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Abstract: In recent years, researchers have increasingly directed their focus toward the biomedical
field, driven by the goal of engineering polymer systems that possess a unique combination of
both electrical conductivity and biodegradability. This convergence of properties holds significant
promise, as it addresses a fundamental requirement for biomedical applications: compatibility with
biological environments. These polymer systems are viewed as auspicious biomaterials, precisely
because they meet this critical criterion. Beyond their biodegradability, these materials offer a range of
advantageous characteristics. Their exceptional processability enables facile fabrication into various
forms, and their chemical stability ensures reliability in diverse physiological conditions. Moreover,
their low production costs make them economically viable options for large-scale applications.
Notably, their intrinsic electrical conductivity further distinguishes them, opening up possibilities
for applications that demand such functionality. As the focus of this review, a survey into the use of
biodegradable conducting polymers in tissue engineering, biomedical implants, and antibacterial
applications is conducted.

Keywords: conducting polymers; biodegradable polymers; tissue engineering; biomaterials; antibacterial

1. Introduction

Biomaterials, whether organic or manmade, can degrade naturally and positively interact
with living things [1] and play a pivotal role in the biomedical field. These materials, precisely
characterized as a class intended to interact with biological systems to diagnose, treat, and
substitute physical organs, tissues, or functions [2,3], are a crucial element within humans’
environment-based or natural health system [4]. Among these biomaterials, biopolymers
are the key category thanks to their biocompatibility, biodegradability, and safety for human
health [5]. Categorized by their characteristics, these biopolymers are divided into groups that
distinguish between biodegradable and non-biodegradable types [6,7].

Biodegradable polymers stand out as the preferred choice in biomedical applications,
given their remarkable biocompatibility. The discipline of biomedical engineering is an
appealing one, since it combines engineering and biology to develop basic engineering
components and materials for the healthcare and medical industries. By combining cells,
scaffolds, and bioactive chemicals, tissue engineering aims to replace or recover ailing or
damaged body tissue. Scaffolds should integrate several features, including biodegradabil-
ity, biocompatibility, the appropriate level of mechanical strength, sufficient porosity for
the transit of tiny molecules, controllability, implantation, and sterilizing. In the production
of scaffolds, excellent choices contain synthetic aliphatic polyesters and natural polymers
like chitosan and gelatin. However, the absence of sites for covalent bonding and poor
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hydrophilicity limit the cells’ ability to adhere to surfaces. Although biopolymers and
ordinary polymers are biodegradable, they are natural insulators, which restricts their
usage in several biological applications where biomaterial conductivity is required [8].
Materials demonstrating enduring and dependable performance are essential for various
implant applications within the body, encompassing dentistry, bone replacement, and
bone fixation. Beyond biodegradability, biomaterials must possess various qualities to be
suitable for applications such as gene therapy, tissue engineering, regenerative medicine,
and controlled drug administration [9–11].

Since the early 20th century, various biomaterials, including synthetic polymers, com-
posites, ceramics, alloys, metals, and carbons, have been extensively used [12,13]. These
novel biomaterials showed superior mechanical qualities, repeatability, and enhanced
biological and chemical functioning. Biomaterials, emerging materials that interact with
biological components to facilitate medical diagnosis and treatment, find diverse applica-
tions. These include biosensors, artificial muscles, drug delivery, tissue engineering, and
other subjects [14].

Since the discovery of intrinsically conducting polymers, researchers have explored
their unique electronic properties, including their low-energy optical transmission, low
ionization potential, and high electron affinities. These properties make them suitable for
various applications such as thin-film transistors, organic light-emitting diodes, sensors, su-
percapacitors, organic solar cells, and electrochromic displays. Numerous research groups
have extensively investigated conducting polymers for these applications, with several
excellent reviews available. With extensive research in this area, conducting polymers
and electroactive polymers are now garnering attention for their potential biomedical and
ani-bacterial applications. These materials find extensive use in various fields, such as
skin tissue engineering, drug delivery, orthopedics, dentistry, and cardiovascular devices.
They are crafted to seamlessly interact with biological systems, aiming to replace, assess,
or repair damaged or compromised bodily tissues, organs, or systems [15], in addition to
their roles in tissue engineering, biosensors, artificial muscles, and medication adminis-
tration [16–18]. The conductivity range depicted in Figure 1 illustrates the spectrum of
conductivity observed in conducting polymers and conductive polymeric composites.
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Figure 1. The spectrum of conductivity observed in conducting polymers and conductive polymeric composites.

Polymer composites comprise two components: filler and a polymer matrix. Con-
ductive polymer composites consist of a polymer matrix combined with conductive filler,
which can be either intrinsically conductive or inorganically conductive.

The polymer matrix contributes to the mechanical and physical qualities, and the conduc-
tive fillers contribute to the electrical properties. The volume content of the filler significantly
influences the conductivity of the composites. Figure 2 depicts a schematic diagram of poten-
tial conductivity channels in composite polymers. When conductive particles form channels
adjacent to one another, electricity can flow along these conductivity pathways.
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Researchers are keenly interested in advancing polymer systems that possess both
biodegradability and electrical conductivity within the biomedical field. Such systems
are regarded as promising biomaterials due to their essential qualities of electrical and
biological properties, which are crucial prerequisites for biomedical applications. In addi-
tion to being biodegradable, these materials also showed certain excellent qualities that
made them useful in various engineering domains [19–22], including good processability,
chemical stability, cheap production costs, conductivity, etc. We shall discuss these kinds of
biodegradable conducting polymers in the current review discussion of tissue engineering,
biomedical implants, and antibacterial applications. Biomaterials have gained significance
in contemporary society, driven by advancements in material processing and medicine
over the past several decades.

