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Abstract: Ultrasonic testing is widely used for defect detection in polymer composites owing to
advantages such as fast processing speed, simple operation, high reliability, and real-time moni-
toring. However, defect information in ultrasound images is not easily detectable because of the
influence of ultrasound echoes and noise. In this study, a stable three-dimensional deep convolu-
tional autoencoder (3D-DCA) was developed to identify defects in polymer composites. Through
3D convolutional operations, it can synchronously learn the spatiotemporal properties of the data
volume. Subsequently, the depth receptive field (RF) of the hidden layer in the autoencoder maps the
defect information to the original depth location, thereby mitigating the effects of the defect surface
and bottom echoes. In addition, a dual-layer encoder was designed to improve the hidden layer
visualization results. Consequently, the size, shape, and depth of the defects can be accurately deter-
mined. The feasibility of the method was demonstrated through its application to defect detection in
carbon-fiber-reinforced polymers.

Keywords: carbon-fiber-reinforced polymer; ultrasonic testing; 3D convolution; deep autoencoder;
receptive field

1. Introduction

Carbon-fiber-reinforced polymers (CFRPs) [1] combine the excellent properties of
both carbon and fiber materials and are widely used in aerospace, new energy, military
applications, and other fields [2]. However, defects may arise during the manufacture and
use of these materials. These defects not only affect the comprehensive characteristics of
the material and reduce its load-bearing capacity but also have a significant impact on
product quality [3]. Therefore, regular nondestructive testing (NDT) of CFRP is crucial
to ensure the structural quality of the material. Currently, the mainstream NDT methods
include ultrasonic testing (UT) [4], eddy current testing [5], and infrared thermography [6].
UT is widely used because of its nonpolluting and noninvasive nature, ease of operation,
accurate positioning, and high reliability [7,8].

However, ultrasound signals are affected by surface echoes, bottom echoes, and
noise, which interfere with the judgment of defects, making them difficult to identify [9].
Recently, several methods have been proposed for analyzing ultrasonic inspection data
to improve their effectiveness. One-dimensional (1D) signal filtering processing methods,
including empirical wavelet transform [10], short-time Fourier transform analysis [11],
and Wigner–Ville distribution [12], are mainly used for the analysis of ultrasound signals.
These methods can extract the characteristic information of defects but lack visualization.
Image defect detection methods include support vector machines [13], manifold learning
algorithms [14], and feature-selective clustering [15]. These machine learning methods
can improve the identifiability of defects. For ultrasonic data with considerable noise and
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large echoes, deep learning [16,17] methods are more attractive. Models such as neural
networks can automatically extract features and therefore contribute to the development of
defect detection.

Recently, the rapid development of deep learning has led to its successful application
in several manufacturing and maintenance industries [18]. An autoencoder (AE), a typical
unsupervised deep learning model, has shown good performance in extracting potential
features from high-dimensional data and eliminating redundant information. Some AE
variants have made significant progress in NDT data analysis. Convolutional AE (CAE) [19]
can use activation functions to extract nonlinear features, which helps analyze nonlinear,
multinoise ultrasonic data [20]. The deep AE (DAE) [21] was successfully employed to ana-
lyze infrared thermography defect signals, and the output of the intermediate hidden layer
was visualized to accentuate the defects. However, it focuses more on analyzing images
and pixel data and often ignores important time-series information. Three-dimensional
convolution (3D-conv) [22] can accurately extract deep spatial features from images, signifi-
cantly outperforming previous feature extraction models based on 1D and two-dimensional
(2D) information. However, few studies have applied 3D-conv for defect detection in CFRP.

In this study, a stable 3D deep convolutional autoencoder (3D-DCA) was developed to
improve the accuracy and reliability of defect detection. To address the issue of significant
ultrasonic noise, a 3D convolutional neural network (CNN) is used to simultaneously
extract the spatiotemporal features of the data and reduce noise in the ultrasonic data.
The depth-wise receptive field in the hidden layers of the autoencoder maps the defect
information to its original depth position, thereby reducing the impact of surface and
bottom reflections. Additionally, a two-layer encoder was developed to enhance the visual
representation of the hidden layers. The intersection over union (IoU) [23] and contrast-to-
noise ratio (CNR) [24] were used to evaluate the effectiveness of the proposed approach.

