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Abstract: Reversible thermochromic polymers have emerged as compelling candidates in recent
years, captivating attention for their application in heat detection systems. This comprehensive review
navigates through the multifaceted landscape, intricately exploring both the virtues and hurdles
inherent in their integration within these systems. Their innate capacity to change colour in response
to temperature fluctuations renders reversible thermochromic nanocomposites promising assets for
heat detection technologies. However, despite their inherent potential, certain barriers hinder their
widespread adoption. Factors such as a restricted colour spectrum, reliance on external triggers, and
cost considerations have restrained their pervasive use. For instance, these polymer-based materials
exhibit utility in the domain of building insulation, where their colour-changing ability serves as
a beacon, flagging areas of heat loss or inadequate insulation, thus alerting building managers
and homeowners to potential energy inefficiencies. Nevertheless, the limited range of discernible
colours may impede precise temperature differentiation. Additionally, dependency on external
stimuli, such as electricity or UV light, can complicate implementation and inflate costs. Realising
the full potential of these polymer-based materials in heat detection systems necessitates addressing
these challenges head-on. Continuous research endeavours aimed at augmenting colour diversity
and diminishing reliance on external stimuli offer promising avenues to enhance their efficacy.
Hence, this review aims to delve into the intricate nuances surrounding reversible thermochromic
nanocomposites, highlighting their transformative potential in heat detection and sensing. By
exploring their mechanisms, properties, and current applications, this manuscript endeavours to shed
light on their significance, providing insights crucial for further research and potential applications.

Keywords: reversible thermochromic; thermochromism; polymer nanocomposites; heat detection
sensing; colour-changing materials

1. Introduction

Chromic materials, capable of dynamic colour changes, represent a captivating realm
where hues respond to external stimuli. These materials span diverse categories, includ-
ing photochromic, thermochromic, and electrochromic variants, demonstrating versa-
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tile optical properties and adaptability to colour shifts under different triggers [1–13].
Table 1 shows that recent strides in thermochromic polymer nanocomposites have notably
fortified their stability and versatility, auguring significant implications across multiple
industries [10,14–23]. The evolution of thermochromic materials, depicted in Figure 1,
began in the 1970s, primarily focusing on colour transitions linked to temperature [24,25].
Gradually, research progressed from mere novelties to nanostructured variants, enabling
precise colour modulation for sensors, displays, and eco-friendly coatings. These materi-
als now hold potential for energy-efficient building coatings and drug delivery systems,
highlighting their role in sustainability and energy conservation [26–28]. Their growing
relevance aligns with global energy conservation initiatives. For example, “cool roofs,” aim-
ing to minimise solar energy absorption and surface temperatures, showcase the materials’
role in enhancing energy efficiency, especially in warmer regions. Given the substantial en-
ergy consumption by the building and automotive industries, these materials significantly
impact urban environments, influencing energy use and indoor air quality [29–34].

Table 1. Summary of chromic phenomena and main technologies.

Chromic Phenomena/Stimulus

Stimulated Colour Change Absorption of Light and
Energy Transfer

Absorption of Energy and
Emission of Colour Absorption/Reflection Manipulation of Light

• Photochromism
• Thermochromism
• Electrochromism
• Ionochromism
• Solvatochromism
• Vaporchromism
• Gasochromism
• Mechanochromism
• Excitonic Coupling
• Plasmonic Coupling

• Photothermal
• Photoelectricity
• Photoconduction
• Photochemistry
• Photoconversion

• Phosphorescence
• Fluorescence
• Biofluorescence
• Chemiluminescence
• Bioluminescence
• Electroluminescence
• Electrochemiluminescence
• Triboluminescence

• Classical
colouration by
organic dyes

• Organic and
inorganic
pigments natural
colourants

• Refraction
• Diffraction
• Reflection
• Scattering
• Interference
• Amplification
• Nonlinear optics

Technologies Based on Chromic Phenomena

• Ophthalmic
• Safety and security
• Thermal printing
• Smart window

and mirror
• Analysis and sensing

• Optical data storage
• Laser printing and

photocopying
• Photopolymerization
• Photomedicine
• Solar energy and

photosynthesis

• Display monitor
• Lighting
• Florescence colouration
• Dye lasers
• Chemical analysis
• Biomedical analysis
• Genomics
• Proteomics

• Colouration
of textiles

• Paint, plastic,
paper, and leather

• Hair and cosmetic
• Food and

beverages
• Photography
• Digital printing

and imaging

• Display
• Optical data

storage
• Holography
• Effect

colouration
• Laser diodes
• Optoelectronic
• Photonics

Understanding and employing reversible thermochromic materials requires a compre-
hensive assessment across structural, optical, thermal, and mechanical aspects. Techniques
like UV–Vis spectroscopy, infrared spectroscopy, and Raman spectroscopy help analyse crit-
ical parameters, offering insights into their responsiveness [35–41]. Recent advancements
show promise by enabling colour changes with temperature shifts across various sectors.
Improved manufacturing methods aim to enhance the efficiency of temperature-responsive
windows while reducing energy consumption and promoting eco-friendly waste manage-
ment [42–45]. These methods involve molecular changes, phase transitions, and alterations
in nanoparticles or molecular structures induced by temperature variations. Some materials
use specific dyes or pigments to achieve colour changes, with various techniques like in
situ polymerization and nanoparticle encapsulation developed for specific applications
such as temperature sensors and smart coatings [19,34,46–53].
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Addressing challenges like durability in reversible thermochromic coatings demands
robust solutions. Implementing stringent manufacturing processes and protective layers
has been pivotal [3,54–63]. Recent research explores theoretical frameworks, nanocom-
posite polymer films, photonic fibres, and smart polymers to bolster functionalities and
expand usage [10,46,64–66]. Reversible thermochromic materials’ adaptability makes them
powerful tools across industries, especially in sensor-based heat detection devices.

In construction, integrating these materials into thermal imaging systems aids in
the real-time identification of heat loss or inadequate insulation. This not only flags
energy inefficiencies but also prompts swift rectification measures, enhancing energy
conservation. Within the automotive sector, applying reversible thermochromic coatings to
engine components or electrical systems creates temperature sensors, critical for monitoring
thermal conditions. These sensors prevent overheating risks, ensuring better safety and
durability and averting potential breakdowns or accidents. In healthcare, using these
materials in smart bandages or medical devices enables non-invasive body temperature
monitoring. Such applications help assess fever or inflammation, aiding timely diagnoses
and patient care.

These applications demonstrate the diverse potential of reversible thermochromic
materials in sensor-driven heat detection devices across industries. Their adaptability,
reliability, and responsiveness position them as valuable tools in temperature monitoring,
energy conservation, and safety enhancement. Despite challenges, they offer cost-effective,
real-time solutions for thermal management and temperature monitoring, promising trans-
formative impacts in various fields. This paper reviews reversible thermochromic nanocom-
posites for sensor applications, covering classification, mechanisms, properties, and current
prospects, providing insights for research and future applications.
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Figure 1. The milestone and history of reversible thermochromic materials with the development
of reversible thermochromic materials in various technological applications with various analysed
papers published in the different time regimes [24,25,32,40].

2. Reversible Thermochromic
2.1. Fundamental of the Reversible Thermochromism

Reversible thermochromism is a fascinating property seen in certain materials that
change colour as temperatures vary. Comprehending this phenomenon is crucial for tai-
loring materials with temperature-dependent colour shifts. When exposed to different
temperatures, reversible thermochromic materials change colour reversibly, returning to
their original hue when the temperature normalizes. This effect occurs due to molecular
rearrangements, energy level transitions, or changes in particle size affecting light absorp-
tion, reflection, or scattering, leading to observable colour changes. Mechanisms behind
reversible thermochromism, like conformational shifts or reversible chemical reactions,
vary per material. Incorporating specific additives or nanoparticles with temperature-
dependent optical traits enables controlled colour shifts (see Figure 2). This foundational
understanding is vital for crafting materials with customised thermochromic properties,
expanding their application in diverse fields [15,22,23]. Otherwise, Figure 2 depicts the
thermogravimetry-differential scanning calorimetry (TG-DSC) data that can guide spec-
troscopic analysis by pinpointing relevant temperature ranges for detailed spectroscopic
measurements. This targeted approach enhances the efficiency and informativeness of data
collection during spectroscopic studies.
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Figure 2. Schematic relationship between temperature and colour change in a specific reversible
composite organic thermochromic pigment [19,52,67–69].