2. Biodegradable Materials

Advancements in tissue engineering, regenerative medicine, gene therapy, and con-
trolled drug delivery have amplified the demand for enhanced biomaterials. A comprehen-
sive understanding of biodegradability is crucial, particularly concerning polymers, and
novel materials must be tailored to possess precisely controlled degradability [23,24]. We
recommend organizing them into five primary categories, and it is advantageous to classify
both subgroups of polymeric biomaterials, namely, natural and synthetic, into classes and
subclasses (Figure 3).
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This approach offers various benefits, such as streamlining the selection process for
specific applications. By controlling cell phenotypic expression, the natural extracellular
matrix (ECM) can coordinate stromal cells in synthesizing new tissue, especially in response
to injury. As an artificial ECM within a scaffold, biomaterials must possess mechanical
and biological characteristics compatible with natural bodily tissues. They play a crucial
role in establishing a two- or three-dimensional environment that facilitates the growth of
new tissues with the correct structure and function. Additionally, they assist in localizing
and transporting cells and transforming factors to specific locations within the body. As a
result, the design and selection of biomaterials are essential, aiming to control the shape
and function in a predetermined manner for the production of engineered tissues [25].

One crucial characteristic among these is that the release of breakdown products can
be effectively eliminated from the body through metabolic pathways without causing
inflammation. According to the American Standard Testing Materials (ASTM), degradation
is “plastic designed to undergo a significant change in chemical structure under specific
environmental conditions, resulting in a loss of some properties and its applications in
a certain period.” Therefore, it is crucial to monitor the concentration of degradation
products in tissues and control the rate of deterioration [26]. Various degradation processes,
including enzymatic, hydrolytic, and biodegradation, need consideration [27]. Additionally,
it is imperative to account for abiotic processes such as photodegradation, oxidation, and
hydrolysis. Depending on environmental factors, these processes may influence how a
polymer breaks down before or during the degradation process [28].

There are instances where the term “biodegradation” is inaccurately attributed [29].
For example, though an enzyme may break down a material in vitro, the absence of nec-
essary body enzymes in vivo may impede the degradation process. Hence, cell activity is
essential for biodegradation. In contrast, hydrolysis or hydrolytic degradation, rather than
biodegradation, is more fitting for the breakdown occurring in vivo due to water-mediated
hydrolysis in tissues and organs. Technically, biodegradation refers to the breakdown
of a substance due to specific biological activity with an identified mechanism. This is
akin to a cell-mediated chemical modification, where bio-alteration—strictly speaking, not
biodegradation—is the primary chain scission event.

3. Biodegradable Polymers

The literature reported earlier has examined the use of biodegradable polymers as bio-
materials [30]. To be considered biomaterials, these polymers must possess three essential
characteristics: mechanical resistance, biocompatibility, and bio absorbability. Biodegrad-
able polyesters, known for their adjustable breakdown rates and overall acceptable strength,
are commonly utilized in tissue engineering for creating porous structures [31,32]. These
studies comprehensively detail these polymers’ chemical composition, breakdown prod-
ucts, breakdown processes, mechanical properties, and therapeutic limitations. Further-
more, biodegradable polymers find applications as implantable matrices or absorbable
sutures, facilitating controlled drug release within the body. A previous compilation listing
various commercially available biodegradable medical products and their respective uses
can be found in [33].

Polymeric materials have a long history of use in clinical applications [34–36]. How-
ever, depending on the intended use, diverse biological and clinical requirements come into
play. Various processes have been employed to develop and modify a range of formulations
tailored to meet specific needs for therapeutic applications. This process usually involves
controlling factors such as molecular weight, polydispersity, crystallinity, thermal transition,
and degradation rate. Collectively, these factors significantly influence the properties of the
polymer scaffold [37].
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Classification of Biodegradable Polymers

Biodegradable polymers can be classified into three main categories: natural, synthetic,
and hybrid materials. Both natural and synthetic sources can undergo degradation, though
synthetic biodegradable polymers are more commonly employed in medical settings. This
is likely because they are more chemically modifiable and allow for the creation of cus-
tomized designs [38]. Recently, hybrid materials have gained attention due to their superior
properties in regenerative medicine. Utilizing assembly techniques allows for fabricating
these materials with high structural precision, enabling control over properties such as
porosity, stiffness, and degradation [39]. Composite or hybrid materials have found exten-
sive use in clinical applications due to their behavior that enhances qualities for scaffold
function [40–42]. Blending synthetic with natural, natural with synthetic, and synthetic
with synthetic polymers has yielded polymeric material blends showcasing improved
cell compatibility, processability, and mechanical properties [43]. Incorporating bioactive
phases in ceramics enhances the hydrophilicity and water absorption of the polymer ma-
trix by facilitating the rapid exchange of protons in water. This, in turn, influences the
degradation process of polymers [44]. Using biodegradable hybrid materials offers several
potential advantages, including improved conditions for cell seeding, survival, growth,
and differentiation. This is attributed to the osteoconductive function provided by bio ce-
ramics, enhancing crucial mechanical properties for load-bearing applications [45]. Hybrid
materials enable the creation of organ-specific tissue-engineering constructs, offering a
range of tunable physicochemical properties due to their composition, structural flexibility,
and functional adaptability.

