
Citation: Pan, Y.; Zhang, J.; Guo, X.;

Li, Y.; Li, L.; Pan, L. Recent Advances

in Conductive Polymers-Based

Electrochemical Sensors for

Biomedical and Environmental

Applications. Polymers 2024, 16, 1597.

https://doi.org/10.3390/

polym16111597

Academic Editor: Chi-Jung Chang

Received: 1 April 2024

Revised: 27 May 2024

Accepted: 30 May 2024

Published: 4 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Recent Advances in Conductive Polymers-Based Electrochemical
Sensors for Biomedical and Environmental Applications
Youheng Pan 1, Jing Zhang 2, Xin Guo 2, Yarou Li 1, Lanlan Li 1,* and Lijia Pan 2,*

1 College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
2 Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering,

Nanjing University, Nanjing 210093, China
* Correspondence: lanlan.li@henau.edu.cn (L.L.); ljpan@nju.edu.cn (L.P.)

Abstract: Electrochemical sensors play a pivotal role in various fields, such as biomedicine and
environmental detection, due to their exceptional sensitivity, selectivity, stability, rapid response
time, user-friendly operation, and ease of miniaturization and integration. In addition to the research
conducted in the application field, significant focus is placed on the selection and optimization
of electrode interface materials for electrochemical sensors. The detection performance of these
sensors can be significantly enhanced by modifying the interface of either inorganic metal electrodes
or printed electrodes. Among numerous available modification materials, conductive polymers
(CPs) possess not only excellent conductivity exhibited by inorganic conductors but also unique
three-dimensional structural characteristics inherent to polymers. This distinctive combination
allows CPs to increase active sites during the detection process while providing channels for rapid
ion transmission and facilitating efficient electron transfer during reaction processes. This review
article primarily highlights recent research progress concerning CPs as an ideal choice for modifying
electrochemical sensors owing to their remarkable features that make them well-suited for biomedical
and environmental applications.
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1. Introduction
1.1. Electrochemical Sensor

Electrochemical sensor is a device that utilizes electrochemical principles for the de-
tection of specific chemical substances, and it can be categorized into various types based
on their distinct operational principles and application domains. The pH sensors are uti-
lized for the measurement of solution pH [1–3]. Biosensors employ biological materials,
such as enzymes or antibodies, as recognition elements to detect metabolites or monitor
growth state [4–7]. Gas sensors are employed for the detection of gas concentration [8,9].
Ion-selective electrodes are utilized for the detection of specific ion concentrations [10].
Compared to colorimetric, fluorescent, and other sensors, electrochemical sensors pro-
vide fast reaction, high sensitivity, ease of operation, and miniaturization. Furthermore,
real-time detection is possible when paired with microchannel technology. Compared to
many electrochemical sensor research studies, the forms of commercialization are signif-
icantly lower. The most prevalent commercial electrochemical sensors should be blood
glucose meters, which can assist patients in understanding their blood glucose levels
more quickly. Furthermore, commercial electrochemical sensors include gas sensors for
ammonia, formaldehyde, and oxygen, as well as ion-selective electrodes for pH, nitrate,
and potassium plasma in water. Commercial applications are restricted, owing to the
drawbacks of electrochemical sensors. Firstly, there is a high reliance on environmental
factors. Environmental factors such as humidity, air pressure, and temperature all have an
impact on electrochemical sensor performance. For example, increasing humidity causes
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decreased oxygen permeability and sensor performance. Air pressure fluctuations can
potentially have an effect on electrochemical process stability. At high temperatures, the
electrochemical sensor’s REDOX reaction rate accelerates, whereas at low temperatures it
slows down. Because electrochemical sensors are extremely sensitive to temperature, they
are typically temperature adjusted internally to keep the temperature as steady as feasible.
Secondly, various factors in complicated environments can interfere with electrochemical
sensors, reducing their accuracy and dependability. Furthermore, the electricity of elec-
trochemical sensors is particularly susceptible to pollution and corrosion, which reduces
their sensitivity and reaction time. In practical applications, electrodes must be cleaned
and maintained on a regular basis to ensure proper operation. All of these facts affect the
accuracy and dependability of the electrochemical sensor, limiting its commercial usage. To
mitigate these effects while using an electrochemical sensor, the testing environment must
be stable. Furthermore, electrochemical sensors must be calibrated while in use to ensure
accurate and consistent measurement findings. Calibration is the process of comparing
a sensor’s response to a known standard or reference material. The specific calibration
techniques vary depending on the sensor type and target analyte. Calibration is normally
achieved by creating a reference solution with a known concentration of an analyte and
testing the sensor’s response under controlled conditions. Standard calibration materi-
als are often certified reference materials (CRMs) or standard reference materials (SRMs)
issued by a certified agency, such as the National Institute of Standards and Technology
(NIST). Furthermore, numerous studies aim to enhance the anti-interference capabilities
of electrochemical sensors. Selective membranes, for instance, have been employed to
lessen chemical influence. To mitigate the effects of the aforementioned factors on sensor
performance as much as possible, a variety of nanomaterials with environmental stability
and particular recognition properties are used to further modify the electrode.

