [5,6]. However, the currently available wound dressings
present disadvantages in the treatment of chronic wounds, including poor antibacterial
activity, poor anti-inflammation activity, differences in mechanical strength from human
skin, limited ability to absorb exudates, and inadequate gas exchange [5,7], which affect
the healing process.

Film dressings has a better relationship with the adjacent tissue, causing less damage
upon removal [8]. In addition, they achieve higher antibacterial activity compared to
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hydrogels and hydrocolloids [8,9]. Although some dressings generated with different
techniques, such as electrospun nanofibers, have great advantages such as compatibility or
antibacterial activity, in the case of nanofibers, by promoting cell adhesion, they result in
greater damage to the adjacent tissue [10]. Also, film dressings present higher chemical
resistance required for biomedical applications [11].

Although, currently, there is a wide range of products for this purpose, so far, an ideal
dressing has not been created, so the search for a material that will accelerate the healing
process and help to reduce the development of chronic or non-healing wounds, which
represent a high burden on the health system, continues.

For this reason, recent research has focused on new polyurethane synthesis routes
that allow for the incorporation and use of bio-based monomers and the substitution of
isocyanates, and polyhydroxyurethanes (PHUs) are promising materials [1]. One of the
synthesis routes comprises the use of carbon dioxide (CO2) and the incorporation of bio-
based monomers from renewable sources, such as vegetable oils [12]. In this route, cyclic
carbonates are ring-opened with amines, whereby an alkoxyl ion is produced, which forms
a hydroxyurethane bond upon reaction with amines, leading to the production of PHUs [13].
For the generation of cyclic carbonates, vegetable oils can be used, as they present several
advantages due to their chemical composition; vegetable oils have a double bond that
allow for different chemical modifications, which generate a wide variety of polymers with
diverse mechanical, physicochemical, and biological properties, thus allowing their use
in various applications [14]. Another advantage of this synthesis route is the 100% atomic
reaction, wherein CO2 acts as an aprotic and reactive solvent [12].

Soybean oil has been used in the synthesis of polyurethanes due to the presence
of unsaturated fatty acids in its chain, which are susceptible to chemical modifications,
such as epoxidation and carbonation. Its application allows the characteristic urethane
bond to form. Although the synthesis route using soybean oil generates five-carbon
cyclic carbonates, which are less reactive than those with six carbons, the renewable
characteristic of soybean oil allows for the incorporation of more sustainable production
processes. Additionally, soybean oil is a low-cost raw material and has been proven to be
biocompatible in biomedical applications [15].

Specifically for wound dressings, Gholami and Yeganeh generated PHUs from soybean
oil crosslinked with epichlorohydrin, with the inclusion of cationic azethidinium groups to
improve the antibacterial properties of these dressings. The mechanical properties were
a tensile strength of 6 MPa, an elongation at break of 200%, and water absorption of 30%,
and these dressing were non-cytotoxic to L929 fibroblasts, generating a moist environment
suitable for low to moderately exuding wounds [16].

Therefore, the search for biomaterials from renewable sources that can be used in more
sustainable synthesis routes is crucial. The aim of this investigation was to determine the
physicochemical, mechanical, and thermal properties of bio-based NIPHUs obtained from
modified soybean oil with the incorporation of a cycloaliphatic diamine in the chain to
increase the mechanical properties; these bio-based NIPHUs were generated to be potential
candidates for wound dressing applications.

2. Materials and Methods
2.1. Materials

Epoxidized soybean oil (ESBO) was purchased from MPQ MapriQuim SAS (Bogotá,
Colombia). Tetrabutylammonium bromide (TBABr), 1,4 butadiamine (BDA), and 1,3-
cyclohexanobis(methylamine) (CHM) were procured from Sigma-Aldrich Co., LLC (Saint
Louis, MO, USA). Additionally, 30% hydrogen peroxide and sodium bicarbonate were
purchased from PanReac AppliChem ITW Reagents (Darmstadt, Germany). CO2 was
purchased from Messer (Bogotá, Colombia), and phosphate buffer from VWR (Radnor,
PA, USA).
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2.2. Soybean Oil Carbonatation

To obtain carbonated soybean (CSBO), the procedure developed by Guzmán et al.
(2017) was followed. ESBO and the catalyst TBABr at 5% mol with respect to the epox-
ide content were placed in a 160 mL high-pressure reactor (Parr Instrument Company,
Moline, IL, USA) at 105 ◦C. When the desired temperature was reached, CO2 was con-
tinuously injected into the mixture at a pressure of 6.0 MPa. The reaction was run for
24 h at 500 rpm [17]. When the reaction was completed, the mixture was cooled to room
temperature (25 ◦C).