The extracellular matrix (ECM) forms an organized network comprising various proteins
and polysaccharides, offering structural support to cells. Polymers derived from nature
possess the capacity to enhance cell adhesion and activity. Scaffold construction commonly
relies on natural polymers such as collagen, gelatin, silk, and alginate [46,47]. Concerns
about immunogenicity, pathogen transmission, and the intricate structural composition of
natural polymers have driven the development of synthetic polymers as scaffolding materials.
Synthetic polymers offer easier processing and a more regulated structure, and they typically
pose less immunological risk [48]. This overview outlines the most widely used synthetic
polymers in tissue-engineering applications.

In in vitro tissue culture, aliphatic polyester polymers can be amalgamated to produce
durable, porous materials that are prefabricated 3D scaffolds. These materials exhibit
stability and resist melting or disintegration. Aliphatic polyesters comprise this class, a
category encompassing the synthetic biodegradable polymers most employed in tissue
regeneration [49]. The ester groups within the backbone of these polymers are typically
hydrolyzed, and the rate and nature of degradation products can be adjusted based on
the polymer’s molecular weight, content, and structure [50]. Polyanhydrides, easily man-
ufactured from readily available and inexpensive materials, can be tailored to possess
desired properties [51]. In vivo, polyanhydrides are both biocompatible and biodegradable,
producing harmless diacid byproducts that the body can excrete as metabolites. Initially
designed for drug delivery applications due to their pronounced hydrophobicity, these
polymers have found various applications. When encapsulated in these polymers, drugs
can be effectively shielded, since minimal water infiltration occurs until the polymer under-
goes erosion [52,53]. These polymers have also been investigated for use in scaffolds for
tissue engineering.

Polyurethanes (PUs) continue to be extensively employed in various biomedical ap-
plications, remaining one of the most widely used biomaterial classes. Their popularity is
attributed to their segmented-block structural characteristics, which provide a broad range
of plasticity with adjustable mechanical, physical, and biological properties. Additionally,
they exhibit compatibility with blood and tissues and, more recently, biodegradability [54–58].
Table 1 provides a summary of polymers and their significance in different applications.
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Table 1. Various kinds of synthetic polymers and their applications are listed.

S.No. Polymers Area of Applications Ref.

1 Polyethylene glycol/PLGA Improved oral administration for enhanced cellular
absorption and hypoglycemic impact. [59]

2 PLA (Polylactic acid)

Biomaterials find applications in various fields, including
elevated apoptosis and cytotoxicity, barrier membranes, drug
delivery, orthopedic applications, guided tissue regeneration
(in dental applications), stents, staples, sutures, and tissue
engineering.

[60,61]

3 Albumin Folate-conjugated albumin enhances the potential for
activated macrophage cells to reach their target. [62]

4 Polycaprolactones (PCL)

Biomaterials are crucial in various fields, including
orthopedics, guided tissue regeneration in dentistry, Ethicon’s
implantable contraception, Monocryl suture, Capronor,
barrier membranes, drug delivery, stents, and tissue
engineering.

[63,64]

5 Polybutyrate adipate
terephthalate (PBAT) Applications of packaging include the utilization of bottles. [65]

6 Polyesteramides (PEA)
Hydrogels find applications in drug delivery, tissue
engineering, and smart materials, particularly
temperature-sensitive ones.

[66]

7 Polyhydroxyvalerate (PHV)

Cons: Limited biodegradability ranging from three to twelve
months for products such as Paper Mate, BioTuf, Rubbermaid,
Calphalon, agricultural film, dung bags, and client packing
materials.

[67]

8 Poly(alkylenealkanoate)s
(PBS)

Injection molding is commonly used to produce single-use
items like forks and spoons, as well as textiles, fishing
equipment, and plant pots.

[68]

9 Thermoplastic starch (TPS) Applications of packaging [69]
10 Polycyanoacrylates Drug delivery and adhesives [70]
11 Polyanhydrides Bioactive substance delivery [71]

12 Poly(amino acids)
Drug delivery, tissue engineering, and orthopedic
applications are the areas where these technologies find
significant utilization.

[72]

13 Poly(ortho ester)
Drug delivery in the context of stents involves the controlled
release or administration of medications directly to the target
site where the stent is placed.

[73]

14 Polyphosphazenes
These technologies are crucial in skeletal reconstruction, drug
delivery, and blood-contacting devices, among other
applications.

[74]

15 Poly(propylene fumarate)

Utilizing medical procedures, equipment, or therapies
specifically designed for the musculoskeletal system,
consisting of bones, joints, ligaments, tendons, and muscles, is
referred to as orthopedic applications.

[75]

16 Polyhydroxybutyrate (PHB)

Biomaterials are crucial in various fields, including
orthopedics, guided tissue regeneration in dentistry, barrier
membranes, drug delivery, stents, sutures, and tissue
engineering.

[76]

17 Polydioxanone
Medical materials and interventions find applications in
wound clips, sutures, and fracture fixation in
non-load-bearing bones.