The typical configuration of an electrochemical sensor comprises a working electrode
(WE), a reference electrode (RE), and a counter electrode (CE) [11]. The WE serves as
the electrode that undergoes electrochemical reactions with the substance to be detected,
while the RE is utilized to provide a stable potential reference, and the CE is employed
for current measurement. The research on electrochemical sensors primarily focuses on
two key aspects: identifying a suitable recognition element for specific substance detection
and enhancing the working electrode interface through nanomaterial modifications. The
recognition element plays a crucial role in the specific identification of electrochemical
sensors and can effectively improve the anti-interference of the sensor. Furthermore, it
is of paramount importance to conduct further research on materials for modifying the
WE interface. Typically, the WE is an inorganic metal electrode or a printed electrode,
and employing nanomaterials for modification not only expands the planar electrode into
three dimensions but also significantly increases its specific surface area. This provides
ample sites for high-density loading of recognition elements and greatly enhances the
likelihood of electrochemical reactions occurring on the electrode surface. Additionally, due
to their excellent conductivity, nanomaterials facilitate rapid recording of reaction signals
by providing efficient electron transfer pathways during the reaction process. Commonly
utilized modified nanomaterials comprise of nanoparticles, carbon nanotubes, molecularly
imprinted polymers, or conductive polymers [12–18].

1.2. Conductive Polymers

Polymers generally refer to compounds composed of polymer chains, which typically
exhibit relative molecular weights ranging from several thousand to several million. The
electrical conductivity of both natural and synthetic polymers was initially extremely poor,
with significant advancements in the synthesis of conductive polymers (CPs) not occurring
until the 1970s [19]. The distinguishing feature of CPs lies in the presence of a conjugated
main electron system, enabling them to be doped for achieving conductivity levels surpassing
1000 S·cm−1. These materials demonstrate conductivity during oxidation (positive doping
or p-doping) or reduction (negative doping or n-doping), which can be attributed to the
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presence of alternating single and multiple bonds (double or triple bonds) as illustrated in
Figure 1. The π electrons associated with multiple bonds are delocalized throughout the
extended region of the conjugated structure, rendering the polymer susceptible to oxidation or
reduction through doping processes. The doping of π-conjugated systems reduces structural
and morphological disorder, thereby enhancing conductivity from the interface between
insulating materials and semiconductors towards metallic behavior, often resulting in an
increased level of conductivity [20,21]. The conductivity of CPs in their neutral state typically
ranges from 10−6 to 10−10 S·cm−1, but can reach values up to 105 when doped.
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Figure 1. Structure of polyacetylene, showing the main chain containing conjugated double bonds.

The synthesis of CPs can be achieved through various methods. The most commonly
employed synthetic principle is oxidative coupling, which involves the oxidation of monomers
to generate cationic free radicals that subsequently undergo coupling reactions to form cations,
leading to polymer formation in a repetitive manner. Due to its simplicity and reproducibility,
electrochemical synthesis has become the favored and widely accepted approach for fabricating
CPs. Another advantageous feature of electrochemical polymerization lies in its ability to
operate at room temperature, while allowing precise control over the thickness of thin films
through manipulation of potential or current profiles. The electrochemical polymerization of
CPs typically employs one of these approaches: (1) constant current or constant current density;
(2) constant potential or fixed voltage; (3) potential scanning/cycling or cyclic voltammetry
techniques. Commonly used anode materials include chromium, gold, nickel, palladium, and ti-
tanium platinum-coated electrodes, as well as indium tin oxide-coated glass plates. Additionally,
semiconductor materials such as n-doped silicon [22], cadmium sulfide [23] and semi-metallic
graphite [24] are employed for the electrochemical growth of CPs films. This synthetic approach
enables the preparation of independent, homogeneous, self-doped thin films while also allowing
for copolymerization and grafting reactions to occur if desired.