The remainder of this paper is organized as follows. Section 2 presents the ultrasonic
data structure and preprocessing. Section 3 describes the stable 3D-DCA model framework
and its implementation. In Section 4, a CFRP specimen is presented and the experimental
results are discussed. Finally, the conclusions are presented in Section 5.

2. Data Collection and Preprocessing
2.1. Ultrasound Scanning

Phased-array ultrasonic detectors utilize multichip probes, where each probe functions
as a separate transmitter or receiver array. The process operates as shown in Figure 1. The
transmitter array directs the emission of the ultrasound signals from each unit to form the
desired acoustic beam [25]. Simultaneously, the receiver array manages the timing of each
unit to capture reflected signals. The ultrasound waves propagate through the test object
and are reflected off the internal defects or interfaces. The strength of the reflected signals
correlates with the properties of the materials on either side of the interface [26]. Thus,
the ultrasound echoes that return from the workpiece can be used to locate defects within
the material.
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The collected ultrasonic data were then converted into a 3D matrix for processing
with a stable 3D-DCA. The ultrasonic time series served as the depth dimension, with
the horizontal and vertical pixels representing the height and width dimensions of the
ultrasound image, respectively. Consequently, the convolution operation extracts feature
information from the time series of multiple ultrasound images, thereby reducing the
reliance on manual screening operations.

2.2. Data Structures and Preprocessing

The dataset acquired during ultrasonic inspection typically comprises a 3D matrix
that displays planar projections of ultrasound echoes at various depths of the specimen.
This is achieved by setting a specific depth range to acquire an nh frame echo signal. Each
image frame consists of nx × ny pixels. The 3D ultrasonic matrix X ∈ RT×M×N is then
transformed into a 2D matrix X1 ∈ RT×R, where M, N, and T denote the length, width, and
number of frames, respectively, and R = M × N.

After converting the 3D ultrasonic matrix into a 2D matrix, it was observed that the
amplitude of the echoes at shallow defects was usually larger than that at deep defects, and
the amplitudes of the surface and bottom echoes exceeded those of the defect echoes [27].
To mitigate the effects of differences in scale, it is often necessary to preprocess the original
ultrasonic data xi,j, where xi,j is the original value at the jth pixel in column i of X1. In this
study, the robust normalization [28] method was applied, which is calculated as follows:

x′i,j =
xi,j − med

IQR
, (1)

where x′i,j represents normalized data. med is the median of xi, and IQR is the interquartile
range of xi. The effects of outliers in the data can be reduced using robust normaliza-
tion techniques.

3. Methodologies
3.1. Description of 3D-DCA

An AE typically consists of encoder and decoder networks. The encoder compresses
the data dimensions to extract potential features, and the decoder reconstructs the input
data based on these features. As previously mentioned, X ∈ RT×M×N represents a set of
ultrasonic data, and the feature extraction process using 3D-DCA is represented as

XL = f (Wen ⊙ X + ben)
X̂ = f (Wde ⊙ XL + bde)

, (2)

where XL ∈ RT×M×N (t << T) denotes the output of the encoder, t is the number of feature
maps, ⊙ represents a 3D-conv operation, Wen and ben represent the encoder weight and
bias, respectively, X̂ ∈ Rt×M×N denotes the ultrasonic data reconstructed by the decoder,
and Wde and bde represent the decoder weight and bias.