[77]

4. Applications of Biodegradable Conducting Polymer Based Composites
4.1. Tissue Engineering

Tissue engineering is an interdisciplinary field that combines principles from engi-
neering and biology to create biological substitutes to enhance, maintain, or repair tissue
function. Tissue-engineering applications necessitate the utilization of biodegradable
scaffolds. Biodegradability is required to prevent the need for implant removal surgery
and to prevent a persistent and lifelong immune response. Key characteristics of a scaf-
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folding biomaterial are biodegradability, biocompatibility, and considerable processing
flexibility [78,79]. Electrical conductivity within three-dimensional scaffolds is crucial for
enhancing tissue repair and regeneration, particularly in electroactive tissues like cardiac
and neural tissues. Chemical, mechanical, and electrical properties must be combined to
create scaffolds for tissue regeneration, cell adhesion, and cell proliferation. The conductivi-
ties of many tissues, including skeletal muscle, lung, heart, and nerve tissues, vary between
0.03 and 0.6 S/cm. The surface characteristics of biomaterials significantly influence how
a cell interacts with the altered substrate and its functioning. Therefore, retaining cells
on the material’s surface instead of within their scaffolds proves challenging. Conduct-
ing materials can be employed [80–82]. Rivers et al. (2002) [83] represent an innovative
approach in tissue engineering by developing a conducting biodegradable polymer. This
polymer was created by incorporating conducting oligomers of thiophene and pyrrole,
which are conductive organic compounds with degradable ester linkages. This polymer
exhibits a close interaction with tissues and cells on biological and electrical levels. These
kind of polymers were ideal for tissue-engineering applications, since they functioned
fantastically to promote tissue regeneration by acting as a transient scaffold for cell adhe-
sion and producing electric signals. Schmidt and Rivers (2004) [84] innovatively designed
biodegradable conducting polymers by incorporating aliphatic chain ester linkages with
conducting polymers like pyrrole and thiophene. These modified polymers make them
valuable tools for addressing various biomedical challenges, ranging from bone repair
and muscle regeneration to nerve tissue engineering and wound healing. According to
Huang et al. (2007) [85], the condensation process between aniline pentamer and polylac-
tide resulted in the formation of PLA-b-AP-b-PLA, a biodegradable and electrically active
triblock copolymer. The conductivity of the two-block components in the PLA-b-AP-b-PLA
was discovered to be 5 × 10−6 S/cm, because they were microphase separated. Due to its
outstanding solubility in most organic solvents, biodegradability, biocompatibility, and
ease of processing, this material can be employed as a scaffold in tissue engineering for
the heart or brain. Subramanian et al. (2012) [86] reported that poly (3-hexylthiophene)
(PHT) and poly (lactideco-glycolide) (PLGA) were modified to create electrically conduc-
tive nanofibers. These aligned nanofibers were studied in vitro to see how they affected
the adherence and growth of Schwann cells. To create a scaffold for neural regeneration,
PLGA-PHT fibers were used. Baheiraei et al. (2014) [87] developed an electroactive poly-
mer composed of polyurethane and aniline pentamer to explore the impact of electrical
stimuli on cellular activity, particularly for applications in tissue engineering. In bone tissue
engineering, Xie et al. (2015) [88] engineered an aniline trimer/star-shaped polylactide
polymer network with robust mechanical properties, excellent shape memory, electroac-
tivity, and adjustable degradability. Moreover, this electroactive network demonstrated
superior efficacy in promoting osteogenic differentiation in C2C12 cells compared to poly-
lactide, significantly enhancing their proliferation rate. Song et al. (2016) [89] observed that
adding hydroxyapatite to the graphene oxide/polypyrrole composite structure promoted
the proliferation of MC3T3-E1 cells compared to the control group without hydroxyapatite.
As reported by Yang et al. (2016) [90], the conductive hybrid hydrogel composite, compris-
ing PPy and alginate, serves as an intelligent interface capable of stimulating stem cells
through electrical and mechanical impulses. This makes it a promising scaffold for the
development of multifunctional brain tissue. Results indicated that hMSCs assumed larger
and more elongated forms when various substrates were employed, indicating successful
interaction with the conductive hybrid hydrogels. In a study by Silva and colleagues
(2018) [91], PEDOT-co-PDLLA emerged as a novel biodegradable and electrically active
copolymer synthesized using persulfate as an oxidant. Charge density characteristics,
surface chemistry, conductivity, cytotoxicity, and in vitro biodegradability investigations
demonstrated its considerable potential for use as scaffold material in various applications,
including brain tissue engineering. Xu et al. (2018) [92] introduced a conductive composite
scaffold comprising PEDOT as a conductive polymer layer and carboxymethyl chitosan
as a biodegradable component. The findings indicated that the composite scaffold sup-
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ported cell adhesion, vitality, and proliferation and exhibited cytotoxin-free characteristics.
Meanwhile, conductive layers maintained biocompatibility in brain tissue engineering
while improving mechanical strength and conductivity. Borah et al. (2020) [93] created
a nanocomposite by combining chitosan with polyaniline, showing potential for various
biological applications. Glycine N-hydroxysuccinimide (NHS) ester was used to modify
the surface of PANI/chitosan nanocomposites to generate bioactivity for enhanced cell–
biomaterial interactions. As per SEM and confocal microscopy, this surface modification
enhances fibroblast cell adhesion, morphology, proliferation, and spreading, highlighting
the significance of nanocomposites in tissue-engineering applications. According to Ali
Maziz et al. (2021) [94], the brittle backbone and non-degradable nature of conducting poly-
mers may result in poor mechanical properties. Various methods have been documented
to overcome these limitations in biological applications when creating their composites.