CPs have many excellent properties, such as electrical conductivity, flexibility, chemical
stability, optical transparency, mechanical strength, thermal stability, and biocompatibility.
These properties make CPs have wide application potential in flexible electronic devices,
sensors, optoelectronic devices, biomedical devices, anti-static materials and so on. At
the same time, the structure of CPs can achieve specific performance requirements by
regulating the chemical composition and structure of the polymer, making it suitable for
different application fields (Figure 2).
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1.2.1. Polypyrrole(PPy)

The basic structure of PPy comprises recurring pyrrole units, which encompass ni-
trogen atoms and benzene rings in their chemical composition (Figure 3). These pyrrole
units are interconnected through conjugated structures, giving rise to polymer chains with
conductive properties. PPy stands out among various CPs due to its readily oxidizable
monomer, water solubility, commercial availability, lightweight nature, affordability, and
biocompatibility [25]. Moreover, PPy demonstrates exceptional conductivity, flexibility,
environmental stability, and redox properties. Consequently, it has been widely employed
in various biochemical and electrochemical devices [26–28]. The combination of PPy with
other materials such as carbon-based materials and metal oxides enables the formation of
composite materials that exhibit higher electrical conductivity and larger specific surface
area. These unique characteristics make PPy an ideal candidate to meet the requirements
of electrochemical sensor equipment.
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1.2.2. Polyaniline(PANI)

The exceptional environmental stability, high processability, adjustable electrical con-
ductivity and optical properties render PANI as one of the most promising conjugated
CPs [30]. The widely accepted structural formula for conductive PANI, proposed by MacDi-
armid in 1987, is based on the co-existence model of a “benzene-benzene” chain reduction
unit and a “benzene-quinone” alternating oxidation unit, as depicted in Figure 4a. PANI ex-
hibits distinct oxidation states, colors, and electrical conductivity based on the composition
of these two structural units, which can interconvert. Since conjugated polymer compounds
readily undergo REDOX reactions, PANI can be doped through electrochemical or chemical
methods to neutralize the embedded ions in the polymer skeleton and the charge on the
polymeric main chain. This enables PANI to rapidly and reversibly transition from an
insulating state to a conductive state. When protonic acid is used for doping PANI, the
imine nitrogen atom on the molecular chain undergoes protonation reaction under the
influence of protonic acid, leading to delocalization and migration of positive charges onto
the linear conjugate structure [31]. As a result, PANI exhibits excellent conductivity and
unique three-dimensional (3D) crosslinking structure (Figure 4b,c).
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1.2.3. Polythiophene(PTh)

PTh, along with its undoped state and derivatives, has garnered significant attention in
the field of sensor applications due to its discerning barrier characteristics towards specific
molecules and high affinity for adsorption [33]. The electronic properties of PTh can be
modulated by the introduction of side chain groups or the addition of dopants with band
gaps ranging from three electron volts to one [34]. The polymerization and deposition of
PTh on large insulating substrates, however, present significant challenges due to their
high oxidation potential. Moreover, the oxidized state of doping is highly unstable in
air and quickly reverts back to its intrinsic state. Several methods can be employed for
preparing polymer films, including solution chemical oxidation, electrochemical oxidation,
oxidative chemical vapor deposition, and electrospinning [35–37]. The exceptional electrical
conductivity, thermal conductivity, and processing stability of P3ATs make them highly
regarded as one of the most important types of PTh, such as poly(3-hexylthiophene) (P3HT),
poly(3-amylthiophene) (P3PT), and poly(3-butylthiophene) (P3BT) [38,39]. The increase
in alkyl chain length within these polymer structures results in a gradual enhancement of
phase separation degree, thereby leading to an improved balance between hole and electron
transport [40–42]. Figure 5 shows the chemical structure diagram and SEM characterization
of PTh.
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1.2.4. Poly (3, 4-acetylene dioxthiophene) (PEDOT)