Compared with 2D convolution, the use of 3D-conv in this model accounts for tem-
poral information. The dimensions of the 2D convolution can be expressed as kh × kw,
whereas those of 3D-conv are kh × kw × kd. The formula for 3D-conv is similar to that for
2D convolution, with the primary distinction being that the convolution operation extends
across three dimensions—depth, width, and height—that require manipulation in a volu-
metric space. Thus, 3D-conv can extract both spatial and temporal information, thereby
enhancing defect detection accuracy. Similar to the 2D convolutional network structure,
3D-DCA includes an encoder, decoder, and loss function, but with the 2D convolutional
kernel replaced by a 3D-conv kernel. Assuming that the feature map of layer l-1 is Al-1, the
representation of the value of the ith feature of layer l at position (x, y, z) is

Axyz
l,i = f

(
CL−1

∑
c=0

HL−1

∑
h=0

WL−1

∑
w=0

DL−1

∑
d=0

Wchwd
l,i Ac(x+h)(y+w)(z+d)

l−1 + bl,i

)
, (3)
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where Wchwd
l,i denotes the value of the ith convolution kernel connected to layer l at a

position (h, w, and d); c denotes the feature map fed from layer l-1 to layer l; H, W, and
D denote the height and width of the 3D-conv kernel and the depth in the time series,
respectively; bl,i denotes the bias of the ith feature map in the lth layer; f ( ) denotes the
activation function; and the activation function is Leaky Relu (LReLu).

3.2. Stable 3D-DCA for Ultrasonic Defect Detection

In this section, the construction steps of the stable 3D-DCA model to improve the
visibility of defects are described in detail. A phase-controlled ultrasonic detector was used
to acquire ultrasonic data, and a stable 3D-DCA method was applied to extract defective
regions from the image. The main steps of the stable 3D-DCA model include 3D-conv
for ultrasonic signal denoising, RF-based defect depth prediction, and enhancement of
detection performance.

3.2.1. 3D-Conv for Ultrasonic Denoising

The ultrasound images acquired using the phase-controlled ultrasonic detector exhib-
ited significant redundancy. The unfolded data matrix X1 is preprocessed using the robust
normalization method described in Section 2.2 to improve the data presentation. After
preprocessing, the 2D data X1 were converted into a 3D matrix X ∈ RT×M×N .

The structure of a stable 3D-DCA model is shown in Figure 2. The stable 3D-DCA
core architecture comprises two encoders and a decoder.
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Figure 2. Stable 3D-DCA flowchart. CN represents 3D-conv, BN represents batch normalization, LR
represents Leaky ReLU, TH represents Tanh used in the output layer of the decoder, AP represents
3D average pooling, UP represents upsampling, and MP represents 3D maximum pooling.

The encoder has six coded convolutional blocks, each consisting of a convolutional
layer and a pooling layer. The 3D filter can move in all three directions of the ultrasonic
data and detect features both vertically and horizontally. At each position, a convolved
value was calculated to attenuate noise in the original ultrasonic data and clarify the spatial
information of the defects. To obtain an enhanced image with low noise, the convolution
kernel of the convolutional layer was set to 3 × 3 × 3 and the step size was set to 1 × 1 × 1.
Then, 3D maximum pooling was used in the last layer of the encoder, whereas 3D average
pooling was used in the other layers. The kernel of the pooling layer was 3 × 3 × 3. Using
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3D-conv, the ultrasonic time series can be processed directly in the ultrasound processing
tasks without segmenting the 3D data into multiple ultrasound images. Additionally, to
accelerate the mapping of the RF and reduce the number of parameters used in the model,
the step size of the pooling layer was set to 2 × 1 × 1, focusing only on feature extraction
in the depth direction. The Adam optimizer and dropout strategies were used to prevent
model overfitting and reduce computation.

The decoder incorporates an upsampling layer to resize the reconstructed map and
obtain a noise-reduced map that corresponds one-to-one to the input data. The decoding
layer included six convolutional blocks, each featuring an upsampling layer and a convolu-
tional layer. A batch normalization layer and an activation function were added to each
layer of neurons, with the tanh activation function [29] used for the output layer of the
decoder and LReLU for the other layers.

The ultrasonic data possess a 3D structure. The stable 3D-DCA denoising effect is
highlighted by the integration of components such as 3D-conv and 3D pooling.