2.3. Synthesis of Non-Isocyanate Polyhydroxyurethanes (NIPHUs)

NIPHUs were obtained based on the methodology proposed by Raden Amirah et al.,
2013. Briefly, the obtained CSBO was heated to 60 ◦C. Then, the amines BDA and CHM
were added in different proportions (Table 1) to reach a 1:2 molar ratio of cyclocarbonate to
amine. The mixture was left under agitation at 60◦ C for 5 min, and then transferred to a
mold and left to cure at 90 ◦C for 12 h [18].

Table 1. Composition of non-isocyanate polyhydroxyurethane films.

ID Sample BDA (% Molar) CHM (% Molar)

NIPHU-100/0 100 0
NIPHU-75/25 75 25
NIPHU-67/33 67 33
NIPHU-50/50 50 50
NIPHU-33/67 33 67
NIPHU-25/75 25 75
NIPHU-0/100 0 100

2.4. Characterization

The characteristic chemical structures of ESBO, CSBO, and NIPHUs were evalu-
ated via Fourier-transform infrared (FTIR) spectroscopy using an ATR-FTIR spectrom-
eter (Agilent Cary 630 FTIR Spectrometer, Santa Clara, CA, USA) in the range between
400 and 4000 cm−1. The spectra were obtained at a spectral resolution of 4 cm−1 for an
average of 24 scans. The molecular structures of products of carbonation reactions were
analyzed via proton nuclear magnetic resonance to obtain 1HNMR and 13CNMR spectra
using a Bruker Avance Neo 400 MHz spectrometer, Billerica, Massachusetts, USA and
CDCl3 as the solvent.

2.5. Swelling

Sample disks (6 mm in diameter) were immersed in 1.5 mL of distilled water and
incubated for 21 days at 37 ◦C [19]. The water absorption was calculated after 1, 2, 3, 5, 6,
24, 26, 28, 30, 48, 50, 52, 144, 168, 216, 288, 360, 456, and 504 h, with the initial weight (Wo)
and final weight (Ws), according to the following equation:

Water absoption rate(%) =
(wt − wi)

wi
× 100% (1)

2.6. Contact Angle

The hydrophilic characteristic of the obtained NIPHUs was measured via the sessile
drop method using an OCA20 device (Data Physics, Filderstadt, Germany) with deionized
water at 25 ◦C. At least 15 measurements were taken per sample [20].

2.7. Hydrolytic and Oxidative Degradation

Degradation was evaluated in terms of the mass loss. Hydrolytic degradation was
performed in phosphate buffer (PBS 1×: 137 mM NaCl, 10 mM phosphate, and 2.7 mM
KCl) at a pH of 7.4. The oxidative degradation was evaluated in a 3% H2O2 solution [21].
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The NIPHU samples (between 20 and 60 mg) were immersed in 2 mL of each solution for
21 days at 37 ◦C. Their weight was recorded every three days.

2.8. Mechanical Test

Stress–strain tests were performed using a DMA 850 (TA Instruments, New Castle,
DE, USA), wherein the maximum stress, percentage of elongation, and Young’s mod-
ulus of the PHUs were determined (following the ASTM D638-10 [22]). A 5 kN-load
cell with a jaw displacement speed of 25 mm min−1 was used [19]. Three specimens of
20 mm × 5 mm × 0.25 mm (length × width × thickness) were tested.

2.9. Thermal Characterization

The thermal stability of the obtained NIPHUs was evaluated with thermogravimetric
analysis (TGA) in the range of 25 ◦C to 600 ◦C under a nitrogen atmosphere at a heating
rate of 25 ◦C min−1.

2.10. Statistical Analysis

All experiments were performed at least three independent times. The data were
reported as the mean ± standard deviation and were analyzed using one-way analysis
of variance (ANOVA) to determine the statistical significance. A p-value of less than 0.05
was considered significant. Tukey’s multiple comparison test was performed to determine
significant differences between pairs.

3. Results

Epoxidized soybean oil reacted with CO2 and TBABr to generate carbonated soybean
oil. From the FTIR spectra of the ESBO and CSBO, it is evident that a conversion of the
epoxy groups, with a peak at 834 cm−1, to cyclic carbonate groups occurred, with the
appearance of new signals at 1046, 1200, and 1801 cm−1 (Figure 2a). Similarly, the 1H
RMN spectrum presented in Figure 2b indicates that the signals of the epoxy groups in
the ESBO at 2.80–3.20 ppm disappeared in the CSBO, with the appearance of new signals
at 4.45–5.10 ppm, corresponding to the cyclic carbonate groups [23,24]. Additionally, the
13C RMN spectrum presents a signal at 155 ppm due to the carbonyl group of cyclic
carbonates in CSBO and indicates the disappearance of the signals at 54.16 and 56.75 ppm,
corresponding to the epoxy groups [23].