PEDOT is a conjugated polymer that achieves charge conduction through a system
of conjugated π electrons; it also exhibits excellent electrical conductivity and solubility
due to its chemical structure consisting of acetylene dioxthiophene units that form polymer
chains through polymerization (Figure 6). Furthermore, it can be compounded with other
materials to enhance its properties and adapt to specific application requirements. For
instance, hydrophilic surfactants like polystyrene sulfonate (PSS) are often incorporated
to improve the water processability of PEDOT film. The combination of PSS and PEDOT
results in the formation of a water-soluble PEDOT/PSS mixture [44,45]. Various methods
have been employed to improve the conductivity of PEDOT/PSS, such as using polar
solvents (e.g., dimethyl sulfoxide, ethylene glycol, and cosolvents [46]) or acids (e.g.,
chloroplatinic acid, sulfonic acid, and inorganic acid [47–49]) to eliminate excessive PSS
and induce phase separation or morphological rearrangement. The recent advancement in
electrospinning technology has enabled the preparation of flexible conductive PEDOT/PSS
nanofibers [50].
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1.2.5. Polyacetylene (PA)

PA is a linear conjugated polymer composed of a polyene chain. Being one of the
most fundamental organic polymers, the conductivity of PA is significantly influenced by
its conformation [52]. Cis-polyacetylene and trans-polyacetylene exhibit conductivities
of 10−9 S·cm−1 and 10−6 S·cm−1, respectively [53]. However, the conductivity of PA can
approach metallic levels (104–105 S·cm−1) through p- or n-doping processes [54–56]. The
practical applications of PA are limited due to its high instability and challenging processing
characteristics [57,58]. The methods employed for the preparation of PA encompass cat-
alytic polymerization, non-catalytic polymerization, and precursor-assisted synthesis [59].
Catalytic polymerization techniques are commonly used to produce PA or oligomers, ne-
cessitating catalysts with high solubility and selectivity. Radiative polymerization methods,
such as glow discharge, ultraviolet or gamma rays, can also be employed to synthesize PA
without the need of catalysts or solvents, thereby exhibiting significant potential for future
advancements in this field. To improve the conductivity properties, PA is often hybridized
or doped with other materials, such as hexamethylene phosphate, quaternary ammonium
salt cellulose nanoparticles or gold nanoparticles [60–62]. Subsequently, it can be employed
in electrochemical biosensors and bioelectrodes.

1.2.6. Poly(p-phenylene vinylene) (PPV)

The chemical structure of PPV consists of a benzene ring and ethylene monomer, where
the benzene ring is connected by conjugated double bonds to form a conjugated π-electron
system [63]. The molecular structure of PPV contains a large number of π-conjugated
bonds, which form a conjugated system that allows electrons to move freely throughout the
entire molecule. The conjugated structure enables electrons to efficiently conduct within
the polymer chain, resulting in a higher conductivity of the polymer. Moreover, the planar
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arrangement of PPV facilitates the movement of electrons between molecules, promotes
the formation of conjugated structures, and thus improves conductivity. The introduction
of additional charge carriers through doping can further enhance the conductivity, while
the redox reaction affects its conductivity, which can be adjusted by control [64]. These
characteristics make PPV have broad application prospects in fields such as optoelectronic
devices and organic light-emitting diodes (OLEDs).

There are numerous varieties of CPs, and we just provide a quick overview of the
most widely used ones. In this review, we will look at the biological and environmental
applications of these CPs-based electrochemical sensors. Additionally, we analyze the
composite methods of CPs with other materials, as well as their structural characteristics,
advantages, and exceptional features in sensor technology. This distinctive combination
allows CPs to increase active sites during the detection process while providing channels
for rapid ion transmission and facilitating efficient electron transfer during reaction pro-
cesses. The methods for CPs to enhance the active sites during detection include surface
chemical modification, nanocomposite, biological fixation, and electrochemical methods.
The surface of CPs is chemically modified to introduce active or functional groups, such as
carboxyl, amino, hydroxyl, etc. These functional groups can provide active sites, enhance
the interaction with the molecules to be measured, and thus improve the sensitivity and
selectivity of the sensor. Nanocomposites are formed by combining nanomaterials with
conductive polymers. Commonly used nanomaterials include gold nanoparticles, carbon
nanotubes, and nano-oxides. These nanomaterials have large specific surface area and
special electronic structure, which form additional active sites on the CPs surface and
enhance the interaction with the target molecules. Biomolecules (such as enzymes, antibod-
ies, DNA, etc.) are fixed on the CPs surface to construct biosensors. These biomolecules
have the ability to specifically recognize target molecules, and when combined with CPs,
the biometric recognition performance of the sensor can be enhanced. The active sites
were formed on the CPs surface by electrochemical method. For example, electrochemical
techniques such as cyclic voltammetry and amperometry can be used to control the REDOX
reaction on the surface of CPs to form an active site and enhance its ability to interact with
target molecules. These methods can be used individually or in combination to improve
the performance of the sensor and achieve highly sensitive and selective detection of the
target molecule. Our aim is to showcase the latest advancements in materials science con-
cerning sustainability, scalability, long-term stability, and cost-effectiveness while exploring
future directions for polymer synthesis and utilization. These innovative materials hold
promise for addressing pressing issues across various fields such as biomedicine and rapid
environmental monitoring.