3.2.2. RF-Based Defect Depth Prediction

In a 3D-conv neural network, the RF refers to the volume of input data that a point
on the feature map can perceive. As illustrated in Figure 3, the larger the RF value of the
neuron, the wider the range of the original data it can access. The RF of the current layer is
calculated as follows:

RFi+1 = RFi + (k − 1)× Si, (4)

where RFi+1 denotes the RF of the current layer; RFi denotes the RF of the previous layer; k
denotes the size of the convolution kernel; and Si represents the product of the step sizes of
all previous layers (excluding the current layer). The formula used is as follows:

Si = ∏i
i=1 Stridei, (5)

Polymers 2024, 16, x FOR PEER REVIEW 6 of 14 
 

 

where RFi+1 denotes the RF of the current layer; RFi denotes the RF of the previous layer; 
k denotes the size of the convolution kernel; and Si represents the product of the step sizes 
of all previous layers (excluding the current layer). The formula used is as follows: 

∏ i
i ii=1

S = Stride , (5) 

 
Figure 3. RF mapping of 2D convolution vs. 3D-conv. 

Using the data from this study as an example, the network framework and RF calcu-
lations are presented in Table 1. The RF of each point on the feature map can be deter-
mined using Equation (4): the ultrasonic surface and bottom echoes could be bypassed by 
adjusting the RF size. Consequently, RF can be utilized to approximate the CFRP defect 
information for each layer and mitigate the impact of surface and bottom echoes on the 
results. 

Table 1. RF calculations. 

Layers Input Kernel Stride Output RF 
Conv1 500 × 57 × 241 3 × 3 × 3 1 × 1 × 1 500 × 57 × 241 3 × 3 × 3 
AvgP1 500 × 57 × 241 3 × 3 × 3 2 × 1 × 1 250 × 57 × 241 5 × 5 × 5 
Conv2 250 × 57 × 241 3 × 3 × 3 1 × 1 × 1 250 × 57 × 241 9 × 7 × 7 
AvgP2 250 × 57 × 241 3 × 3 × 3 2 × 1 × 1 125 × 57 × 241 13 × 9 × 9 
Conv3 125 × 57 × 241 3 × 3 × 3 1 × 1 × 1 125 × 57 × 241 21 × 11 × 11 
AvgP3 125 × 57 × 241 3 × 3 × 3 2 × 1 × 1 64 × 57 × 241 29 × 13 × 13 
Conv4 64 × 57 × 241 3 × 3 × 3 1 × 1 × 1 64 × 57 × 241 45 × 15 × 15 
AvgP4 64 × 57 × 241 3 × 3 × 3 2 × 1 × 1 32 × 57 × 241 53 × 17 × 17 
Conv5 32 × 57 × 241 3 × 3 × 3 1 × 1 × 1 32 × 57 × 241 69 × 19 × 19 
AvgP5 32 × 57 × 241 3 × 3 × 3 2 × 1 × 1 16 × 57 × 241 85 × 21 × 21 
Conv6 16 × 57 × 241 3 × 3 × 3 1 × 1 × 1 16 × 57 × 241 117 × 23 × 23 
AvgP6 16 × 57 × 241 3 × 3 × 3 2 × 1 × 1 8 × 57 × 241 149 × 25 × 25 
MaxP7 8 × 57 × 241 3 × 3 × 3 1 × 1 × 1 8 × 57 × 241 213 × 27 × 27 

3.2.3. Improving the Detection Results 
Feature extraction using an encoder compresses numerous ultrasound images into a 

low-dimensional space, thereby facilitating easier defect detection. However, without 
stringent parameter constraints, the effectiveness of the extracted features cannot be 
ensured. In this study, the outputs of the two encoders are used to construct the 
intermediate layer loss. This adjustment ensured that the defect size and shape closely 
resembled the ground truth. 

( ) ( )' 'Loss = MSELoss ,  + MSELoss , x x y y  (6) 

Figure 3. RF mapping of 2D convolution vs. 3D-conv.

Using the data from this study as an example, the network framework and RF calcula-
tions are presented in Table 1. The RF of each point on the feature map can be determined
using Equation (4): the ultrasonic surface and bottom echoes could be bypassed by adjusting
the RF size. Consequently, RF can be utilized to approximate the CFRP defect information
for each layer and mitigate the impact of surface and bottom echoes on the results.

Table 1. RF calculations.

