Study on the Cross-Scale Effects of Microscopic Interactions and Mechanical Properties of Rigid Polyurethane Foam Driven by Negative-Temperature Environments
Abstract
:1. Introduction
2. Microsimulations and Macro Experiments
2.1. Microsimulation Process and Calculation Indicators
2.1.1. The Process of Model Building
2.1.2. The Details of Model Running
2.1.3. Radial Distribution Function
2.1.4. Micromechanical Properties
2.1.5. Cohesive Energy Density
2.1.6. Calculation of Free Volume
2.2. Sample Preparation and Experimental Methods
2.2.1. Preparation of Rigid Polyurethane Foam
2.2.2. Low-Temperature Treatment of Stiff Polyurethane Foam
2.2.3. Compression Performance Test
2.2.4. Morphological Testing of Vesicles based on Scanning Electron Microscope (SEM) Experiments
2.2.5. DSC Experiment
2.2.6. Three-Point Bending Experiments
3. Results and Analysis
3.1. Model Validity Verification
3.2. Analysis of Model Running Results
3.3. Analysis of Free-Volume Calculation Results
3.4. Analysis of the Effect of Temperature on Soft–Hard Segment Interactions
3.5. Analysis of Cohesive Energy Density Calculation Results
3.6. Analysis of the Impact of a Negative-Temperature Environment on the Micromechanical Characteristics of Stiff Polyurethane Foam
3.7. Analysis of Changes in the Morphology of Microscopic Vesicles in Rigid Polyurethanes
3.8. Analysis of the Impact of Temperature on the Macroscopic Compression Characteristics of Stiff Polyurethane Foam
3.9. Analysis of Bending Performance Test Results
3.10. Analysis of DSC Test Results
3.11. Analysis of the Cross-Scale Effects of Rigid Polyurethane Foam Micro-Interactions Rigid Polyurethane Foam
4. Conclusions
- (1)
- In a negative-temperature environment, as the temperature decreases, the hard segment molecules and soft segment molecules in rigid polyurethane foam aggregate more obviously, which will make adjacent rigid polyurethane molecular chains more likely to entangle and cross-link with each other.
- (2)
- The calculation results of the radial distribution function show that in a negative-temperature environment, as the temperature decreases, the intensity of interaction between hard segments and soft segments gradually increases, which will cause adjacent rigid polyurethane molecular chains to become more entangled with each other for closeness.
- (3)
- The calculation results of cohesive energy density and micromechanical properties show that in a negative-temperature environment, as the temperature decreases, the strength and modulus of rigid polyurethane molecules will gradually increase.
- (4)
- The scanning electron microscopy test results reveal that the diameter of the blister holes of the rigid polyurethane foam gradually increases with a decreasing temperature in the negative-temperature environment due to the contraction of the rigid polyurethane molecular chains that aggregate with each other, confirming the accuracy of the molecular simulation results.
- (5)
- The compression performance test results show that in a negative-temperature environment, as the temperature decreases, the compression performance of rigid polyurethane gradually increases, which is consistent with the results of microscopic simulation.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Samali, B.; Nemati, S.; Sharafi, P.; Tahmoorian, F.; Sanati, F. Structural performance of polyurethane foam-filled building composite panels: A state-of-the-art. J. Compos. Sci. 2019, 3, 40. [Google Scholar] [CrossRef]
- Briones-Llorente, R.; Barbosa, R.; Almeida, M.; Montero García, E.A.; Rodríguez Sáiz, Á. Ecological design of new efficient energy-performance construction materials with rigid polyurethane foam waste. Polymers 2020, 12, 1048. [Google Scholar] [CrossRef]