The following reactions occurs for the carbonatation and synthesis of the NIPHUs.

ESBO + CO2
TBABR−−−−→
105 ◦C

CSBO

CSBO + BDA + CHM 60 ◦C−−−→ NIPHU

Afterwards, NIPHUs were synthetized from CSBO, 1,4 butadiamine (BDA), and 1,3-
cyclohexanobis(methylamine) (CHM). However, the synthesis of NIPHUs with a content
of CHM over 50% resulted in brittle materials that broke during the demolding pro-
cess; therefore, these NIPHUs were not characterized (Figure 3a). The disappearance of
the 1801 cm−1 peak during the reaction and the appearance of the peaks at 1689, 1536,
and 3309 cm−1 corresponding to the stretching of urethane carbonyl, the combination of
C-N stretching/N-H bending, and the urethane N-H/hydroxyl OH stretching vibrations,
respectively (Figure 3b), confirm that NIPHUs were obtained. Additionally, there was
C–N bond stretching at around 1250 cm−1 and stretching vibrations of the C–O bond at
1141 cm−1 [25,26]. No differences were observed in the FTIR spectra of the synthetized
NIPHUs.

The hydrophilicity or hydrophobicity of the obtained NIPHUs were evaluated by
measuring the contact angle degree and water absorption rate (Figure 3). The surface
wettability of these NIPHUs changed with the inclusion of CHM in the chains. With a
lower content of CHM, a more hydrophilic behavior with a contact angle of 63.70 (NIPHU-
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50/50) was observed compared to the contact angle of 101.39 of the NIPHU without CHM
(NIPHU-100/0). However, the water absorption rate was similar for NIPHUs with or
without CHM, with a maximum absorption over 456 h (19 days) after equilibrium was
reached at 102.88% and 104.29%, respectively (Figure 3b). No mass loss was observed
within the 21 days of analysis for all the NIPHUs synthetized from CSBO and BDA/CHM
in the hydrolytic and oxidative medium.

The thermograms of the NIPHUs in Figure 1 display a three-stage weight loss process
(Figure 4). The NIPHUs showed stable behavior up to 200 ◦C, and their degradation
occurred after 350 ◦C [27].
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The developed NIPHUs exhibited a tensile strength in the range of 0.5 to 1.13 MPa
(Table 2). The Young’s modulus was in the range of 0.002 MPa to 0.009 MPa. The elongation
at break was in the range of 81 to 273%, increasing with a decrease in the CHM content in
the material.
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Table 2. Young’s modulus, tensile strength, and elongation at break of NIPHUs synthetized from
CSBO with different contents of BDA and CHM. The data are expressed as the mean ± SD (n = 3).

Sample Young’s Modulus
(MPa)

Tensile Strength
(MPa)

Elongation at Break
(%)

NIPHU-100 0.009 ± 0.002 a 0.97 ± 0.16 a 81.13 ±18.82 a

NIPHU-75/25 0.006 ± 0.001 a,b 1.13 ± 0.05 a 145.89 ± 39.69 a,b

NIPHU-67/33 0.002 ± 0.001 b 0.49 ± 0.22 a 207.65 ± 31.05 b,c

NIPHU-50/50 0.003 ± 0.0005 b,c 0.96 ± 0.07 a 273.21 ± 17.62 c

According to the analysis of variance and Tukey’s pairwise comparison test, means that do not share the same
letter are significantly different (p < 0.05).

4. Discussion

Increasing concern about the environmental impact of different polymer synthesis
routes, especially those of polyurethanes, has prompted the search for new renewable
and eco-friendly sources. The incorporation and use of bio-based monomers and the
substitution of isocyanates is a promising route, and polyhydroxyurethanes (PHUs) have
garnered attention, especially in biomedical applications. Therefore, this work aimed to
synthesize non-isocyanate polyhydroxyurethanes from soybean oil, BDA, and CHM and
characterize their physicochemical, mechanical, and thermal properties.

The results show that the modification of ESBO with carbon dioxide can generate
CSBO which is necessary for the aminolysis reaction to obtain NIPHUs (Figure 2). Similar
procedures have been performed by several authors in recent years. Patel et al. prepared
CSBO at 750 psi (5.17 MPa) and 110 ◦C for 48 h and obtained the same results as this
investigation. Nevertheless, the time used in this research was reduced by 24 h [28].