Layers Input Kernel Stride Output RF

Conv1 500 × 57 × 241 3 × 3 × 3 1 × 1 × 1 500 × 57 × 241 3 × 3 × 3
AvgP1 500 × 57 × 241 3 × 3 × 3 2 × 1 × 1 250 × 57 × 241 5 × 5 × 5
Conv2 250 × 57 × 241 3 × 3 × 3 1 × 1 × 1 250 × 57 × 241 9 × 7 × 7
AvgP2 250 × 57 × 241 3 × 3 × 3 2 × 1 × 1 125 × 57 × 241 13 × 9 × 9
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Table 1. Cont.

Layers Input Kernel Stride Output RF

Conv3 125 × 57 × 241 3 × 3 × 3 1 × 1 × 1 125 × 57 × 241 21 × 11 × 11
AvgP3 125 × 57 × 241 3 × 3 × 3 2 × 1 × 1 64 × 57 × 241 29 × 13 × 13
Conv4 64 × 57 × 241 3 × 3 × 3 1 × 1 × 1 64 × 57 × 241 45 × 15 × 15
AvgP4 64 × 57 × 241 3 × 3 × 3 2 × 1 × 1 32 × 57 × 241 53 × 17 × 17
Conv5 32 × 57 × 241 3 × 3 × 3 1 × 1 × 1 32 × 57 × 241 69 × 19 × 19
AvgP5 32 × 57 × 241 3 × 3 × 3 2 × 1 × 1 16 × 57 × 241 85 × 21 × 21
Conv6 16 × 57 × 241 3 × 3 × 3 1 × 1 × 1 16 × 57 × 241 117 × 23 × 23
AvgP6 16 × 57 × 241 3 × 3 × 3 2 × 1 × 1 8 × 57 × 241 149 × 25 × 25
MaxP7 8 × 57 × 241 3 × 3 × 3 1 × 1 × 1 8 × 57 × 241 213 × 27 × 27

3.2.3. Improving the Detection Results

Feature extraction using an encoder compresses numerous ultrasound images into a
low-dimensional space, thereby facilitating easier defect detection. However, without strin-
gent parameter constraints, the effectiveness of the extracted features cannot be ensured. In
this study, the outputs of the two encoders are used to construct the intermediate layer loss.
This adjustment ensured that the defect size and shape closely resembled the ground truth.

Loss = MSELoss
(
x, x′

)
+ MSELoss

(
y, y′

)
(6)

Defect recognition is a target detection task that focuses on the location, shape, and
number of defects. The raw 3D data encoded by stable 3D-DCA resulted in a new 3D matrix,
which was decomposed into several 2D matrices of size x × y. These can be visualized as
2D images for enhanced defect visualization.

A comparison between the stable 3D-DCA and DAE highlighted several advantages.
First, a stable 3D-DCA learns the spatial and temporal features of ultrasonic data, whereas
the DAE overlooks the depth and potentially original image information. Second, stable
3D-DCA approximates the depth order of the defect information through the mapping
between the deep feature, RF, and original image, making defect detection more meaningful.
In addition, the loss function designed for a stable 3D-DCA ensures better results.

4. Experimental Results and Discussion
4.1. Specimen and Experiment

In this study, the ultrasonic detection frequency was 5 MHz and a CFRP sample with
artificially preset defects was used to demonstrate the effectiveness of the proposed method.
The CFRP was produced by vacuum-assisted resin infusion molding. The carbon fiber
material was first cut to dimensions of 241.0 mm × 44.5 mm × 20 mm, and the thickness of
each layer was 0.26 mm. Subsequently, six Teflon tapes were embedded within the CFRP
at designated locations. As illustrated in Figure 4, each Teflon area measured 400 mm2

with a thickness of 0.5 mm. From left to right, defects h2, h3, and h6 were categorized as
shallow, whereas h1, h4, and h5 were considered deep defects. Thus, defects of varying
locations and depths were introduced and became invisible after the epoxy resin injection.
The details of the defects are listed in Table 2.