4.2. Biomedical Implants

Polymers are crucial in numerous medical applications, encompassing wound healing,
drug administration, and tissue replacement. To maintain the integrity of tissue form
and structure and to safeguard cells and damaged tissue, scaffolds are employed during
implant placement to support the defective sections temporarily. To assist in the healing
and regeneration of injured tissue, the scaffold must have suitable mechanical qualities that
match the corresponding defective components. Therefore, sufficient mechanical support
is crucial for tissue-engineering applications. Similarly, the scaffold material must ensure
benign biocompatibility, bioactivity, no harmful side effects, no stimulation, and no inflam-
mation. This assurance is crucial, as the material will be implanted into human bodies
and come into contact with injured tissue [57–59]. The scaffold can fulfill its intended role
only when transplanted into the human body. Boutry et al. (2010) [95] utilized PLLA-
PPy and PCL-PPy composites to construct an RLC resonator circuit through an emulsion
polymerization technique. This approach could be employed to develop bioelectronic
devices and biodegradable biomedical implants. Lu et al. (2010) [96] prepared hybrid
organic–inorganic composites composed of polypyrrole (PPy) and carbon nanotubes, which
were effective as electrodes for nerve probes implanted into patients long-term. Wan et al.
(2014) [97] discovered that PLLA showed enhanced compatibility with the inclusion of Mg
and MgFl2, which has great potential in orthopedic implant applications. Ghaziof et al.
(2017) [98] employed solvent casting and vacuum drying to create a multi-walled carbon
nanotube/polycaprolactone scaffold. They discovered that including 1 wt% MWCNT
improved the composite scaffold’s electrical conductivity and mechanical behavior com-
pared to a pure PCL scaffold, and it might be used as a suitable construct for myocardial
tissue regeneration. Iron oxide (Fe3O4) nanoparticles were incorporated into a PLLA bone
screw by Wang et al. (2017) [99]. The study demonstrated that the nanocomposite bone
screw exhibited satisfactory mechanical properties and did not adversely affect rabbit bone
tissue. As a result, the nano-Fe3O4/PLLA composite was shown to be suitable for use
as an implant. Loffler et al. (2017) [100] and Chen et al. (2018) [101] reported that the
electrical connection of implanted devices can be accomplished using conducting polymers.
These materials offer far more potential than interface materials utilized in traditional
metallic implants because of their inherent nature and qualities that resemble biological
tissue. Though these biopolymer implants are not yet clinically suitable, Anh-Vu Do et al.
(2018) [102] discovered that their high porosity and porous structure significantly reduce
their mechanical strength. To tackle this issue, extensive research has been conducted to
enhance the mechanical properties of polymers. It has been observed that low-dimensional
nanomaterials, such as metal oxide nanoparticles, can serve as a viable and efficient rein-
forcement to improve mechanical properties. Eslami et al. (2018) [103] found that a poly
(lactic-co-glycolic acid) (PLGA) scaffold’s strength, compressive modulus, and biological
activity were all increased by the inclusion of titanium dioxide (TiO2) nanotubes. TiO2
nanotube reinforcement improved osteoblast cell spreading, which promoted cell attach-
ment. Compared to a pure PLGA scaffold, enhanced bone growth around the implants
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was observed. Electroconductive hydrogels, consisting of a poly (HEMA)-based hydro-
gel component and a PPy conductive polymer network, have been utilized for surface
modification of long-term implanted neurological electrodes and prosthetic devices due to
their notable mechanical strength and low cytotoxicity (Kenry and Liu, 2018) [104]. Barua
et al. (2019) [105] incorporated zinc oxide (ZnO) nanoparticles into HAP/poly (methyl
methacrylate) (PMMA) using gas foaming to create porous scaffolds. When compared
to the HAP/PMMA scaffold, the ZnO/HAP/PMMA scaffold exhibited a 143.3 percent
increase in elastic modulus and a 252.2 percent improvement in tensile strength.