The reaction of the modified soybean oil with different combinations of BDA and
CHM allowed us to obtain NIPHU films. Increasing the percentage of CHM in the matrix
generated brittle NIPHUs, which broke during the demolding process; therefore, these
NIPHUs were not considered for potential wound dressing applications. The results show
that the inclusion of CHM improved the mechanical properties of these NIPHUs, but an
excess did not lead to flexible materials.

In comparison to polyurethanes, PHUs present a higher water absorption limit due to
the hydroxyl groups adjacent to the urethane linkages [29]. In this regard, the incorporation
of CHM to the backbone of the NIPHUs increases their hydrophilicity (Figure 1b) but
does not significantly affect water absorption. As reported in other investigations, the
synthesis of NIPHUs by using BDA generates hydrophobic materials [28] Therefore, a moist
environment is desired to create dressings that allow for better interaction with water. As
expected, a direct correlation between the bulk hydrophilicity and the crosslink density of
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networks has been observed in previous research [6]. Due to the hydrophobic characteristics
of the NIPHUs synthetized with carbonated soybean oil, the interaction between these
materials and hydrolytic and oxidative media is low; in this study, there was no mass
loss within the 21 days of the study, indicating the stability of the synthetized NIPHUs
in relation to the time of wound healing. For would dressing applications, materials
with a suitable water absorption rate are desired for their ability to absorb exudates and
provide a moist environment suitable for the wound healing process, as well as a cooling
sensation [30].

The thermal stability of the NIPHUs was evaluated with thermogravimetric analysis.
All the NIPHUs presented thermal stability up to 200 ◦C, and weight loss was observed
at temperatures under 100 ◦C, which might have been due to the moisture present in
the samples. In agreement with other studies, the three stages of degradation could be
attributed to the degradation of urethane linkages during the first stage, and then polymer
degradation during the second and third stages [31]. The degradation of the soft segment
of these NIPHUs is related to the CSBO structure.

Finally, in terms of mechanical properties, the tensile strength of the NIPHUs agrees
with that of similar NIPHUs generated from CSBO. Patel et al. synthesized NIPHUs
from CSBO and BDA with a tensile strength of 0.4878 MPa [28], compared to a tensile
strength of 0.97 MPa of the NIPHU-100/0 in this study. Compared to polyurethanes
synthesized for wound dressing applications, the tensile strength was in the range of
0.7 to 18 MPa for dermal cell culture [27], making them good candidates for wound
dressings. Nevertheless, the mechanical properties of NIPHUs are lower when compared
to conventional polyurethanes, such as those synthesized from vegetable oils like castor
oil. Different blends of castor oil with aliphatic, cycloaliphatic, and aromatic isocyanates
possess a maximum tensile strength of 16.86 MPa [32], while polyurethanes synthesized
from carbonated soybean oil and isophorone diisocyanate have a tensile strength ranging
from 5 to 17 MPa [6]. This remains a limitation in the application of NIPHUs to biological
environments, but the inclusion of mixtures of different diamines could overcome this.

In this study, the inclusion of CHM in the formulation did not modify the tensile
strength of the materials but influenced the elongation at break, increasing it from 81.13%
to 273.21%. This increase influenced the flexibility of the dressing, which is an important
key in the design for the comfort of patients [16]. Likewise, Gholami prepared a wound
dressing from CSBO but with the inclusion of isocyanates, which reached an elongation
at break between 140% and 390% [6]. These results show that the chemical or physical
crosslinking in NIPHUs is not high enough to allow for the free movement of the chains, but
the tensile strength is high enough to create a dressing for application on the wound zone,
along with an appropriate water absorption rate to create an adequate moist environment
for the progress of the wound healing stages.

5. Conclusions

A number of studies have been conducted, aiming to avoid the use of petrochemical
monomers and to utilize eco-friendly synthesis routes for the synthesis of removable
monomers. Soybean oil is a vegetable oil that can be modified with carbon dioxide to
obtain novel wound dressings. The incorporation of 50% (molar percentage) of CHM
in the NIPHU formulation (a cycloaliphatic diamine) increased the elongation at break
from 81.13% to 273.21%, making the obtained NIPHUs more suitable for wound dressing
applications without significant modifications to the physical, chemical, and thermal
properties. NIPHUs obtained from vegetables oils, such as soybean oil, can be used in
an eco-friendly manner for the fabrication of wound dressings that can replace existing
PU dressings.
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