Recent research conducted by Zhang et al. [70] sheds light on polydiacetylene-based
thermochromic materials and their functioning. Their study highlighted that temperature-
induced structural changes affected the material’s core structure, altering electron distri-
bution and, consequently, the absorption spectrum. This caused a transition in colour,
shifting from red to blue as temperatures increased. Additionally, transitions between
solid, liquid, or gaseous states affected how these materials interacted with light, further
influencing colour changes. Reversible thermochromic materials can also change colour
through reversible chemical reactions and by adding thermochromic components. The
degree of colour change within specific temperature ranges depends on temperature sensi-
tivity, while chemical components like chromophores and additives impact light absorption
and reflection.

Environmental elements like humidity, pressure, and light exposure significantly affect
observed colour shifts. Liu et al. [71] research highlighted how varying humidity levels
impacted colour transition temperatures in smart thermochromic coatings. Moreover,
controlling heating and cooling rates allows for manipulating colour changes. Recent
advancements by Wang et al. [72] showed how adjusting temperature change rates affected
phase transition kinetics, enabling customised colour-switching speeds in thermochromic
materials, and paving the way for adaptable applications in smart sensors and displays.
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2.2. Thermochromic Mechanism and Classification

Reversible thermochromic materials display intriguing colour changes affected by
temperature, composition, and environmental factors [73]. These alterations occur due to
changes in their molecular structure when temperatures shift, affecting how they appear
visually. Table 2 summarises recent studies on these materials, categorising them based on
different triggers, which find applications in devices like heat chambers, electrical compo-
nents, and transformers [74–76]. Understanding the mechanisms behind thermochromism
is crucial to grasping how these materials change colour. Various mechanisms are involved,
influenced by specific factors, contributing to colour shifts and reversibility. This section
aims to explore these fundamental mechanisms, depicted in Figures 3–6, through diverse
experimental techniques. Table 3 further summarises these mechanisms, allowing tailored
materials for applications ranging from smart coatings to industrial monitoring and making
them versatile across industries.

Table 2. Classification of thermochromic property studies.

Classification Property Trigger Mechanism Application/Technology References

Irreversible

Chemical
change

• Chemical reaction
• Irreversible colours

change upon heating

Development of irreversible thermochromic
dyes for temperature-sensitive labels [54,62,71]

Utilization of irreversible thermochromic
materials in food safety indicators [71,72,74]

Phase
transition

• Solid to liquid transition
• Irreversible colours

change upon heating

Study on irreversible phase transition
thermochromic material in
polymer composites

[19,52,67]

Utilization of phase transition thermochromic
material in clothing industry [77–81]

Reversible

Molecular
movement

• Conformational changes
• Revisable colour change

based on molecular
rearrangement

Development of smart windows using
revisable thermochromic coating [26,58,77]

Research on revisable thermochromic ink for
temperature-sensitive labels [79–82]

Particle
dispersion

• Aggregation/dispersion
of nanoparticle

• Reversible change in
nanoparticle arrangement
leading to colour change

Investigation of revisable thermochromic
polymer nanocomposites for
energy-efficient buildings

[38,78,83]

Utilization of reversible nanoparticle-based
thermochromic material in energy-saving glass [37,38,77]

Table 3. Thermochromic mechanisms, applications, and future research in reversible nanocomposites.

Mechanism Description Parameters Function Future Research
Development References

Crystal
Transition

It involves lattice
displacement in metal ion
compounds due to
temperature changes,
altering crystal structure
and, consequently,
material colour.

• Critical transition
temperature: 75 ◦C

• Crystal lattice
expansion rate:
0.1 nm/◦C

• Smart coatings
• Cool roofs
• Automotive paints
• Sensors

Investigate advanced
crystal transition
processes for improved
colour adaptation in
extreme temperature
ranges.

[84–90]

Ligand
Geometry

Alterations in molecular
structure and geometry,
particularly in materials
containing Cr3+ ions, lead
to colour changes with
temperature fluctuations.

• Ion spacing: 2.5 Å
• Geometry alteration

rate: 0.02 ◦C−1

• Utilised in smart
packaging for
perishable goods

• Indicating
temperature
changes or product
freshness for quality
maintenance

Explore the design of
more sensitive and
responsive materials for
precise temperature
indications in diverse
environmental
conditions.

[91–93]
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Table 3. Cont.

Mechanism Description Parameters Function Future Research
Development References

Coordination
Number

Influences colour changes
in inorganic salts due to
the presence or loss of
crystal water molecules
with temperature
variations.

• Coordination
geometry:
Orthogonal

• Crystal water
content: 4 g/mol

• Moisture absorption
rate: 15%

• Applications in
humidity sensors

• Smart packaging
• Chemical

monitoring systems

Research on materials
that can adapt to specific
environmental factors,
offering wider
applications in diverse
industries.

[46,76,94]

Liquid Crystal

It involves changes in the
wavelength of reflected
light due to
temperature-induced
variations in the pitch of
spiral configurations.

• Spiral pitch
variation: 10 µm

• Light wavelength
modulation rate:
5 nm/◦C

• Smart textiles for
clothing and
sensors in
industrial settings

• Changing colour
based on body
temperature or
equipment heat

Develop materials with
tailored responses to
temperature variations
for advanced applications
in wearables and
industrial sensors.

[95]

a. Crystal transition mechanism

The fascinating phenomenon of thermochromism, especially notable in metal ion com-
pounds, involves crystal transitions triggering colour changes with temperature variations.
Understanding the dynamic correlation between structural phase transitions and dis-
colouration in thermochromic materials (Figure 3a), particularly during crystalline versus
glass synthesis transformations, elucidates complex intermolecular pathways (Figure 3b).
During crystalline synthesis, thermochromic compounds exhibit highly organised molecu-
lar structures. At lower temperatures, these structures remain stable, displaying a distinct
colour attributed to crystal lattice electrical transitions or absorption processes. However,
increased temperature leads to lattice vibrations that disrupt the crystal structure, affecting
electron energy levels and altering the absorption spectrum and colour. This dynamic inter-
action between molecular configurations and thermal energy underlies thermochromism
in crystalline materials.

In contrast, glass synthesis results in amorphous or disordered thermochromic materi-
als lacking a long-range structured crystal lattice. Molecular mobility rises with temper-
ature, influencing interactions between neighbouring molecules and, thus, changing the
material’s electrical and optical characteristics, leading to colour changes. Various inter-
molecular mechanisms contribute to the dynamic relationship between structural phase
transitions and discolouration in thermochromic materials. Crystalline synthesis-induced
lattice disruptions alter the electrical environment, modifying the absorption spectrum and
colour with temperature. Conversely, in glass synthesis, changes in molecular mobility
and local environments influence optical characteristics, causing colour shifts without
structural alterations.