After the specimen preparation, data were collected using the pulsed-echo method [30]
to capture the ultrasound echoes reflected within the workpiece. If defects are present, the
ultrasound echo signals will include not only the bottom and surface echoes but also defect
echoes in the middle of their range. Experimentally, 500 ultrasonic images were acquired
in which severe background noise was observed, complicating defect detection. Each
ultrasound image measured 57 × 241, totaling 13,737 pixels. Figure 5 shows the ultrasound
echo diagrams at different locations in the CFRP, where the surface and bottom echoes
exhibited relatively high background noise levels. Therefore, raw ultrasonic inspection
results are generally unsuitable for direct use, underscoring the need to develop effective
ultrasonic defect analysis methods.
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4.2. Evaluation Metrics

To assess the effectiveness of the stable 3D-DCA for defect location extraction, the IoU,
which is commonly used in target detection, was employed. The IoU is the overlapping
rate of the predicted frame with the original frame, that is, the ratio of their intersection to
their union. This is calculated as follows:

IoU =
A ∩ B
A ∪ B

, (7)
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where A represents the predicted frame and B is the original frame. The formula is used
to determine the ratio of the intersecting part of the candidate frame to the labeled frame
to measure the correlation between the original frame and the prediction. A larger IoU
indicates a closer match between the model predictions and the actual situation.

To objectively evaluate the performance of stable 3D-DCA, CNR, which is com-
monly used in the image field, was adopted as an assessment index. The formula used is
as follows:

CNR =

∣∣∣Mde f − Min

∣∣∣
σin

, (8)

where Mdef is the average pixel value in the defective region, Min is the average pixel
value in the nondefective region, and σin is the standard deviation of the pixels in the
nondefective region. The CNR reflects the contrast between the defective and nondefective
regions, with a larger CNR indicating a more discernible defect, particularly when the
standard deviation of the nondefective region is small.

To evaluate the performance of stable 3D-DCA in ultrasonic data analysis, the IoU
focuses on the accuracy assessment of the defect location, and the CNR focuses on the
degree of contrast. A comparison of the experimental results using both IoU and CNR
makes the evaluation more reliable.

4.3. Results and Analysis

To validate the effectiveness of the stable 3D-DCA method, principal component
analysis (PCA) [31] and DAE [21] were applied to the same dataset.

The PCA transforms raw ultrasonic data into a new coordinate system via a linear
transformation to optimize the maximum variance in the data. This dimensionality re-
duction process aims to concentrate most of the defect information within the principal
components visually represented in the loading images. However, this concentration
inevitably leads to the loss of defect information. Figure 6 shows the loading images pro-
duced by the PCA, with colors indicating the values within the loading vector. Although
PCA enhances defect visibility compared to the original ultrasonic images, it falls short in
clearly delineating the boundaries of each defect. This lack of definition makes the accurate
shape recognition of defects challenging. Moreover, PCA-loading images are marred by
considerable background noise, further complicating the task of distinguishing defects
from their surrounding environment.

As demonstrated in Figure 7, employing the DAE for feature extraction from ultra-
sound images and visualizing the encoder’s hidden layer features reveal its effectiveness
in infrared thermography applications, but not for noisy ultrasonic data. Although the
general shape of the defects was discernible, the overwhelming background noise masked
the defect information, with some defect shapes partially obscured.

