Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Specimen Design
2.2. Printing Process
- Print Technology: FDM.
- Build Volume (W × D × H): 305 × 305 × 305 mm.
- Layer Resolution: 0.01~0.25 mm.
- Compatible filament Type: PLA, ABS, PETG, Nylon.
- Filament Size: 1.75 mm.
- Printing Surface: Buildtak.
- Heated Build Platform: Yes.
- Enclosure: Yes.
- Nozzle Diameter: 0.4 mm.
- Nozzle Working Temperature: 170–300 °C.
- Number of Nozzles: 2.
- Printing Speed: 10~150 mm/s.
- Moving Speed: 150~300 mm/s.
- Positioning Accuracy: XY-axes: 0.0125 mm, Z-axis: 0.00125 mm.
2.3. Mixed Full Factorial Design of Experiments
2.4. Tensile Testing
3. Results and Analysis
3.1. Pareto Charts
3.2. Main Effects Plots
3.3. Interaction Plots
3.4. Regression Equation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stavropoulos, P.; Foteinopoulos, P.; Papacharalampopoulos, A.; Bikas, H. Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution. Int. J. Lightweight Mater. Manuf. 2018, 1, 157–168. [Google Scholar] [CrossRef]
- Wong, K.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 208760. [Google Scholar] [CrossRef]
- Durakovic, B. Design for additive manufacturing: Benefits, trends and challenges. Period. Eng. Nat. Sci. 2018, 6, 179. [Google Scholar] [CrossRef]
- Prakash, K.; Nancharaih, T.; Rao, V. Additive Manufacturing Techniques in Manufacturing—An Overview. Mater. Today Proc. 2018, 5, 3873–3882. [Google Scholar] [CrossRef]
- Rahim, T.; Abdullah, A.; Akil, H.M. Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polym. Rev. 2019, 59, 589–624. [Google Scholar] [CrossRef]
- Heidari-Rarani, M.; Ezati, N.; Sadeghi, P.; Badrossamay, M. Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. J. Thermoplast. Compos. Mater. 2020, 35, 2435–2452. [Google Scholar] [CrossRef]
- Ahn, S.; Montero, M.; Odell, D.; Roundy, S.; Wright, P. Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments. Soc. Manuf. Eng. 2001, 10, 1–21. [Google Scholar]
- Es-Said, O.; Foyos, J.; Noorani, R.; Mendelson, M.; Marloth, R.; Pregger, B. Effect of Layer Orientation on Mechanical Properties of Rapid Prototyped Samples. Mater. Manuf. Process. 2000, 15, 107–122. [Google Scholar] [CrossRef]
- Alafaghani, A.; Qattawi, A.; Alrawi, B.; Guzman, A. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manuf. 2017, 10, 791–803. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Li, S.; Si, L.; Peng, J.; Hu, Y. Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int. J. Adv. Manuf. Technol. 2016, 89, 2387–2397. [Google Scholar] [CrossRef]
- Tontowi, A.E.; Ramdani, L.; Erdizon, R.V.; Baroroh, D.K. Optimization of 3DPrinter Process Parameters for Improving Quality of Polylactic Acid Printed Part. Int. J. Eng. Technol. 2017, 9, 589–600. [Google Scholar]
- Maloch, J.; Hnátková, E.; Žaludek, M.; Kratky, P. Effect of processing parameters on mechanical properties of 3D printed samples. Mater. Sci. Forum. 2018, 919, 230–235. [Google Scholar] [CrossRef]
- Chadha, A.; Haq, M.I.; Raina, A.; Singh, R.R.; Penumarti, N.B.; Bishnoi, M.S. Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J. Eng. 2019, 16, 550–559. [Google Scholar] [CrossRef]
- Fernandez, J.; Deus, A.M.; Reis, L.; Fatim, M.; Leite, M. Study of the influence of 3D printing parameters on the mechanical properties of PLA. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing, Singapore, 14–17 May 2018. [Google Scholar]