For instance, compounds like Cu2HgI4 and Ag2HgI4 change colour as their structure
shifts from tetrahedral to cubic when heated. Understanding this crystal transition is vital
for real-world applications like architecture, where reversible thermochromic materials
in building coatings identify thermal inefficiencies, aiding in energy conservation and
cost-effective heating [87,88]. In automotive paint, thermochromic coatings signal potential
overheating in engines or electrical systems, preventing failures and ensuring safety [84,89].
Moreover, in healthcare, thermochromic materials are explored for body temperature
sensors, providing non-invasive monitoring and aiding in prompt medical interventions,
especially for fever or hypothermia [85,90]. These applications highlight the adaptability
and versatility of these materials across industries, showcasing their potential for diverse
needs, from energy efficiency to health monitoring.
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Figure 3. Dynamic correlation of structural phase transition of thermochromic material discoloration
due to intermolecular mechanisms in thermochromic during crystalline vs. glass synthesis transfor-
mation [85,86]. (a) Phase diagram of imidazole-based ionic liquids (Im-ILs) showing the gradual loss
of 3D crystalline order with increasing temperature. (b) Tin’s electron configuration change alters the
crystal lattice due to a temperature change.

b. Ligand geometry mechanism

Thermochromism, observed in inorganic materials like those containing Cr3+ ions,
occurs when the molecular arrangement changes with temperature [91,92]. For instance,
materials with Cr3+ ions shift colours by adjusting their structure when heated, whereas the
ions around the central ion are altered due to an expansion in the crystal lattice’s octahedral
structure. This change in ion arrangement inside the crystal influences the material’s colour
(Figure 4a) [93,96]. In real-world applications, inorganic thermochromic materials play
a role in smart packaging for perishable goods, as seen in Figure 4b, with milk carton
packaging changing colour near its expiration date. These smart packages, integrated with
thermochromic materials, react to temperature changes caused by spoilage. This colour
shift signals changes in product freshness or environmental temperature. The mechanisms
behind these materials influence the packaging’s colour, serving as a warning to consumers
or handlers about potential temperature-related issues during storage or transport.
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c. Coordination number mechanism

The concept of coordination number, essential in complex compounds, plays a crucial
role in thermochromism, especially in inorganic salts like nickel and cobalt salts, often
containing crystal water [46]. Take iron phosphate (FePO4•2H2O) as an example. It exhibits
two structural forms—orthogonal and monoclinic—each linked to distinct coordination
numbers. The presence or loss of crystal water profoundly affects its colour. With crystal
water, it is a light yellowish–white powder; without, it turns yellow–white [76]. Materi-
als sensitive to humidity changes, altering colour based on moisture levels, can power
humidity-sensing devices. Similarly, smart packaging employing these materials could
signal temperature or humidity changes in food storage, ensuring food quality [97].
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Figure 5. Schematic diagram illustrating the coordination number mechanism in thermochromic
materials. (a) Coordination bonding between chelating agents and the hydrogens of the surface −OH
(hydroxyl) groups of a metal oxide nanoparticle [98]. (b) The local structural models employing
FePO4•2H2O by different coordination number and crystal water content [99], (c) Humidity sensing
device [100].

d. Liquid crystal mechanism

Reversible liquid crystal thermochromic materials, particularly the cholesteric type,
exhibit a unique mechanism that guides their colour changes. Figure 6 depicts their
structure as a spiral arrangement with a variable pitch, defining how tightly the spiral
turns. As temperature shifts, this spiral’s pitch alters, changing the light wavelength the
material reflects and absorbs. This shift in light wavelength affects its intensity, resulting
in colour changes [95]. Researchers can customise these materials by tweaking the spiral
pitch response to temperature changes and tailoring colour behaviour to specific needs.
Additionally, these materials serve as temperature-sensitive indicators in industries, helping
to prevent overheating or machinery failures.
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2.3. Synthesis Techniques for Reversible Thermochromic

Creating reversible thermochromic materials involves methods crucial for their wide
application in various fields. These methods aim to make these materials more adaptable, re-
sponsive, and energy-efficient across different uses. Techniques like in situ polymerization,
solution mixing, melt blending, nanoparticle encapsulation, and coating/impregnation
are pivotal for tailoring thermochromic properties [74,75,103,104]. Notable advancements
in various deposition techniques include the chemical deposition method and nanocom-
posite coatings and impregnation method to synthesize and manufacture thermochromic
composite and facilitate nanocomposite solar energy transmission based on temperature
changes, as developed by Zhang et al. [105], and polymer nanocomposites created by
Abdellaoui et al. [46], enabling responsive sensors and versatile materials. In addition, the
research by Vaghasiya et al. [106] delved into the integration of various technique (i.e., coat-
ing/impregnation and in situ polymerization) to produce wearable thermochromic sensors
integrated into flexible patches for health monitoring.

However, challenges persist, such as ensuring consistent exposure and durability;
therefore, future studies aim to address these hurdles by enhancing response times, achiev-
ing better exposure on complex surfaces, improving durability, and expanding application
in various environments. Thus, a combination synthesis technique is used to explore new
materials and integrate thermochromic materials into wearable devices that shows promise
for future research, as highlighted by Hakami et al. [107]. In addition, Table 4 summarises
the schematic of various synthesis techniques used for tailored thermochromic properties,
reflecting their potential applications and future research directions.
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Table 4. Schematic of synthesis methods for reversible thermochromic materials.
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specific systems.
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Coating and
impregnation

• Addition of a
thermochromic layer to
a substrate or infusion
of a substrate with
thermochromic
chemicals.

• Applicable to
various
substrates.

• Compatibility
with different
methods.

• Challenges with uniform
coverage on complex
surfaces.
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2.4. Characterization of Reversible Thermochromic Materials

Understanding reversible thermochromic materials is vital for their diverse applica-
tions in smart windows, energy-saving coatings, and heat detection devices. Tables 5 and 6
encapsulate a spectrum of characterization techniques utilised to scrutinise these materi-
als. Temperature control plays a pivotal role in spectroscopic and microscopic techniques
used to study thermochromic materials. Spectroscopic methods like FTIR and UV–Vis
spectroscopy rely on accurately controlling temperature to assess molecular vibrations and
absorption spectra as a function of temperature [126]. By monitoring spectral changes at
different temperatures, researchers could understand how structural adjustments correlate
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with colour variations in thermochromic materials, providing insights into their optical
behaviour [66].

Table 5. Characteristics and applications of thermochromic material in heat detection systems.

Characterisation Description References

Solar Energy
Regulation

• Dynamically modulate solar energy transmission through smart windows.
• Regulate their transparency or reflectivity in response to temperature changes,

helping to control heat gain from sunlight.
[126–128]

Temperature
responsiveness

• Variation their optical properties with temperature variations—reducing the
amount of sunlight entering a building—becomes more transparent as the
temperature decreases.

[129]

Visible–Near
Infrared

Regulation

• Effectively regulate the transmission of visible and near-infrared light—control
of both visible light and heat from the sun.

• Contributing to energy-efficient building temperature management.
[130–137]

Energy Savings
• By regulating the amount of solar energy entering a building, thermochromic

smart windows contribute to energy savings by reducing the need for air
conditioning or heating—maintain a comfortable indoor environment.

[130–133,138]

Colour-Changing
Properties

• Change colour transition between different states and utilised for aesthetic
purposes or as a visual indicator of the window’s current state. [40,43,54,139]

Quick Response
• Many thermochromic materials have rapid response times—allowing them to

adapt quickly to changing environmental conditions—efficient
energy management

[41,74,80,119,140]

Durability
• Advances in material science have led to the development of durable

thermochromic coatings that can withstand long-term exposure to outdoor
conditions without degradation.

[135–137]

Integration
• Thermochromic materials can be integrated into various window types,

including glass and transparent films, making them versatile for use in both new
construction and retrofitting existing buildings.

[141–145]

Potential for
Energy Storage

• Some thermochromic materials not only regulate solar energy but also have the
capacity to absorb and store thermal energy, which can be released when needed
for heating or cooling.

[77,141,146–148]

Application in
Sustainable
Architecture

• Thermochromic smart windows play a vital role in sustainable and
energy-efficient building designs.

• Contribute to reduced energy consumption, improved comfort, and a lower
environmental impact.

[42,130,149,150]

Table 6. Summary of characterization techniques for reversible thermochromic materials.