- Uram, K.; Prociak, A.; Vevere, L.; Pomilovskis, R.; Cabulis, U.; Kirpluks, M. Natural oil-based rigid polyurethane foam thermal insulation applicable at cryogenic temperatures. Polymers 2021, 13, 4276. [Google Scholar] [CrossRef] [PubMed]
- Ridha, M.; Shim, V.P.W. Microstructure and tensile mechanical properties of anisotropic rigid polyurethane foam. Exp. Mech. 2008, 48, 763–776. [Google Scholar] [CrossRef]
- Park, K.B.; Kim, H.T.; Her, N.Y.; Lee, J.M. Variation of mechanical characteristics of polyurethane foam: Effect of test method. Materials 2019, 12, 2672. [Google Scholar] [CrossRef] [PubMed]
- Peyrton, J.; Avérous, L. Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater. Sci. Eng. R Rep. 2021, 145, 100608. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, C.; Zhang, C.; Li, X.; Duan, S.; Chen, M. Study on all water foaming of rigid polyurethane foam and design of high-performance formula. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 446, p. 022082. [Google Scholar]
- Bhagavathula, K.B.; Meredith, C.S.; Ouellet, S.; Satapathy, S.S.; Romanyk, D.L.; Hogan, J.D. Density, microstructure, and strain-rate effects on the compressive response of polyurethane foams. Exp. Mech. 2022, 62, 505–519. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Deng, Y.; Zhang, P. A Review of Research on the Effect of Temperature on the Properties of Polyurethane Foams. Polymers 2022, 14, 4586. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.K.; Kim, S.K.; Kim, J.H.; Kim, J.D.; Lee, J.M. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures. Int. J. Mech. Sci. 2020, 180, 105657. [Google Scholar] [CrossRef]
- Barszczewska-Rybarek, I.; Jaszcz, K.; Chladek, G.; Grabowska, P.; Okseniuk, A.; Szpot, M.; Zawadzka, M.; Sokołowska, A.; Tarkiewicz, A. Characterization of changes in structural, physicochemical and mechanical properties of rigid polyurethane building insulation after thermal aging in air and seawater. Polym. Bull. 2021, 79, 3061–3083. [Google Scholar] [CrossRef]
- Bernal, M.M.; Martin-Gallego, M.; Romasanta, L.J.; Mortamet, A.C.; López-Manchado, M.A.; Ryan, A.J.; Verdejo, R. Effect of hard segment content and carbon-based nanostructures on the kinetics of flexible polyurethane nanocomposite foams. Polymer 2012, 53, 4025–4032. [Google Scholar] [CrossRef]
- Jiang, K.; Chen, W.; Liu, X.; Wang, Y.; Han, D.; Zhang, Q. Effect of bio-based polyols and chain extender on the microphase separation structure, mechanical properties and morphology of rigid polyurethane foams. Eur. Polym. J. 2022, 179, 111572. [Google Scholar] [CrossRef]
- Huang, H.; Pang, H.; Huang, J.; Yu, P.; Li, J.; Lu, M.; Liao, B. Influence of hard segment content and soft segment length on the microphase structure and mechanical performance of polyurethane-based polymer concrete. Constr. Build. Mater. 2021, 284, 122388. [Google Scholar] [CrossRef]
- Hejna, A.; Kirpluks, M.; Kosmela, P.; Cabulis, U.; Haponiuk, J.; Piszczyk, Ł. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crops Prod. 2017, 95, 113–125. [Google Scholar] [CrossRef]
- Leimkuhler, B.; Matthews, C. Molecular dynamics. Interdiscip. Appl. Math. 2015, 39, 443. [Google Scholar]
- Tuckerman, M.E.; Martyna, G.J. Understanding modern molecular dynamics: Techniques and applications. J. Phys. Chem. B 2000, 104, 159–178. [Google Scholar] [CrossRef]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Venable, R.M.; Brown, F.L.H.; Pastor, R.W. Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids 2015, 192, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Belmares, M.; Blanco, M.; Goddard, W.A.; Ross, R.B.; Caldwell, G.; Chou, S.; Pham, J.; Olofson, P.M.; Thomas, C. Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J. Comput. Chem. 2004, 25, 1814–1826. [Google Scholar] [CrossRef]
- GB/T 8813-2020; Rigid Celluar Plastics-Determination of Compression Properties. State Administration for Market Regulation, Standardization Administration of China (SAC): Beijing, China, 2021.