- Giri, J.; Chiwande, A.; Gupta, Y.; Mahatme, C.; Giri, P. Effect of process parameters on mechanical properties of 3D printed samples using FDM process. Mater. Today Proc. 2021, 47, 5856–5861. [Google Scholar] [CrossRef]
- Ziemian, S.; Okwara, M.; Ziemian, C.W.; Ziemian, S.; Okwara, M.; Ziemian, C.W. Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp. J. 2015, 21, 270–278. [Google Scholar] [CrossRef]
- Rankouhi, B.; Javadpour, S.; Delfanian, F.; Letcher, T. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J. Fail. Anal. Prev. 2016, 16, 467–481. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.Á.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition modeling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Iyibilgin, O.; Yigit, C.; Leu, M.C. Experimental investigation of different cellular lattice structures manufactured by fused deposition modeling. In Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12–14 August 2013; pp. 895–907. [Google Scholar]
- Gebisa, A.W.; Lemu, H.G. Influence of 3D printing FDM process parameters on the tensile property of ULTEM 9085. Procedia Manufact. 2019, 30, 331–338. [Google Scholar] [CrossRef]
- Panda, S.; Padhee, S.; Sood, A.; Mahapatra, S. Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique. Intell. Inf. Manag. 2009, 1, 89–97. [Google Scholar] [CrossRef]
- Alafaghani, A.; Qattawi, A. Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. J. Manuf. Process. 2018, 36, 164–174. [Google Scholar] [CrossRef]
- Tamașag, I.; Beșliu-Băncescu, I.; Severin, T.-L.; Dulucheanu, C.; Cerlincă, D.-A. Experimental Study of In-Process Heat Treatment on the Mechanical Properties of 3D Printed Thermoplastic Polymer PLA. Polymers 2023, 15, 2367. [Google Scholar] [CrossRef] [PubMed]
- Czyzewski, P.; Marciniak, D.; Nowinka, B.; Borowiak, M.; Bielinski, M. Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers 2022, 14, 356. [Google Scholar] [CrossRef]
- Vedrtnam, A.; Ghabezi, P.; Gunwant, D.; Jiang, Y.; Sam-Daliri, O.; Harrison, N.M.; Goggins, J.; Finnegan, W. Mechanical performance of 3D-printed continuous fibre Onyx composites for drone applications: An experimental and numerical analysis. Compos. Part C Open Access 2023, 12, 100418. [Google Scholar] [CrossRef]
- Ghabezi, P.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Harrison, N.M. Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resour. Conserv. Recycl. 2024, 206, 107667. [Google Scholar] [CrossRef]
- Ritter, T.; McNiffe, E.; Higgins, T.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Ghabezi, P.; Finnegan, W.; Mitchell, S.; Harrison, N.M. Design and modification of a material extrusion 3D printer to manufacture functional gradient PEEK components. Polymers 2023, 15, 3825. [Google Scholar] [CrossRef]
- Filament2print. Available online: https://filament2print.com/gb/pla-basic/698-blue-pla-basic.html (accessed on 10 May 2024).
- Morettini, G.; Palmieri, M.; Capponi, L.; Landi, L. Comprehensive characterization of mechanical and physical properties of PLA structures printed by FFF-3D-printing process in different directions. Prog. Addit. Manuf. 2022, 7, 1111–1122. [Google Scholar] [CrossRef]