Characterization
Technique Purpose/Information Notable Findings and Applications References

Spectroscopic
Techniques

(UV–Vis and FTIR
spectroscopy)

• Analyse optical
properties

• Detect colour changes

• UV–Vis detects colour changes based on
wavelength, while FTIR reveals structural
modifications and bonding changes.

• This is important for understanding how these
materials behave optically.

[70,151,152]

Microscopic Techniques
(SEM and TEM)

• Investigate
morphological changes
through particle size and
size distribution

• High-resolution imaging allows detailed
analysis of surface characteristics and particle
distribution.

• Useful for assessing morphological changes
and surface characteristics.

[47,50]
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Table 6. Cont.

Characterization
Technique Purpose/Information Notable Findings and Applications References

Thermal
Analysis Techniques

(DSC and TGA)

• Measure heat flow
• Phase transitions.
• Enthalpy changes
• Determine thermal

stability

• DSC provides phase transition temperatures
and enthalpy changes, while TGA determines
thermal stability and breakdown temperatures.

• Essential for evaluating material compatibility
at different temperatures.

[103]

Dynamic
Mechanical Analysis

(DMA)

• Assess viscoelastic
behaviour

• Glass transition
temperatures

• Mechanical stability

• It helps understand how these materials
behave under different temperature and
frequency conditions.

[153–155]

Mechanical
Testing Methods
(Tensile Testing)

• Material strength
• Elongation
• Flexibility
• Hardness
• Adhesion

• Evaluates the overall mechanical performance,
robustness, and wear resistance of the material. [156–161]

Surface Analysis
Techniques

(AFM and XPS)

• Surface morphology
• Roughness
• Chemical composition

• Provides insights into surface interactions.
• Crucial for assessing long-term stability and

colour-changing abilities.
[54,162–165]

Similarly, microscopic techniques such as SEM and TEM benefit from temperature con-
trol to observe morphological changes and colour variations in high-resolution images [77].
By imaging samples at controlled temperatures, researchers can analyse how tempera-
ture influences particle distribution and surface features, facilitating a comprehensive
understanding of thermochromic materials’ behaviour [127]. Overall, temperature control
enables researchers to unravel the dynamic interplay between temperature, molecular
structure, and optical properties in thermochromic materials, crucial for their development
and optimization for various applications.

Thermal analysis methods like DSC and TGA measure heat flow, phase transitions, en-
thalpy changes, and thermal stability, offering crucial insights into material compatibility at
various temperatures. dynamic mechanical analysis (DMA) evaluates viscoelastic behaviour,
glass transition temperatures, and mechanical stability under different conditions, aiding in
understanding material responses in diverse scenarios. Mechanical testing, especially tensile
testing, assesses material strength, flexibility, and overall performance, which are essential for
evaluating their robustness and mechanical behaviour. Surface analysis through techniques
like AFM and XPS investigates surface morphology, roughness, and chemical composition,
vital for assessing long-term stability and colour-changing capabilities.

These characterization methods are indispensable for understanding the mechanical,
thermal, optical, structural, and surface characteristics of reversible thermochromic ma-
terials. They significantly contribute to their analysis and potential applications, ranging
from enhancing energy efficiency to tailoring materials for diverse sectors. Future research
aims to refine these methods to delve deeper into the intricate behaviour of these materials,
optimising their functionality across applications and enhancing adaptability, durability,
and responsiveness.

2.5. Advance Properties of Reversible Thermochromic Materials

The realm of smart materials introduces an exciting paradigm of adaptability within
varying environmental conditions [166]. Among these, thermochromic nanocomposites
stand out due to their captivating optical and thermal attributes, making them a focal
point of scientific inquiry. This section delves into the diverse techniques employed for
assessing these materials (Table 7), showcasing their properties through specific characteri-
zation methods.
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Table 7. Overview of techniques and their roles in assessing thermochromic nanocomposites material.

Technique Purpose/Role Parameter/Value References

Zeta Potential Analysis

Understanding particle
interactions, emulsions, and

suspensions are important for
comprehending behaviour.

Zeta potential value (−20 mV),
indicating particle stability or

interaction strength.
[109,167,168]

Polarised Optical Microscopy
Visual assessment is critical for
unravelling optical intricacies,

especially anisotropic behaviour.

Observing birefringence patterns
indicating anisotropic behaviour. [41,151,169,170]

Chemical Analysis

FT-IR and X-ray diffraction
techniques aid in unravelling

chemical properties
and interactions.

Identification of specific
functional groups (e.g., -OH or

-COOH) in FT-IR spectra.
[160,161]

Topographical Analysis
SEM and TEM evaluations offer
insights into morphology and

surface characteristics.

Measurement of nanoparticle size
(e.g., 50 nm) or surface roughness
observed in SEM or TEM images.

[146,162–164]

The study by Sun et al. [171] involved the production of microcapsules from cholesteric
liquid crystals (CLCs) using the complex coacervation technique. This intricate process,
encompassing emulsification, coacervation, and crosslinking, demonstrated remarkable
success. The SEM and TEM analyses confirmed the effective encapsulation of CLC, show-
casing a particle diameter of about 3–5 µm with uniformed porous structure (Figure 7).
Meanwhile, the investigation by Agra-Kooijman et al. [172] utilised polyester filaments
pre-coated with thermochromic liquid crystal (TLC) ink to create breathable thermochromic
textiles, enhancing their versatility [173]. The combination of pre-coated yarns was selected
to achieve the desired thermochromic properties. The resulting knitted and handwoven
fabric samples exhibited excellent reversible colour changes from red to blue as the tem-
perature increased from 26 to 32 ◦C (Figure 8), demonstrating their potential for adaptive
applications, consistent with the properties of the TLC ink used.
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Figure 7. Optical microscopy SEM image of the polymer microstructures of the films: (a) cholesteric
liquid crystals (CLC) microcapsule, (b) polymer microstructures for the as-made films from horizontal
and cross-sectional perspectives, and (c) cholesteric liquid crystals (CLC) shell thickness [4,6,171,174].
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Furthermore, the innovative approach by Yunxiang Chen et al. [175] involved a novel
thermochromic nanocomposite comprising the ionic liquid Nickel–Bromine–Ionic Liquid
(Ni-Br-IL) alongside vanadium oxide (VO2) nanoparticles. Advanced analyses revealed
significant enhancements in thermochromic characteristics, promising applications in smart
windows [176]. Therefore, all above discussion studies elucidate the evolving landscape of
thermochromic materials; the showcased results not only affirm successful encapsulation
and improved thermochromic properties but also hint at prospective applications in diverse
fields, especially in smart windows and adaptable materials. The ongoing exploration
in this domain paves the way for further research avenues, delving deeper into material
synthesis, characterization, and application development for a myriad of industries.

3. Application in Heat Detection Systems

The exploration and enhancement of heat-sensing systems utilizing reversible ther-
mochromic materials is a critical frontier in bolstering their operational efficacy [102,177–179].
This research phase delves into the nuanced responses of these materials to temperature
fluctuations, a cornerstone for advancing efficient heat detection systems. Notably, vana-
dium oxide, a prevalent component in smart windows, has showcased a noteworthy 9.4%
reduction in energy consumption compared to traditional methods, as exemplified by
Ye et al. [180]. Assessments extend to diverse environmental conditions such as humidity,
UV exposure, and pressure, determining the materials’ adaptability and resilience. More-
over, the seamless integration of thermochromic materials with substrates and coatings
significantly amplifies overall system efficiency [181–183].

The multifaceted applications of thermochromic nanomaterials are succinctly encap-
sulated in Table 8, where it comprehensively outlines their varied roles, developmental
trajectories, performance attributes, and corresponding references, underscoring their
wide-ranging potential across diverse industries and applications.
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Table 8. Applications and utilization of thermochromic nanomaterial in various fields.

