Green Foaming of Biologically Extracted Chitin Hydrogels Using Supercritical Carbon Dioxide for Scaffolding of Human Osteoblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biologically and Chemically Extracted Chitin from Litopeaneus vannamei Cephalothoraxes
2.2. Production of Porous Chitin Scaffolds Using scCO2
2.3. Characterization of Chitin Scaffolds
2.4. Characterization of the Osteoblasts Response in the Chitin Porous Scaffolds
2.4.1. Cell Proliferation
2.4.2. Cell Morphology
2.4.3. Cell Viability
2.4.4. Cell Functionality
2.5. Statistical Analysis
3. Results and Discussion
3.1. Sorption of scCO2 on Porous Chitin Scaffolds
3.2. Chemical Characterization of Scaffolds
3.3. Effect of Co-Solvent Morphology and Porosity of Samples
3.4. Effect of Temperature on Morphology and Porosity for SM Sample
3.5. Effect of Pressure on Morphology and Porosity of SM Scaffolds at 353 K
3.6. Swelling, Erosion and Contact Angle Determination
3.7. Mechanical Properties
3.8. Cell Culture of Human Osteoblasts in the SM and SA Scaffolds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, G.M.; Barrera, C.H.; Shirai, K. Alternative methods for chitin and chitosan preparation, characterization, and application. In Handbook of Chitin and Chitosan: Preparation and Properties; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 225–246. [Google Scholar]
- Chakravarty, J.; Rabbi, M.F.; Bach, N.; Chalivendra, V.; Yang, C.; Brigham, C.J. Fabrication of porous chitin membrane using ionic liquid and subsequent characterization and modelling studies. Carbohydr. Polym. 2018, 198, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Huang, Y.; Lu, A.; Zhang, L. Recent advances in chitin-based materials constructed via physical methods. Prog. Polym. Sci. 2018, 82, 1–33. [Google Scholar] [CrossRef]
- El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Furuike, T.; Nair, S.V.; Jayakumar, R. Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydr. Polym. 2011, 84, 820–824. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Panayiotou, C. Foaming of chitin hydrogels processed by supercritical carbon dioxide. J. Supercrit. Fluids 2008, 47, 302–308. [Google Scholar] [CrossRef]
- Tokura, S.; Nishimura, S.I.; Sakairi, N.; Nishi, N. Biological activities of biodegradable polysaccharide. Macromol. Symp. 1996, 101, 389–396. [Google Scholar] [CrossRef]
- White, L.J.; Hutter, V.; Tai, H.; Howdle, S.M.; Shakesheff, K.M. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater. 2012, 8, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Gómez, L.; Concheiro, A.; Alvarez-Lorenzo, C.; García-González, C.A. Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology. Carbohydr. Polym. 2016, 142, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Tsioptsias, C.; Paraskevopoulos, M.; Christofilos, D.; Andrieux, P.; Panayiotou, C. Polymeric hydrogels and supercritical fluids: The mechanism of hydrogel foaming. Polymer 2011, 52, 2819–2826. [Google Scholar] [CrossRef]
- Tamura, H.; Sawada, M.; Nagahama, H.; Higuchi, T.; Tokura, S. Influence of amide content on the crystal structure of chitin. Holzforschung 2006, 60, 480–484. [Google Scholar] [CrossRef]