- Zemcik, O.; Sedlak, J. Application of Linear Optimization on Parameters of 3D FDM Print. Tech. Gaz. 2019, 26, 1164–1170. [Google Scholar]
Printing Parameters | |
---|---|
Material | Polylactic Acid (PLA) |
Extrusion temperature | 215 °C |
Heated bed temperature | 60 °C |
Nozzle diameter | Ø0.4 mm |
Extrusion width | 0.4 mm |
Top and bottom solid layer | 0 |
Shell number | 0 |
Printing speed | 60 mm/s |
Layer height | First layer is 0.3 mm and the rest are 0.2 mm |
Factors | Symbols | Units | −1 | 0 | 1 | 2 |
---|---|---|---|---|---|---|
Infill Patern | A | ----- | Honeycomb | Gyroid | Grid | Triangles |
Infill density | B | Percentage (%) | 40 | 50 | 60 | ----- |
Infill cell orientation | C | Degree (°) | 0 | 45 | 90 | ----- |
Infill Pattern | Infill Density | Infill Cell Orientation | Yield Strength (MPa) | Elastic Modulus (MPa) |
---|---|---|---|---|
1 | 0 | −1 | 3.60 ± 0.07 | 605.0 ± 44 |
2 | 1 | 1 | 4.43 ± 0.08 | 696.5 ± 31.5 |
0 | 0 | −1 | 3.35 ± 0.13 | 514.5 ± 19.5 |
2 | 0 | −1 | 3.33 ± 0.01 | 339.5 ± 29 |
0 | 0 | 0 | 1.86 ± 0.16 | 238.5 ± 13.5 |
1 | 1 | 0 | 2.91 ± 0.19 | 403.0 ± 88 |
−1 | 0 | 1 | 2.37 ± 0.07 | 339.0 ± 9 |
−1 | −1 | −1 | 1.97 ± 0.12 | 161.5 ± 12.5 |
−1 | 1 | 0 | 3.83 ± 0.08 | 456.5 ± 22.5 |
0 | 1 | 0 | 3.66 ± 0.35 | 360.0 ± 5 |
2 | 1 | 0 | 4.29 ± 0.12 | 646.0 ± 5 |
0 | 1 | 1 | 4.55 ± 0.09 | 685.0 ± 3 |
−1 | 1 | 1 | 2.94 ± 0.12 | 388.0 ± 29 |
−1 | −1 | 0 | 1.95 ± 0.04 | 150.0 ± 3 |
−1 | −1 | 1 | 1.87 ± 0.03 | 224.0 ± 10 |
0 | 0 | 1 | 2.67 ± 0.02 | 434.5 ± 9 |
2 | −1 | −1 | 2.56 ± 0.1 | 411.0 ± 32 |
1 | 0 | 1 | 3.60 ± 0.07 | 605.0 ± 44 |
2 | −1 | 0 | 1.73 ± 0.02 | 483.0 ± 95 |
−1 | 1 | −1 | 4.22 ± 0.16 | 469.5 ± 18.5 |
1 | −1 | 0 | 1.28 ± 0.04 | 78.0 ± 2 |
1 | 0 | 0 | 2.72 ± 0.06 | 272.0 ± 8 |
1 | 1 | 1 | 4.49 ± 0.1 | 773.5 ± 43.5 |
−1 | 0 | 0 | 2.67 ± 0.01 | 348.5 ± 45.5 |
0 | −1 | 0 | 1.34 ± 0.05 | 111.5 ± 8.5 |
1 | −1 | −1 | 1.84 ± 0.09 | 344.5 ± 7.5 |
2 | 0 | 0 | 2.91 ± 0.01 | 446.5 ± 10.5 |
0 | 1 | −1 | 3.80 ± 0.18 | 488.0 ± 29 |
2 | 0 | 1 | 4.00 ± 0.1 | 616.5 ± 16.5 |
1 | −1 | 1 | 1.84 ± 0.09 | 344.5 ± 7.5 |
2 | −1 | 1 | 1.84 ± 0.06 | 325.0 ± 1 |
2 | 1 | −1 | 4.67 ± 0.14 | 624.0 ± 10 |
1 | 1 | −1 | 4.49 ± 0.1 | 773.5 ± 43.5 |
−1 | 0 | −1 | 3.21 ± 0.15 | 331.0 ± 11 |
0 | −1 | −1 | 2.10 ± 0.18 | 227.5 ± 27.5 |
0 | −1 | 1 | 1.93 ± 0.05 | 210.0 ± 12 |
S | R-sq | R-sq(adj) | R-sq(pred) |
---|---|---|---|
0.417367 | 87.00% | 83.75% | 78.51% |
S | R-sq | R-sq(adj) | R-sq(pred) |
---|---|---|---|
73.0687 | 90.17% | 84.37% | 73.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben hadj Hassine, S.; Chatti, S.; Louhichi, B.; Seibi, A. Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing Process. Polymers 2024, 16, 1562. https://doi.org/10.3390/polym16111562
Ben hadj Hassine S, Chatti S, Louhichi B, Seibi A. Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing Process. Polymers. 2024; 16(11):1562. https://doi.org/10.3390/polym16111562
Chicago/Turabian StyleBen hadj Hassine, Salem, Sami Chatti, Borhen Louhichi, and Abdennour Seibi. 2024. "Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing Process" Polymers 16, no. 11: 1562. https://doi.org/10.3390/polym16111562
APA StyleBen hadj Hassine, S., Chatti, S., Louhichi, B., & Seibi, A. (2024). Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing Process. Polymers, 16(11), 1562. https://doi.org/10.3390/polym16111562