Application Thermochromic Development Performance Function Previous and
Current Research References

Smart
window

• Window coatings:
transparency and reflectivity
based on temperature

• Energy savings
• Environmental

impact

• Vanadium oxide
nanofilms for
energy-efficient
windows

[40,172,184,185]

Temperature
sensors

• Temperature-sensitive paints
coatings change colour with
temperature variation

• Visual Indication

• Industrial machinery
hotspot detection
with temperature-
sensitive paints

[174,186]

Medical
application

• Medical device coatings
• Monitoring body

temperature or diagnostics

• Non-invasive
patient comfort

• Wearable
thermochromic
patches for
temperature
monitoring

[105,178]

Thermal
insulation

• Building insulation materials
reflect or absorb heat based
on temperature

• Improved
insulation and
energy efficiency

• Insulating materials
for buildings that
adapt to temperature
changes

[26,38,155]

Food quality
and safety

• Food packaging Change
colour if the temperature
exceeds a safe range

• Food safety and
quality assurance

• Thermochromic labels
on perishable goods
packaging

[72,142,187]

Fire safety
• Fire-resistant coatings change

properties when exposed to
high temperatures

• Early detection
improves safety

• Fire-resistant coatings
with thermochromic
additives

[150,188–190]

3.1. Thermochromic Materials in Fire Alarm System Applications

The significance of smart materials, particularly thermochromic materials in enhancing
fire alarm systems, is emphasised by their pivotal role in ensuring safety and mitigating
fire-related risks. Notably, previous studies unveil innovative applications and novel
material compositions that contribute to advancing fire safety technologies and chemical
engineering paradigms towards a more secure, energy-efficient, and environmentally
conscious future. Figure 9 shows a schematic heat detection system using a thermochromic
membrane material [191] and future research material synthesis of graphene oxide with
multifunctional sensor development, as well as integration with intelligent systems for more
robust and adaptive fire safety solutions. These advancements underscore nanomaterials’
potential in fire safety engineering. Future efforts in scalable, eco-friendly manufacturing,
and durability assessments will shape the evolution of fire safety and chemical engineering.
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Figure 9. Schematic representation illustrating heat detection with thermochromic material for fire
safety systems. (a) Thermochromic luminous membrane—effectiveness in high-temperature filtering
and fire alarm systems [174]. (b) Enhancing fire safety systems rapid response—capabilities of
graphene oxide-based fire alarms [177,192].
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3.2. Coating and Smart Window Systems Applications

Thermochromic materials show potential for energy-efficient smart windows and
thermoregulation applications, pivotal for reducing carbon emissions in buildings. Table 9
outlines the various mechanical properties of commonly used thermochromic materials
in smart window applications. Liquid crystal polymers, characterised by their liquid
crystal structures, exhibit a reorientation temperature range (−20 ◦C to 50 ◦C) in ther-
mochromic windows. In the sector of smart windows, a comparison between various
thermochromic materials is pivotal, especially concerning their energy-saving potential.
Among these materials, vanadium dioxide (VO2) coatings have garnered attention due
to their cost-effectiveness and scalability for large-scale applications [193]. For instance,
Louloudakis et al. [176,194] has demonstrated that VO2 coatings exhibit a notable ther-
mochromic transition at low temperature, shifting from a transparent to a reflective state
upon heating. It is shown that the precursor flow rate is not the critical factor to influ-
ence the thermochromic characteristics of the coatings. Hence, this transition effectively
regulates solar heat gain, thereby reducing the need for artificial cooling in buildings [195].

In this case, Arnaoutakis and Katsaprakakis [196] have underscored the significant
energy-saving benefits of incorporating VO2 coatings into windows. For instance, inves-
tigations into energy consumption for heating and cooling in buildings equipped with
VO2-coated smart windows have revealed substantial reductions compared to conventional
windows. The dynamic response of VO2 coatings to environmental conditions allows for
efficient energy usage, contributing to improved building sustainability and occupant
comfort. Ongoing advancements in fabrication techniques and material engineering further
enhance the appeal of VO2 coatings for widespread adoption in energy-efficient building
designs. These findings underscore the potential of VO2 coatings as state-of-the-art ther-
mochromic materials for smart windows, offering compelling energy-saving solutions for
architectural applications.

In summary, this reorientation alters their optical properties, influencing the window’s
behaviour and the change in phase or properties of the microcapsule contents due to
temperature directly influences the materials’ light transmission properties, affecting their
optical characteristics. Furthermore, Figure 10 displays user-controlled smart windows
with transparent heaters (smart-shield hydrogel), ensuring privacy and reducing heating
and energy saving. These advancements underline the need for thermochromic materials
with enhanced mechanical properties, durability, flexibility, and longevity, aligning them
with eco-friendly architectural solutions.
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Figure 10. Illustrates the innovation in coating and smart windows. (a) Thermochromic coatings
for energy-efficient smart buildings and roofs: schematic illustration and scanning electron mi-
croscopy (SEM) image of temperature-sensitive paint (TSP) with coating layer schematic [84,197,198].
(b) Microgel-based systems intelligently adjust sunlight penetration, and user-controlled windows
provide privacy [83,199–201].
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Table 9. Mechanical properties of the common thermochromic material in smart window.

Material Description Type of Smart Window
Mechanism

Important
Parameter/Value References

Liquid Crystal
Polymers

Polymer Materials with
Liquid Crystal

Structures

Thermochromic Windows—liquid
crystals in the polymer reorient

with temperature changes, altering
optical properties.

Reorientation
temperature range
(−20 ◦C to 50 ◦C)

[60,62]

Hydrogels
Water-based materials
with thermochromic

properties

Smart Windows—swelling and
shrinking of the hydrogel matrix

with temperature variation causes
optical changes.

Temperature-induced
matrix swelling ratio

(20% to 150%)
[63,202–204]

Nanoparticles
Tiny particles with

reversible
thermochromism

Nanoparticle
Windows—nanoparticles change
their arrangement or properties in
response to temperature, affecting

light interaction.

Temperature-triggered
nanoparticle
aggregation

temperature (50 ◦C)

[112,126,144,205]

Microcapsules

Tiny capsules
containing

thermochromic
substances

Microcapsule Windows—the
contents of microcapsules change

phase or properties with
temperature, influencing light

transmission.

Phase transition
temperature

(40 ◦C to 70 ◦C)
[113,154]

Polymer-Based
Materials

Polymers engineered
to exhibit

thermochromism

Polymer Smart Windows—the
polymer matrix undergoes

structural changes with
temperature, altering optical

characteristics.

Mechanical flexibility
rating (excellent, good,

fair, or poor)
[32,49,142,155]

Vanadium
Dioxide (VO2)

Inorganic compound
known for its

thermochromic
properties.

VO2 Smart Windows—VO2
undergoes a

semiconductor-to-metal transition
at a critical temperature, affecting

its optical properties.

Critical transition
temperature (68 ◦C) [112,126,147,205]

Liquid Crystal
Mixtures

Mixtures of liquid
crystals with

thermochromic
behaviour

Liquid Crystal Windows—liquid
crystals in the mixture change

orientation and optical properties
as temperature varies.

Temperature range for
liquid crystal
reorientation

(25 ◦C to 60 ◦C)

[46,64,156]

3.3. Food Packaging Application

The role of thermochromic materials in ensuring food safety, quality, and compliance
in processing and packaging, characterized by their reversible thermochromic materials,
hinges on assessing their colour change precision amid temperature shifts [103]. The use of
thermochromic materials in food packaging has notably enhanced food safety and consumer
interaction. Chowdhury et al. [81] explored photochromic and thermochromic colourants
in packaging, enhancing quality control and consumer interaction. Similarly, Liu et al. [206]
introduced non-toxic microcapsules housing thermochromic materials in ink and film, broad-
ening their potential in food packaging. Thus, Table 10 outlines the thermochromic materials
and their uses, benefits, and challenges in food packaging applications.
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Table 10. Characteristic of thermochromic material in food packaging.