As indicated by Wu et al. (2019) [106], the chemical biofunctionalization of biomolecules
may contribute to the increased structural stability and biocompatibility of conducting poly-
mer films in biological environments. This enhancement could improve the bio interface of
implantable devices. Gupta et al. (2019) [107] reported that implantable devices of electrically
conductive polymers can produce pacemakers, measure cardiac activity, deliver electrical
impulses, etc. Jayaram et al. (2019) [108] performed a detailed investigation on the influence
of the addition of MWCNT on the electrical and morphological characteristics of PEDOT: PSS
scaffolds. The MWCNT-modified scaffolds showed strong cytocompatibility and biofunc-
tionalization capabilities, crucial for biosensing and cell adhesion, and increased electrical
conductivity. These high-performance systems can prove beneficial in applications such
as tissue stimulation and electronic implants, where electrical performance is particularly
important. Mohammadalizadeh et al. (2020) [109] developed a scaffold by blending a poly-
hydroxybutyrate/chitosan solution with varying weight percentages of multi-walled carbon
nanotubes. They observed an increase in tensile strength by adding one weight percent CNT.
Moreover, polyhydroxybutyrate/chitosan/MWCNT scaffolds enhance cell adhesion and
growth for cartilage tissue-engineering applications, as indicated by a study on a chondrocyte
cell culture. According to Guo et al. (2020) [110], adding inorganic nanoparticles (such as
TiO2, ZrO2, and Al2O3) to the Ppy coating may improve its mechanical characteristics and
corrosion resistance. Hence, synthesizing a multifunctional Ppy/ZnO composite coating for
orthopedic implants could prove advantageous. Pei Feng et al. (2021) [111] reported using
biopolymers in creating safe, non-toxic implants that exhibit a high level of biocompatibility
and can dissolve into carbon dioxide and water within the human body. These biopolymers
can be processed into various forms and possess specific mechanical strength, making them
extensively studied in tissue defect healing. Bone scaffolds, cartilage tissue scaffolds, bone
screws, vascular scaffolds, and other biopolymer implants are often employed. For example,
various biopolymer materials are being used to fabricate three-dimensional porous scaffolds,
such as PLLA, PGA, PCL, and PHB scaffolds, from bone tissue and cartilage tissue. Jiang
et al. (2021) [112] used electrospinning to develop a vascular scaffold by incorporating CNT
into PCL/Gelatin. The scaffold exhibited favorable mechanical properties comparable to
native vessel characteristics, and the researchers observed its ability to promote the growth of
endothelial cells.

Polymers play a crucial role in 3D-printing manufacturing due to their excellent
processability, adaptability, and compatibility with various additive manufacturing (AM)
methods [113]. Key features include improved strength, temperature resistance, accuracy,
surface details, and high precision [114]. Polymers constitute 51% of polymer parts, 29%
of metal and polymer combinations, and 19.8% of metal products in additive manufactur-
ing [115]. Reactive monomers, thermoplastic filaments, powder, and resin are frequently
employed polymer types in additive manufacturing (AM) processes [116]. Despite the
variety of available AM techniques, improvements in polymer printing primarily revolve
around four main strategies: (1) powder bed fusion processes, such as selective laser sinter-
ing (SLS); (2) deposition-on-demand processes, including inkjet or drop-wise deposition
methods; (3) extrusion-based technologies like fused deposition modeling (FDM) and direct-
ink-write printing; and (4) photo-polymer-based printing techniques like stereolithography
(SLA). Numerous polymers have been effectively utilized as source materials in these
printing techniques [117]. Three-dimensional-printing polymer composites present both
advantages and drawbacks. Depending on the polymer’s structure, state (liquid or solid),
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and physical properties (viscosity and melting temperature), each process has specific
requirements [118]. The range of materials suitable for polymer additive manufacturing in
load-bearing applications is relatively narrow. Polymers such as PEEK, UHMWPE, PMMA,
PLA, PCL, polypropylene (PP), polyvinyl alcohol (PVA), and polyamide (PA) are commonly
utilized in selective laser sintering (SLS) techniques for load-bearing applications [119].

4.3. Antibacterial Therapy

Numerous studies have examined the utilization of polymers in antibacterial therapies.
Though polymers lack inherent antibacterial properties, they are commonly employed
as vector molecules for delivering antibacterial drugs to specific target sites. Notably,
chitosan stands out among polymers due to its antibacterial properties. Polymeric nanos-
tructures exhibit bactericidal properties attributed to enhanced drug adsorption, controlled
drug release, cytocompatibility, and solubility. Polymers are versatile in forming various
structures, including large and small vesicles and nanoparticles [120]. The synthesis of
these polymers can involve synthetic polymers, such as polylactic-co-glycolic acid (PLGA)
and polylactic acid (PLA), as well as natural polymers like chitosan. Different polymers
encapsulate metal and pharmacological nanoparticles endowed with antibacterial char-
acteristics. Chitosan’s inherent antimicrobial properties stem from its positively charged
surface. The eradication of bacteria is achieved by altering membrane permeability through
electrostatic interactions between positively charged chitosan molecules and negatively
charged bacterial membranes. This characteristic has been leveraged in research focused on
developing chitosan-based antibacterial nanostructures. For instance, a recent work by Ejaz
et al. [121] involved the creation of mannose-modified chitosan nanostructures, demonstrat-
ing effective antibacterial activity against both Gram-positive and Gram-negative bacteria.
Additionally, Kritchenkov et al. utilized ultrasound-assisted catalyst-free thiol-yne click
chemistry to chemically modify chitosan, resulting in a betaine derivative with superior an-
tibacterial properties compared to widely used medications [122]. To combat drug-resistant
Gram-positive bacteria, a cationic polymer micelle has also been synthesized [123].

Synthetic polymers such as PLA and PLGA have undergone extensive investigation
for efficient drug delivery alongside natural chitosan polymers. Studies have demonstrated
their utility as fundamental components for functionalizing ligand molecules to target
bacteria. For example, Ucak et al. utilized aptamers against S. aureus to target bacteria to
overcome antibiotic resistance. The antibacterial effectiveness of PLGA-based nanoparticles
and their ability to transport antibiotics and other potent bactericidal biomolecules have
been examined in various studies [124,125]. Da Costa et al. modified the outer surface of
PLA nanoparticles with poly-L-lysine to investigate their antibiofilm properties, aiming to
disrupt bacterial membranes and enhance the delivery of rifampicin antibiotics [126]. In a
separate study, essential oil was encapsulated in PLA nanoparticles for utilization against
both Gram-positive and Gram-negative bacteria [127,128].