Comparative experiments also assessed the performance of 3D-DCA, which utilizes a
single-layer encoder and a conventional autoencoder loss function. The number of itera-
tions, batch size, and learning rate were set to 50, 1, and 0.0005, respectively. The encoder
performed feature extraction along the depth dimension by compressing 500 images into
eight feature maps, each with an RF size of 213 × 27 × 27. This implied that each pixel on
the feature map was derived from the aggregation of 213 × 27 × 27 pixel points from the
original data, as processed by the model. Therefore, each feature map represented a distinct
sensory region within the raw ultrasonic data. The feature maps generated by 3D-DCA
bypass the surface and bottom echo characteristics of ultrasound imaging, making the
depth order of the defects readily discernible. For instance, in Figure 8, the first feature map
highlights the shallowest defect and the second map reveals the three shallowest defects.
Moreover, 3D average pooling was utilized to average out the local area features, which
smoothed out the ultrasonic surface and bottom echoes post-boundary filling. Conversely,
3D maximum pooling was employed to retain a greater amount of textural information,
thereby enhancing the details captured in the feature maps. Figure 8 shows that while
defects are more distinctly extracted and the depth order is apparent, the background noise
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remains noticeable. This results in poorly defined boundaries between the background and
the defects.
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The 3D-DCA technique highlights that feature extraction using a single-layer encoder
may not be sufficient to achieve optimal performance. As illustrated in Figure 2, the
enhanced approach, termed stable 3D-DCA, employs a dual-layer encoder to introduce
intermediate layer loss. This design encourages the model to reconstruct inputs more
accurately, compelling the encoder to learn a more discriminative representation. In
Figure 9, the background within each feature map is rendered more smoothly and the
defect information stands out more sharply. Compared with the original 3D-DCA model,
the stable 3D-DCA demonstrated superior depth-order prediction of defects. For instance,
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the first feature map in Figure 9 highlights the shallowest defect h3. In the subsequent
feature map, h3 becomes less noticeable, h6 gains prominence, and h2 appears but remains
faint. This pattern suggests that the initial sequence of defects was h3, followed by h6
and h2. Extrapolating further, the sequence continued with defects h5, h1, and h4. This
sequencing can also be deduced in reverse from subsequent feature maps, with the depth-
order outcomes presented in Table 3.
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Table 3. Defect depth order.

h1 h2 h3 h4 h5 h6

True depth order 5 3 1 6 4 2
Predicted depth order 5 3 1 6 4 2

To compare the defect extraction capabilities of the different methods, Table 4 presents
the IoU values for PCA, DAE, 3D-DCA, and stable 3D-DCA across different defect locations.
According to Table 4, the IoU values of stable 3D-DCA were notably superior to those of
DAE and PCA. This result is consistent with the visualization results, demonstrating the
efficacy of the stable 3D-DCA method in enhancing defect detection accuracy.

Table 4. IoU of defects at different locations.

Method h1 h2 h3 h4 h5 h6 Mean

PCA 0.549 0.663 0.901 0.163 0.802 0.350 0.571
DAE 0.828 0.808 0.675 0.796 0.063 0.315 0.581

3D-DCA 0.790 0.865 0.737 0.712 0.738 0.764 0.768
Stable 3D-DCA 0.839 0.803 0.804 0.684 0.826 0.846 0.800

The CNR index was calculated for each method. Table 5 compares the maximum CNR
values achieved by the different methods, indicating that the proposed stable 3D-DCA
method outperformed the other methods in detecting each type of defect, showcasing its
exceptional performance in defect detection.

Table 5. CNR of defects at different locations.

Method h1 h2 h3 h4 h5 h6 Mean

PCA 2.188 2.098 2.203 1.812 1.963 2.151 2.069
DAE 5.136 4.472 4.886 3.540 0.001 4.721 3.793

3D-DCA 5.198 4.304 4.818 3.605 3.938 4.636 4.417
Stable 3D-DCA 7.705 6.778 6.972 5.347 5.728 6.749 6.547

5. Conclusions

This paper presents a stable 3D-DCA method, which is a novel approach for analyzing
the ultrasonic testing data of composite materials. This method differentiates itself from
traditional techniques such as PCA and DAE by accurately capturing the 3D spatiotemporal
features embedded in ultrasonic data while simultaneously reducing noise levels. An
advantage of a stable 3D-DCA is its improved ability to delineate defect boundaries with
enhanced precision, which is a critical factor in ultrasonic data analysis. The shape, location,
and depth of the defects were accurately predicted by designing a receptive field to perceive
the feature information of the data. Application to a CFRP specimen demonstrates that
stable 3D-DCA effectively detects defects, illustrating the feasibility of the method. This
method enables earlier defect detection and maintenance, thereby extending the service life
of the composite materials. We anticipate that this approach will facilitate the development
of various 3D-AE methods for the ultrasonic detection of industrial defects. Further
exploration will focus on calculating the depth of the defects using a receptive field with
3D convolutional networks.
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