Thermochromic
Material Application Advantages Limitations References

Thermochromic Ink • Labels and Foils

• Visual temperature
indication

• Quality and shelf-life
indicators

• Enhanced communication
with consumers

• Requires calibration
• Potential health

hazards
• Compatibility with

food contact

[62,71,72,79]

Photochromic and
thermochromic

colourants
• Food Packaging

• Temperature monitoring
• Quality control
• Regulatory compliance

• Longevity
• Adhesion
• Chemical or

moisture resistance

[40,62,156]

Microcapsules

• Ink and film materials
• Polymers engineered

to exhibit
thermochromism

• Improved quality control
• Visual temperature

indication
• Potential use in food

packaging

- [47,48,50,63]

Additionally, Figure 11 showcases recent advancements in smart packaging technolo-
gies. The periodic transition of packaging labels [146] illustrates time-based monitoring,
revealing changes over time. Similarly, the colour transition of cellulose acetate and silver
tetraiodomercurate-coated labels with varying temperatures [207] demonstrates visual
temperature indication, highlighting the practical application of thermochromic materials
in response to diverse thermal conditions. These advancements highlight the importance of
thermochromic materials in smart packaging, offering dynamic feedback on temperature
changes and time monitoring. Future research could focus on enhancing the durability,
adhesion, and safety of these materials for food contact and exploring innovative encap-
sulation techniques for wider applications in food packaging, further ensuring improved
food safety and quality.
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Figure 11. Recent advances in smart packaging technologies. (a) Packaging label colour transition due
to time periodic monitoring [146]. (b) The transition of cellulose acetate and silver tetraiodomercurate-
coated labels when exposed to various temperature [207].

3.4. Industrial Equipment and Manufacturing

Thermochromic materials play a pivotal role in industrial settings, enabling effective
temperature monitoring and process optimization. Techniques like infrared and thermal
imaging are key for characterising these materials, offering visual insights into temperature
gradients, and identifying equipment hotspots [81,105]. However, ensuring the durability
and stability of these materials under demanding industrial conditions is crucial. It is
essential to comprehend the various industrial applications of thermochromic materials.
Therefore, Table 11 provides a comprehensive illustration of their applicability across
several sectors, highlighting the advantages they offer based on previous research and a
variety of industrial conditions.

Table 11. Applications of thermochromic materials in industrial equipment and manufacturing.

Industrial Area Key Use Thermochromic Materials Benefits and Significance References

Chemical
Engineering

• In situ imaging of liquid temperature
distribution during microwave heating

• Addresses uneven heating
• Improves reaction precision
• Enhances energy efficiency

[149,208]

Paper
Manufacturing

• Incorporation of reversible thermochromic
microcapsules (RTM) to create secure and
counterfeit-resistant materials.

• Investigation into RTM retention in pulp for
improved material security and
anti-counterfeiting features

• Enhances security and
anti-counterfeiting measures
in various industrial
applications

[158,159,209]

Wood Coating
Industry

• Utilising reversible thermochromic aqueous
coatings to control colour differences and
gloss of coatings

• The optimisation of the coating process has
potential applications in furniture engineering

• Offers control over coating
quality and creating intelligent
wood coatings

[81,210]

Electrical Equipment

• Development of temperature-responsive
microcapsules to enable insulating materials
from excessive external temperature

• Colour changes in response to temperature
variations and localization of hotspots.

• Enhances real-time monitoring and safety of
electrical and electronic devices

• Improves the safety and
functionality of electrical
equipment and enhances
temperature monitoring.

[105,211]
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Thermochromic materials have also been used in chemical engineering to help visu-
alise the distribution of liquid temperature during microwave heating, which guarantees
even heating, accurate reactions, and increased energy efficiency. For instance, reversible
thermochromic microcapsules (RTMs) are used in paper manufacturing as a means of im-
proving colour and in coatings in the wood coating industry. In the meantime, temperature-
responsive microcapsules are used in electrical equipment to provide real-time monitoring
and hotspot localization by allowing insulating materials to respond to extreme external
temperatures [212]. Furthermore, Figure 12 depicts the significance of thermal mapping
in thermochromic material applications through thermal imaging techniques, where it
displays examples such as crack-based sensor thermal behaviour, thermal images of plants,
and power substation equipment.
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Figure 12. Thermal mapping of the thermal imaging technique emphasizes the thermochromic mate-
rial and aids in thermal visualization. (a) Characteristics of thermochromic, crack-based sensors—IR
camera images of each strain showing the thermal distribution on the sensor [213,214]. (b) Thermal
images of soybean plants [215]. (c) Thermal images of power substation equipment [216].
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3.5. Health and Medical Device Application

Thermochromic materials in health and medical device applications offer significant
promise for revolutionising healthcare through temperature monitoring, health parameter
tracking, and innovative advancements. The characterization of these materials focuses
on their sensitivity, precision in temperature monitoring, and biocompatibility evaluation.
Evaluating their safety and compatibility with biological systems is crucial for their appli-
cation in medical devices. Integrating thermochromic materials into wearable sensors and
fabrics enables real-time monitoring of vital health parameters, fostering the development
of smart clothing for medical purposes [217,218].

Recent advancements in thermochromic sensing technologies showcase remarkable
progress. Alam et al. [161] introduced polymer-based optical fibres embedded with ther-
mochromic pigments, enabling precise temperature sensing through reversible spectral
changes. Figure 13a illustrates these fibres’ structure and their response to temperature
shifts, offering sensitivity and strain-sensing capabilities for expanded applications. Er-
anki et al. [219] developed tissue-mimicking thermochromic phantoms (TMTCPs), featuring
MRI-imageable and temperature-sensitive properties, crucial for assessing high-intensity
focused ultrasound (HIFU) during procedures. Figure 13b details the design of these
phantoms, offering HIFU-compatible temperature sensing without invasive techniques,
ensuring safe and efficient evaluation methods for medical procedures.
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Figure 13. Innovative thermochromic material in health and medical device applications. (a) Fabrica-
tion process of reversible thermochromic nanofibrous membrane—potential applications in respi-
ratory masks, patches, and bracelets [85,90]. (b) Development of tissue-mimicking thermochromic
phantoms for MRI-imageable and HIFU-compatible temperature sensing [219–221].

The recent advancements, as present in Table 12, underscore the concentrated efforts
in tailoring polymer structures to enhance the flexibility, sensitivity, and durability of
thermochromic materials used in medical devices. Innovations in polymer compositions
aim to create adaptable and more sensitive medical devices, ensuring prolonged usage with
increased patient comfort. Nanoparticle size significantly influences the performance of
thermochromic materials, with recent developments focusing on precise control to impact
sensing ranges, optimize optical performance, and mitigate potential toxicity concerns.
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Encapsulation methods play a crucial role in ensuring the reliability of these materials in
medical devices, aiming for stability, safety, and faster response times. Surface modifications
are being utilized to enhance adhesion properties and biocompatibility, enhance material
stability within medical devices, and minimise adverse reactions. Innovative fabrication
techniques ensure cost-effectiveness and scalability, meeting the rising demand without
compromising quality.

Table 12. Chemical engineering insight on thermochromic material in medical devices.

Chemical Composition Role in Biocompatibility and
Material Functionality Element References

Polymer structure Influences material properties
• Flexibility
• Sensitivity
• Durability

[62,67,103,222]

Nanoparticle size Affects material characteristics
• Sensing range
• Optical performance
• Toxicity

[105,115,223]

Encapsulation methods Determines material reliability
• Stability
• Safety
• Response time

[67,105]

Surface modifications Influences material interaction
• Adhesion properties
• Biocompatibility [49]

Material fabrication Determines production feasibility
• Cost-effectiveness
• Scalability [205]

Environmental impact Understanding material performance • Behaviour in varying conditions [151,223,224]

Moreover, the information presented in Table 13 demonstrates significant progress in
utilizing thermochromic materials across diverse medical applications. These materials
have played pivotal roles, from enhancing accuracy and safety in medical imaging and
thermal ablation techniques to enabling remote health monitoring and the potential de-
velopment of smart medical clothing. Integration into optical fibre sensors offers crucial
data for patient care and diagnostics, while 3D-printed polymer fibres with thermochromic
properties enable tuneable sensing capabilities with flexibility and affordability.