Microbe-induced infection has a serious negative impact on human life. As a result,
several investigations have been conducted to develop novel antimicrobial drugs to com-
bat diseases. New substances with antibacterial characteristics are still being developed.
In biomedical applications, polymers having antibacterial and antifungal properties are
frequently employed as microorganisms develop resistance to currently available med-
ications. Due to their strong biological reactivity, conducting polymers are attractive in
biomedicine [129]. To combat microbial contaminations, polymer-based compounds have
been created [130]. To improve the conducting polymer polymer-based composites’ conduc-
tivity, photocatalytic activity, and antibacterial activity, a range of nanoparticles, including
zinc oxide, cobalt ferrite, and silver, have been added [131,132]. Additionally, biopolymers
have been used to improve the composite’s biocompatibility. As a result, nanocomposites
made of conducting polymers have been used in biological applications. The ability of
biodegradable polymers to spontaneously decompose over a short period in nature is a
benefit of employing them. Therefore, it is crucial to coordinate the materials’ transition
from a biostable to a biodegradable structure. Using the disc diffusion technique, Sumitha
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et al. (2012) [133] investigated the antibacterial effectiveness of PCL-silver nanofibrous scaf-
folds against S. aureus. The absence of antibacterial activity and the zero zone of inhibition,
attributed to the lack of silver nanoparticles in the scaffolds, indicated the inefficacy of
bare PCL against bacteria. However, the inhibitory zone against Gram-positive bacteria
increased as the quantity of silver nanoparticles increased. Cabuk et al. (2014) [134] used a
chemical oxidative radical polymerization process to create a copolymer of polypyrrole and
chitosan. The composites were identified by performing spectral, thermal, and morpho-
logical analyses. In the copolymer chains, there were noticeable strong contacts between
PPY and CS, and grafting was shown to boost CS’s electrical conductivity. Comparing
PPY and CS to PPY-co-CS, antibacterial activity was considerably increased. Ebrahimiasl
et al. (2014) [135] developed conductive bionanocomposite films of Ppy, CS, and Zinc oxide
nanoparticles electrochemically deposited on an ITO glass substrate using the potentiostatic
technique. ZnO NPs were present in the generated conducting polymer bionanocomposite
films, which improved the film’s mechanical and conductivity capabilities. Adding ZnO
NPs to the Ppy/ZnO/CS NP composite leads to the formation of a substantially stiffer
BNC, as evidenced by the increase in storage modulus compared to the composite without
ZnO NPs. This enhancement makes it well suited for applications in drug delivery systems,
biosensors, and surgical instruments. Additionally, it demonstrates robust antimicrobial
activity, attributed to the electrical characteristics of polypyrrole, the antibacterial and
anti-inflammatory properties of zinc oxide, and the biodegradability of chitosan.