- Cira, L.A.; Huerta, S.; Hall, G.M.; Shirai, K. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 2002, 37, 1359–1366. [Google Scholar] [CrossRef]
- Aranday-Garcia, R.; Román Guerrero, A.; Ifuku, S.; Shirai, K. Successive inoculation of Lactobacillus brevis and Rhizopus oligosporus on shrimp waste for recovery of chitin and added-value products. Process Biochem. 2017, 58, 12–24. [Google Scholar] [CrossRef]
- Marin-Cervantes, M.C.; Matsumoto, Y.; Ramirez-Coutiño, L.; Rocha-Pino, Z.; Viniegra, G.; Shirai, K. Effect of moisture content in polyurethane foams as support for solid-substrate fermentation of Lecanicillium lecanii on the production profiles of chitinase. Process Biochem. 2008, 43, 24–32. [Google Scholar] [CrossRef]
- Focher, B.; Beltrame, P.L.; Naggi, A.; Torri, G. Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr. Polym. 1990, 12, 405–418. [Google Scholar] [CrossRef]
- Gallardo-Rivera, R.; Aguilar-Santamaría, M.; Silva-Bermúdez, P.; García-López, J.; Tecante, A.; Velasquillo, C.; Román-Guerrero, A.; Pérez-Alonso, C.; Vázquez-Torres, H.; Shirai, K. Polyelectrolyte complex of Aloe vera, chitosan, and alginate produced fibroblast and lymphocyte viabilities and migration. Carbohydr. Polym. 2018, 192, 84–94. [Google Scholar] [CrossRef]
- Ji, C.; Annabi, N.; Khademhosseini, A.; Dehghani, F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 2011, 7, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Bong Lee, S.; Han Kim, Y.; Sang Chong, M.; Moo Lee, Y. Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials 2004, 25, 2309–2317. [Google Scholar]
- Kumirska, J.; Czerwicka, M.; Kaczunski, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of spectronic methods for structural analysis of chitin and chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef]
- Ye, J.; Liao, X.; Xiao, W.; Li, S.; Yang, Q.; Li, G. The effects of molecular weight and supercritical CO2 on the phase morphology of organic solvent free porous scaffolds. J. Supercrit. Fluids 2018, 140, 279–289. [Google Scholar] [CrossRef]
- Tai, H.; Mather, M.L.; Howard, D.; Wang, W.; White, L.J.; Crowe, J.A.; Morgan, S.P.; Chandra, A.; Williams, D.J.; Howdle, S.M.; et al. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur. Cells Mater. 2007, 14, 64–77. [Google Scholar] [CrossRef]
- Moghadam, M.Z.; Hassanajilia, S.; Esmaeilzadeha, F.; Ayatollahib, M.; Ahmadia, M. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2 gas foaming method. J. Mech. Behav. Biomed. 2017, 69, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Villa-Lerma, G.; González-Márquez, H.; Gimeno, M.; Trombotto, S.; David, L.; Ifuku, S.; Shirai, K. Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides. Bioresour. Technol. 2016, 209, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zheng, H.; Chen, J.; Li, S.; Huang, J.; Zhou, C. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydr. Polym. 2016, 152, 832–840. [Google Scholar] [CrossRef] [PubMed]
Pressure (bar) | Temperature (K) | Absorbed CO2 (mg) | Water Absorption Capacity (g H2O‧g scaffold−1) |