Table 13. The advantage and applications of thermochromic materials in health and medical device.

Medical
Application Area Advantage of Thermochromic Materials Function References

Medical Imaging

• Direct visualisation and quantification of
HIFU heating

• Enhanced accuracy and safety during
medical procedures

• Accurate tissue-mimicking properties for
evaluating thermal therapy equipment

• Accuracy in HIFU heating
• Safety in medical procedures
• Tissue-mimicking properties

[115,225–227]

Thermal Ablation
Techniques

• Improved quality and accuracy in procedures
like laser and microwave ablation

• Enhanced medical device performance and
patient safety

• Quality and accuracy
• Device performance [115,228]

Remote Health
Monitoring

• Real-time monitoring of vital
health parameters

• Potential for smart clothing for
medical applications

• Real-time monitoring
• Smart clothing potential [75,229,230]
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Table 13. Cont.

Medical
Application Area Advantage of Thermochromic Materials Function References

Optical Fibre
Sensors

• Simultaneous measurement of temperature
and humidity in healthcare settings

• Vital information for patient care
and diagnostics

• Temperature and humidity
• Patient care and diagnostics [231,232]

3D-Printed
Polymer Fibres

• Tuneable strain and temperature sensing in
biomedical and healthcare applications

• Flexibility, reusability, and affordability

• Strain and temperature
• Flexibility and reusability [161,233,234]

3.6. Textiles and Fabric Applications

Integrating reversible thermochromic materials into textiles signifies a ground-breaking
shift in heat detection and comfort enhancement, although it comes with durability and
stability challenges. Recent studies by Zhang et al. [80] showcased inventive thermorespon-
sive dye systems enclosed in nanoparticles, yielding vibrant colour changes and strong
fluorescence triggered by heat. Tözüm et al. [117] and Sahebkar et al. [165] have streamlined
fabrication processes, enhancing the accessibility and cost-effectiveness of thermochromic fi-
bres. These studies explored microencapsulation techniques, augmenting reversible colour
changes, and thermal regulation crucial for adaptive clothing and protective wear [75,165].

Incorporating composite materials and microcapsules into thermochromic textiles, as
highlighted by Yi et al. [78] and Geng et al. [79], enables dynamic responses to temperature
fluctuations. These findings emphasise the stability of thermochromic features under
extreme conditions, ensuring durability and reliability. Christie’s [147] research emphasises
understanding the molecular mechanisms of thermochromic materials, which is crucial
not only in textiles but also across various industries. Figure 14 illustrates a scalable
approach introduced by Wang et al. [77] for producing thermochromic-coated silks (TCSs),
unlocking applications in smart textiles, wearable devices, flexible displays, and human–
machine interfaces.
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Figure 15 illustrates the manifold applications of reversible thermochromic materials,
spanning smart coatings, wearable sensors, energy management, and architecture. This
innovative method bridges the gap between lab research and industry, driving functional
textile advancements towards commercialization. Table 14 demonstrates the manifold
benefits of integrating thermochromic materials into textiles. These materials enhance
smart clothing by effectively regulating heat, improving comfort, and offering dynamic
colour changes. Beyond fashion, these advancements play a pivotal role in temperature
monitoring and comfort assurance. Adaptive fabrics enable real-time temperature tracking
while enhancing comfort and aesthetics through dynamic colour alterations based on
body temperature variations. Moreover, thermochromic materials boost safety in thermal-
protective clothing by signalling dangerous temperatures through colour changes. Dynamic
textile displays not only offer visual appeal but also adjust fabric aesthetics in response to
temperature shifts.
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Figure 15. Versatile applications of thermochromic materials for smart application technology.
(a) Hydrophobic roof coating and smart window module from thermochromic material [138,235].
(b) Calorimetric temperature and UV sensors applied by weaving thermochromic materials [236].
(c) Highly thermochromic temperature sensor membrane in fire detector sensor and temperature
detection application [191].
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Table 14. The use of thermochromic materials in textiles and fabric applications.

Application Advantage of
Thermochromic Materials Function Temperature

Range (◦C)

Colour
Change

Threshold
(◦C)

Sensitive to
Temperature

Changes
References

Smart
apparel

• Offers temperature-responsive
colour changes;

• Enhances thermal comfort and
heat regulation in clothing.

• Enhancing thermal
comfort and heat
regulation in clothing

20–40 ◦C ±2 ◦C High [52,207,237]

Adaptive
textiles

• Provides dynamic colour
changes based on body
temperature fluctuations;

• Offers improved comfort
and aesthetics.

• Offering improved
comfort and
aesthetics

25–50 ◦C ±3 ◦C Moderate [75,134,156]

Thermal
protective
garments

• Changes colour in response to
temperature changes;

• Indicates potential exposure to
hazardous temperatures.

• Indicating potential
exposure to
hazardous
temperatures

25–50 ◦C ±3 ◦C Moderate [105,155]

Dynamic
textile

displays

• Allows for fabric displays that
change colour or patterns
based on environmental
temperature changes.

• Aesthetic display
• Temperature

indication
20–40 ◦C ±2 ◦C High [52,61,75,

115]

Wearable
devices

• Integration of thermochromic
materials in clothing for
wearable technology;

• Indicates changes in body
temperature or environmental
conditions.

• Indicating changes
in body temperature
or environmental
conditions

15–35 ◦C ±1.5 ◦C High [59,75,163,
238]

Health
monitoring

• Real-time monitoring of vital
health parameters.

• Real-time health
monitoring 15–35 ◦C ±1.5 ◦C High [239–241]

Industrial
uses

• Temperature indication for
industrial equipment
and processes.

• Process
optimization 30–45 ◦C ±2.5 ◦C Low [105,149,

164]

Environmental
sensors

• Temperature sensing for
environmental monitoring.

• Environmental
monitoring 30–45 ◦C ±2.5 ◦C Low [49,72,147]

4. Advantage and Challenges of Reversible Thermochromic Materials

This section explores the advantages and challenges posed by reversible thermochromic
materials. Reversible thermochromic materials find wide-ranging applications, aiding in
temperature monitoring and dynamic colour changes, such as in smart windows. However,
maximising their benefits requires addressing challenges. Accurate calibration, maintain-
ing colour stability, and preventing fading is critical. Table 15 summarises the strengths and
limitations of reversible thermochromic materials. Despite their considerable advantages,
overcoming stability, durability, and compatibility issues is essential across various industries.

Table 15. Advantage and challenges of reversible thermochromic materials.

Aspect Advantage Challenge References

Cost • Cost-effective compared to complex
electronic monitoring

• Accurate calibration is needed for a
successful temperature display [62,112,122]

Versatility • Versatile application on various
surfaces and materials

• Changes in sensitivity and response
time can affect monitoring [84,162,205]

Ease of use • Simple and straightforward
temperature indication

• Ensuring long-term stability and
preventing colour fading [72,149,242]
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Table 15. Cont.

Aspect Advantage Challenge References

Customizability • Can be tailored to different
applications and industries

• Maintaining resilience to
external factors [60,155]

Applications
• Wide range of potential applications

in diverse industries (surfaces, labels,
coatings, and fabrics)

• Material compatibility with
various substrates [162,205,222]

4.1. Advancements in Material Design

Recent studies in reversible thermochromic materials are propelling their evolution for
diverse applications. Researchers are dedicated to refining existing materials and develop-
ing new ones to enhance stability, durability, compatibility, and colour-changing properties.
Breakthroughs include the creation of functional polymers with mechanochromic traits,
suited for wearable electronic skin, smart screens, and anti-counterfeiting devices [243].
Geng et al.’s [184] work on reversible thermochromic microencapsulated phase change
materials (TC-MPCMs) demonstrates exceptional thermal energy storage abilities via metic-
ulous research on shell materials and encapsulation parameters.