Due to the synergistic impact of the fillers, Eren et al. (2015) [136] demonstrated that the
combination of carbon nanotubes and silver NPs with conducting polymer, such as PANI,
exhibited stronger antibacterial activity compared to PANI-carbon nanotubes and PANI-Ag
nanocomposites. Shoja et al. (2015) [137] produced PCL/ZnO composites through the
solution-casting technique. The antibacterial properties of the PCL/ZnO microcomposite
films were evaluated using the agar disc diffusion method against the Gram-positive Bacil-
lus subtilis and the Gram-negative Salmonella choleraesuis. The PCL/ZnOmicrocomposite
antibacterial effects showed that increasing the ZnO content improved the antibacterial
activity. Hou et al. (2016) [138] employed an in situ emulsion polymerization process
to create nanocomposites containing antibacterial nanoparticles such as zinc oxide and
silver. Compared to Ag/ZnO composites, these composites demonstrated synergistic
antibacterial properties. Kumar et al. (2016) [139] used a solvent precipitation approach to
create biodegradable multifunctional hybrid composites of polycaprolactone reinforced
with grapheme/silver nanoparticles. In the PCL/rGO-Ag composite, hMSC proliferation
and mineralization were improved without the cytotoxicity of silver nanoparticles. Addi-
tionally, the combined effects of Ag and rGO nanoparticles endowed PCL/rGO-Ag with
strong antibacterial properties. Thus, rGO-Ag can be a beneficial filler to enhance the
multifunctional characteristics of commonly used biodegradable polymers for biomedical
applications. According to Shahadat et al. (2017) [140], synthesized composite PANI-PVA
(polyvinyl alcohol) films proved effective against S. aureus and E. coli. Though no bacterial
activity was seen with native PVA, the composite film showed an almost 100% decrease
in E. coli and S. aureus growth. The release of H+ from PANI caused the bacterial cell
wall to break, which was thought to be the cause of the antibacterial effectiveness of PANI-
PVA. According to Ehsan Nazarzadeh Zare et al. (2019) [141], PANI has been combined
with biopolymers that contain quaternary ammonium salts, including chitosan, to boost
the antibacterial activity while also increasing the biocompatibility of PANI. Quaternized
chitosan-graft-PANI injectable hydrogels were employed as biocompatible scaffolds for
tissue regeneration. In a study by Masim et al. (2019) [142], it was found that the conducting
polymer composite with incorporated ZrO2 exhibited a more potent antibacterial effect
against S. aureus and E. coli compared to the pure conducting polymer. Abou Hammad
et al. (2019) [143] used an in situ polymerization technique to create a biodegradable
polyaniline, cellulose, and cobalt ferrite nanocomposite. In addition to Candida albicans
as a unicellular fungus, the produced nanocomposites show strong antibacterial action
against Bacillus subtilis and Escherichia coli. These nanocomposites were biodegradable
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and naturally conductive (3.5 × 10−3S/cm). Biodegradability decreased with increasing
cobalt ferrite concentration in nanocomposites, whereas antibacterial nature increased.
Behzad Mohammadi et al. (2019) [144] employed a chemical polymerization technique
to create a biodegradable film based on chitosan and polyaniline, exhibiting antifungal,
antibacterial, and conductive properties. The study revealed that adding varying concen-
trations of aniline enhanced the chitosan film’s mechanical, electrical, and antibacterial
characteristics. The film demonstrated significant antibacterial efficacy, showcasing the
strong antimicrobial properties of the nanocomposites. Muoz-Escobar et al. (2019) [145]
found that produced membranes containing PCL and CuO NPs had the strongest antibac-
terial action against pathogenic bacteria such as S. aureus, E. Coli, and others, considerably
reducing the risk of postoperative infections. To develop conductive, biodegradable, and
biocompatible hydrogels, Youssef et al, (2019) [146] employed a bionanocomposite com-
posed of chitosan, polyacrylic acid, and polypyrrole loaded with various ratios of Ag-NPs
(CS/PAA/PPy/Ag-NPs). This configuration significantly augmented the antibacterial
activity of the hydrogel bionanocomposites against various microorganisms. Talebi et al.
(2019) [147] innovatively crafted a conductive composite film using the casting method,
combining polycaprolactone, chitosan, and polypyrrole (PCL/chitosan/PPy). Comparative
analysis with the PCL/chitosan film demonstrated that the PPy-containing films exhibited
superior antibacterial properties against E. Coli and S. aureus. Mirmohseni et al. (2019) [148]
employed a facile solution polymerization technique to create a PANI-CS-modified TiO2
ternary nanocomposite. The development of some bacterial strains can be inhibited by
a nanocomposite that has greatly increased conductivity. It might, therefore, be utilized
as a powerful antibacterial and antistatic agent. Balitaan et al. (2020) [149] synthesized
β-chitin-g-PANI composites through the in situ graft copolymerization of β-chitin with
conducting PANI. The study findings demonstrated enhanced antibacterial properties,
biodegradability, and conductivity in the composites. The synthesized composite’s distinc-
tive features show their potential for use in the creation of wound care solutions. Hooman
Golbaten-Mofrad et al. (2021) [150] fabricated PGS-U/PPy/ZnO scaffolds through salt
leaching. Adding PPy increased electrical conductivity, and incorporating ZnO particles
improved the scaffolds’ surface hydrophilicity and antibacterial activity. Further research
could explore additional enhancements to optimize these nanocomposites for effective
electrically conductive scaffolds in tissue-engineering applications. Based on the results
obtained, Unnikrishnan et al. (2024) [151] have concluded that the composite with a higher
particle concentration emerges as an ideal candidate for future wound-dressing applica-
tions. This composite exhibits notable attributes such as electroconductivity, antimicrobial
activity, hemostatic ability, and biocompatibility. Hasan et al. (2023) [152] conducted a
Density Functional Theory (DFT) study to analyze Natural Bond Orbitals (NBO) for charge
and spin distribution, as well as HOMO, LUMO, and molecular electrostatic potential
(MEP). The characterization results indicate that the synthesized polymer nanocomposites
hold promise for various optoelectronic applications.

5. Conclusions

In numerous biomedical applications spanning the past few decades, biodegradable
conducting polymers have played roles in tissue engineering, drug delivery, vascular grafts,
surgical sutures, and various other applications. This list could be extended to accom-
modate the needs of increasingly varied and specialized applications. It is challenging to
design and manufacture an optimal electroactive polymer that complies with biodegradabil-
ity and biocompatibility principles, yet it is necessary to lessen the risk that non-degradable
particles would trigger an inflammatory response in the host tissue. Although these kinds
of polymers have demonstrated biocompatibility in vitro, significant advances have been
made in the synthesis and functionalization of these polymer-based biomaterials. How-
ever, comprehensive studies on their in vivo biocompatibility and biodegradability are still
required. Extensive in vivo experiments examining long-term cytotoxicity and biodegra-
dation are necessary to confirm the nontoxicity and biodegradability of these conductive
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biomaterials. Another difficult issue arises while synthesizing conducting polymers, be-
cause toxic and environmentally hazardous organic solvents break down the biodegradable
conducting polymers. In conclusion, electrically conductive polymeric materials are expe-
riencing rapid growth in their potential applications within the electronics and electrical
sectors. The necessity for electrically conducting biodegradable polymers has become
increasingly urgent in light of recent advancements in environmental sustainability. This
review has also investigated biodegradable polymeric systems, highlighting their diverse
functionalities that contribute to sustainable and eco-friendly development. Additionally,
the review explores the utilization of biodegradable conducting polymers in tissue engi-
neering, biomedical implants, and antibacterial applications. For this reason, the synthesis
of hydrophilic and processable materials remains attractive in biological fields. However,
this group of innovative biomaterials has developed into an explosive substance that will
contribute greatly to biomedical science during the coming decades.
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