- Abd Halim, H.; Abdul-Razak, S.; Md Yasin, M.; Isa, M.R. Validation study of the parent attitudes about childhood vaccines (PACV) questionnaire: The Malay version. Hum. Vaccines Immunother. 2020, 16, 1040–1049. [Google Scholar] [CrossRef]
- Galadari, M. Robust Polyurethane-Zeolite Composites with Diverse Applications. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2023. [Google Scholar]
- Hsissou, R.; Azogagh, M.; Benhiba, F.; Echihi, S.; Galai, M.; Shaim, A.; Bahaj, H.; Briche, S.; Kaya, S.; Serdaroğlu, G.; et al. Insight of development of two cured epoxy polymer composite coatings as highly protective efficiency for carbon steel in sodium chloride solution: DFT, RDF, FFV and MD approaches. J. Mol. Liq. 2022, 360, 119406. [Google Scholar] [CrossRef]
- Tardio, S.; Abel, M.L.; Carr, R.H.; Watts, J.F. The interfacial interaction between isocyanate and stainless steel. Int. J. Adhes. Adhes. 2019, 88, 1–10. [Google Scholar] [CrossRef]
- Lommerse, J.P.M.; Stone, A.J.; Taylor, R.; Allen, F.H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 1996, 118, 3108–3116. [Google Scholar] [CrossRef]
- Chandra, N. Evaluation of interfacial fracture toughness using cohesive zone model. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1433–1447. [Google Scholar] [CrossRef]
- Roos, Y.H. Glass transition and re-crystallization phenomena of frozen materials and their effect on frozen food quality. Foods 2021, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, D.J.; Spiering, A.J.; Peters, G.W.; Te Nijenhuis, K.; Sijbesma, R.P. Unidirectional dimerization and stacking of ureidopyrimidinone end groups in polycaprolactone supramolecular polymers. Macromolecules 2007, 40, 8464–8475. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z.; Bick, A.; Wang, M. Modulus simulation of asphalt binder models using Molecular Dynamics (MD) method. Constr. Build. Mater. 2018, 162, 430–441. [Google Scholar] [CrossRef]
- Seymour, R.W.; Cooper, S.L. Thermal analysis of polyurethane block polymers. Macromolecules 1973, 6, 48–53. [Google Scholar] [CrossRef]
- Pelletier, H.; Krier, J.; Cornet, A.; Mille, P. Limits of using bilinear stress–strain curve for finite element modeling of nanoindentation response on bulk materials. Thin Solid Film. 2000, 379, 147–155. [Google Scholar] [CrossRef]
Molecule Name | Molecular Formula | Number of Molecules | Simulated Quality Score | Actual Quality Score |
---|---|---|---|---|
PDO | HO-(CH2)2-OH | 21 | 72.25% | 70% |
MDI | C15H10N2O2 | 2 | 27.74% | 30% |
Temperature/K | 273.15 | 268.15 | 263.15 | 258.15 | 253.15 |
---|---|---|---|---|---|
Number of pores | 17 | 21 | 22 | 19 | 25 |
Average pore diameter/mm | 0.391 | 0.368 | 0.331 | 0.296 | 0.260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Bi, Y.; Bi, G. Study on the Cross-Scale Effects of Microscopic Interactions and Mechanical Properties of Rigid Polyurethane Foam Driven by Negative-Temperature Environments. Polymers 2024, 16, 1517. https://doi.org/10.3390/polym16111517
Wei W, Bi Y, Bi G. Study on the Cross-Scale Effects of Microscopic Interactions and Mechanical Properties of Rigid Polyurethane Foam Driven by Negative-Temperature Environments. Polymers. 2024; 16(11):1517. https://doi.org/10.3390/polym16111517
Chicago/Turabian StyleWei, Wei, Yusui Bi, and Gehua Bi. 2024. "Study on the Cross-Scale Effects of Microscopic Interactions and Mechanical Properties of Rigid Polyurethane Foam Driven by Negative-Temperature Environments" Polymers 16, no. 11: 1517. https://doi.org/10.3390/polym16111517
APA StyleWei, W., Bi, Y., & Bi, G. (2024). Study on the Cross-Scale Effects of Microscopic Interactions and Mechanical Properties of Rigid Polyurethane Foam Driven by Negative-Temperature Environments. Polymers, 16(11), 1517. https://doi.org/10.3390/polym16111517