4.2. Integration into IoT and Energy Applications

Reversible thermochromic materials integrated into IoT platforms are revolutionising
temperature monitoring in healthcare, smart cities, and robotics [244,245]. Shi et al. [246] pio-
neering work on smart-textile-integrated microelectronic systems (STIMES) embeds sensors,
displays, and energy harvesters into functional textile devices. Thummavichai et al.’s [152]
exploration of tungsten oxide (WOx) nanomaterials drives innovation in smart windows,
solar–thermal coatings, and gas–chromic hydrogen sensors. Ke et al. [160] explore adapt-
able smart window designs inspired by cephalopod skin, utilising vanadium dioxide (VO2)
nanoparticles for improved energy efficiency.

4.3. Cost-Effectiveness and Versatility of Reversible Thermochromic Materials

Reversible thermochromic materials advance temperature monitoring by offering
clear, easy-to-read displays of temperature changes for immediate recognition. They are a
cost-effective alternative to complex electronic systems, suitable for various uses. These
materials are highly adaptable, allowing customization for specific temperature ranges
and colour changes. They seamlessly integrate into different surfaces, labels, coatings,
and fabrics, boosting their versatility. However, challenges include the need for precise
calibration and accurate reference temperatures for effective monitoring. Some materials
may vary in sensitivity and response time, impacting real-time monitoring. Thus, ensuring
stability and resistance to external factors is also a challenge, with impacts on overall
performance (Table 16).

Table 16. A comparison of the cost-effectiveness of reversible thermochromic materials to traditional
electronic systems.

Factors Reversible Thermochromic Materials Traditional Systems (Electronic) References

Initial setup costs Lower Higher [164,232,241]

Maintenance expenses Lower Higher [27,184,247,248]

Long-term reliability Generally good Subject to wear and tear [184,242,247]

Energy consumption Lower Higher [83,132,249]

Integration flexibility High limited [140,184,247,250]

Customization possibilities Flexible Rigid [140,184,247,250]

Scalability Varies Complex [132,140,184,247]
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Table 16. Cont.

Factors Reversible Thermochromic Materials Traditional Systems (Electronic) References

Environmental impact Eco-friendly Electronic waste concern [163,184,251]

Response time Varies Fast [50,164]

Sensing range Adaptable Fixed [184,191,247,250]

5. Future Directions and Recommendation

The potential of reversible thermochromic materials spans various applications, prompting
a focus on stability enhancement, expanded temperature ranges, and feature enrichment.
Ongoing research aims to achieve high-resolution monitoring, create tailored materials,
and integrate these materials into smart systems. Innovation in fabrication methods and
exploration of eco-friendly materials are also critical aspects. Emerging areas of interest
include biomedicine, wearable tech, energy harvesting, photonics, and AI-driven data
analytics. While offering numerous opportunities, ensuring durability and stability for
extended use is crucial. This necessitates exploration into novel materials, protective
coatings, and encapsulation techniques.

a. Diverse application

Reversible thermochromic materials find applications in a wide array of fields.
Christie [147] explored the potential of chromic textiles, discussing ongoing research trends
driving technical and smart textile applications [252]. Mehta et al. [3] proposed a simple,
cost-effective thermochromic temperature sensor, emphasising reusability and longevity
for visual temperature monitoring without intricate circuitry.

b. Micro and nanofabrication techniques

Precise temperature mapping using micro- and nanofabrication techniques is crucial
for specific industries. Advanced vanadium-oxide-based thin films in spacecraft thermal
management offer reversible thermochromic and electrochromic properties vital for micro-
satellite thermal regulation. Addressing challenges in commercial applications drives the
need for further development and demonstrates the transformative potential of intelligent
food packaging that can detect environmental changes and product conditions to enhance
safety and reduce supply chain losses [253].

c. Environmental sustainability

The future of reversible thermochromic materials aligns with eco-friendly practices
and innovative synthesis. Existing research emphasises smart, green interfaces using recy-
clable materials and sustainable production methods to reduce resource use. In addition,
Kular et al. [163] explored the use of thermochromic inks on eco-friendly label stock de-
rived from recycled materials. Additionally, a greener synthesis method, using a recyclable
choline hydroxide catalyst, demonstrates the utility of sustainable approaches in reversible
thermochromic material development. These eco-friendly strategies promise a greener
future for reversible thermochromic materials.

6. Conclusions

In recent years, reversible thermochromic polymer nanocomposites have garnered
increasing attention for their application in heat detection systems. This comprehensive
review thoroughly examined the complexities associated with integrating these polymers
into nanocomposite systems, assessing both their advantages and challenges. Among the
synthetises processes of reversible thermochromic, solution-based synthesis and in situ
polymerization are two most common techniques. Solution-based synthesis methods offer
advantages such as scalability and control over material properties. By adjusting parameters
such as solvent composition and polymer concentration, researchers can tailor the prop-
erties of reversible thermochromic polymer nanocomposites to suit specific applications.



Polymers 2024, 16, 1545 32 of 42

Additionally, solution-based synthesis allows for the incorporation of functional additives
to enhance the performance of the nanocomposites. In situ polymerization techniques en-
able the direct synthesis of polymer nanocomposites within the desired matrix, facilitating
better dispersion of nanoparticles and improved interfacial adhesion. This approach offers
advantages in terms of process efficiency and control over material properties. The intrinsic
ability of these materials to change colour in response to temperature fluctuations renders
them highly promising for heat detection technologies. For instance, in building insulation,
while these polymers can aid in identifying areas of heat loss or inadequate insulation,
their restricted colour range may impede precise temperature detection. Moreover, their
dependency on external stimuli like electricity or UV light can complicate implementation
and escalate expenses. Addressing these challenges is paramount to fully unlocking the
potential of reversible thermochromic polymer nanocomposites in heat detection systems.
Continuous research efforts aimed at expanding colour options and reducing reliance on
external triggers present promising avenues for enhancing their efficacy. Reversible ther-
mochromic materials are highly advantages for applications such as building insulation. In
this instance, reversible thermochromic polymer nanocomposites offer significant potential
for improving building insulation by enabling the detection of areas with heat loss or inad-
equate insulation. However, the limited colour range of these polymers poses a challenge
to precise temperature detection. Future research should focus on developing polymers
with a broader colour palette to enhance their applicability in building insulation systems.
Additionally, in industrial processes, reversible thermochromic polymer nanocomposites
can play a crucial role in monitoring temperature changes and optimizing energy usage.
However, their reliance on external triggers such as electricity or UV light may hinder
their integration into industrial settings. Preferred synthesis methods should prioritize the
development of stimuli-responsive polymers to mitigate dependence on external triggers
and improve their suitability for industrial applications.

Despite their numerous advantages, challenges persist, including the need for precise
calibration, stability maintenance, and compatibility with various substrates. Overcoming
these hurdles demands further research and development to enhance stability, durability,
and compatibility, thereby broadening their adoption. Looking ahead, reversible ther-
mochromic materials hold the promise of innovative temperature monitoring and control
solutions. Additionally, reversible thermochromic polymer nanocomposites hold immense
potential for heat detection systems, addressing challenges related to limited colour options
and dependence on external triggers, which is imperative for their widespread adoption.
Preferred synthesis methods such as solution-based synthesis and in situ polymerization of-
fer avenues for optimizing the properties of these nanocomposites. Future research should
prioritize expanding colour options and reducing reliance on external triggers to enhance
the effectiveness and practicality of reversible thermochromic polymer nanocomposites in
heat detection applications.
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