---|---|---|---|
175 | 298 | 2.6 | 2.2 ± 0.02 b |
313 | 1.7 | 2.4 ± 0.2 b | |
353 | 16.6 | 3.0 ± 0.1 a | |
175 | 353 | 18.5 | 3.5 ± 0.2 a |
200 | 2.3 | 2.6 ± 0.3 b | |
250 | 1.4 | 2.0 ± 0.04 c | |
300 | 1.6 | 2.1 ± 0.3 c |
Sample | CI (%) | Dapp (nm) | DA (%) | Contact Angle (θ) | Swelling (%) | Erosion (%) | Young’s Modulus (MPa) |
---|---|---|---|---|---|---|---|
SA | 89.4 ± 0.5 a | 6.9 ± 0.1 a | 83.9 ± 0.2 b | 94.0 ± 7.61 a | 218.6 ± 2.7 b | 10.7 ± 0.9 b | 37.9 ± 8.2 a |
SM | 76.8 ± 0.5 b | 5.2 ± 0.4 b | 84.4 ± 0.5 b | 31.9 ± 6.0 b | 326.7 ± 2.5 a | 22.4 ± 3.4 a | 14.4 ± 1.4 b |
Characteristic | Temperature (K) at 175 Bar | Pressure (bar) at 353 K | |||||
---|---|---|---|---|---|---|---|
298 | 313 | 353 | 175 | 200 | 250 | 300 | |
CI (%) | 90.6 ± 0.9 a | 75.6 ± 0.4 b | 67.2 ± 0.2 c | 71.5 ± 1.2 c | 89.1 ± 1.2 a | 88.2 ± 0.4 a | 85.0 ± 0.8 b |
Dapp (nm) | 6.9 ± 0.7 a | 5.6 ± 0.1 b | 4.8 ± 0.2 c | 4.6 ± 0.4 c | 6.7 ± 0.6 a | 6.5 ± 0.4 a | 6.2 ± 0.5 b |
DA (%) | 90.5 ± 0.4 a | 88.2 ± 0.4 b | 84.8 ± 0.3 c | 77.7 ± 0.2 c | 87.8 ± 0.2 b | 89.4 ± 0.2 a | 90.2 ± 0.6 a |
Contact angle (θ) | 52.5 ± 4.5 c | 79.91 ± 1.6 b | 11.8 ± 2.4 a | 37.5 ± 5.2 a | 46.8 ± 5.9 b | 56.2 ± 8.1 c | 55.1 ± 2.8 c |
Swelling (%) | 302 ± 3.5 c | 324.7 ± 2.6 b | 377 ± 1.1 a | 355.1 ± 2.1 a | 302.2 ± 3.1 b | 245.8 ± 0.8 c | 208.4 ± 0.6 d |
Erosion (%) | 14.2 ± 3.0 c | 17.4 ± 0.9 b | 20.6 ± 1.0 a | 28.1 ± 3.3 a | 25.5 ± 0.5 a | 20.8 ± 0.9 b | 19.5 ± 0.3 b |
Young’s modulus (MPa) | 43.1 ± 3.6 c | 27.6 ± 4.7 b | 12.5 ± 1.6 a | 10.5 ± 3.0 c | 20.4 ± 5.3 b | 24.8 ± 6.9 b | 41.9 ± 10.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintana-Quirino, M.; Hernández-Rangel, A.; Silva-Bermudez, P.; García-López, J.; Domínguez-Hernández, V.M.; Araujo Monsalvo, V.M.; Gimeno, M.; Shirai, K. Green Foaming of Biologically Extracted Chitin Hydrogels Using Supercritical Carbon Dioxide for Scaffolding of Human Osteoblasts. Polymers 2024, 16, 1569. https://doi.org/10.3390/polym16111569
Quintana-Quirino M, Hernández-Rangel A, Silva-Bermudez P, García-López J, Domínguez-Hernández VM, Araujo Monsalvo VM, Gimeno M, Shirai K. Green Foaming of Biologically Extracted Chitin Hydrogels Using Supercritical Carbon Dioxide for Scaffolding of Human Osteoblasts. Polymers. 2024; 16(11):1569. https://doi.org/10.3390/polym16111569
Chicago/Turabian StyleQuintana-Quirino, Mariana, Adriana Hernández-Rangel, Phaedra Silva-Bermudez, Julieta García-López, Víctor Manuel Domínguez-Hernández, Victor Manuel Araujo Monsalvo, Miquel Gimeno, and Keiko Shirai. 2024. "Green Foaming of Biologically Extracted Chitin Hydrogels Using Supercritical Carbon Dioxide for Scaffolding of Human Osteoblasts" Polymers 16, no. 11: 1569. https://doi.org/10.3390/polym16111569
APA StyleQuintana-Quirino, M., Hernández-Rangel, A., Silva-Bermudez, P., García-López, J., Domínguez-Hernández, V. M., Araujo Monsalvo, V. M., Gimeno, M., & Shirai, K. (2024). Green Foaming of Biologically Extracted Chitin Hydrogels Using Supercritical Carbon Dioxide for Scaffolding of Human Osteoblasts. Polymers, 16(11), 1569. https://doi.org/10.3390/polym16111569