2. Biomedical Applications

Electrochemical sensors based on CPs have a wide range of applications in the biomed-
ical field, including biomolecular detection, identification of cancer markers, and drug
screening and delivery. These sensors not only enable highly sensitive and selective detec-
tion of target molecules in biological samples but also play a crucial role in precise drug
release, cell status monitoring, and artificial organ research and development. As such, they
significantly contribute to the advancement of biomedical science and clinical medicine.

2.1. Biomolecular Detection
2.1.1. pH

The pH level has a significant impact on the human body and plays a crucial role in
maintaining the stability and proper functioning of the internal environment. The optimal
blood pH ranges from 7.35 to 7.45, and even slight deviations can lead to severe physiolog-
ical issues [65]. Imbalances in pH, either too alkaline or too acidic, can negatively affect
protein function, enzyme activity, metabolism, and cellular processes [66]. The digestive
system also relies on specific pH levels for different functions. For instance, stomach acid
with a pH of approximately 1–2 aids in food digestion and pathogen elimination [67].
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Conversely, the small intestine requires a relatively alkaline environment (around 8) to
facilitate enzyme activity and nutrient absorption [68]. The pH of the intracellular and
extracellular environments plays a critical role in cell function and metabolic processes.
Different cells and tissues have distinct requirements for specific pH ranges, which are
essential for maintaining cell membrane stability, regulating enzyme activity, and facil-
itating ion channel function [69]. In summary, maintaining proper pH levels is crucial
for the optimal functioning of the human body’s physiological properties. Consequently,
there arises a pressing need to develop a portable device capable of swiftly and accurately
detecting pH levels. Electrochemical sensors based on CPs have emerged as the preferred
choice owing to their exceptional conductivity, expansive surface area, and selectivity.

There are two types of sensors for real-time pH monitoring: in vivo and in vitro. When
measuring pH within the body, most researchers opt to measure it through the design
and preparation of microneedles that can be inserted into the skin. The development of a
manganese-based potential sensor utilizing 3D-printed hollow microneedles (HMNs) is
demonstrated by Parrilla (Figure 7a,b) [70]. The 3D-printed microneedle patch was inserted
into pig skin using a quasi-membrane model, and its piercing capability was verified. The
hollow nanoparticles were subsequently filled with conductive ink to fabricate a set of
microelectrodes. Additionally, the WE and RE were suitably modified with PANI and PVA,
respectively, in order to enhance the stability of the potentiometer battery. Subsequently, the
HMNs sensor was implanted into the subject’s forearm (Figure 7c) for evaluating its capa-
bility in monitoring bodily functions. Additionally, comprehensive in vitro characterization
was conducted across a wide pH range spanning from pH 5 to pH 9, which aligns with
the relevant index range for wound healing [71]. A remarkable performance was achieved,
exhibiting a steep recurrence slope of −67.2 ± 1.0 mV·pH−1 (N = 10) (Figure 7d,e). The
HMNs-based pH sensor demonstrates Nernstian response over an extensive linear range,
making it suitable for real-time monitoring of interstitial fluid and wound healing-related
pH levels.

Conversely, numerous researchers monitored pH levels by means of external sweat
analysis [72–74]. Perspiration can be influenced by environmental conditions, such as
temperature and humidity, as well as activity levels and chemical stimuli. While exercise is
a reliable method to induce perspiration, meeting the demand for on-demand perspiration
analysis in sedentary individuals poses challenges. Therefore, it is necessary to employ ap-
propriate sweat stimulation methods that allow controlled sweat production for analytical
applications. Ionophoresis (IP) is a commonly used chemical delivery process involving
the application of an imperceptible local electric current to the skin, which stimulates sweat
glands to produce sweat (e.g., pilocarpine) [75,76]. The highly integrated and flexible
wearable sweat devices developed by Xu enable successful pH detection (Figure 8) [74].
The device is a non-invasive wearable sweat sensing patch comprising an electrochemical
sensing system and a pilocarsin-based IP system, which was employed to stimulate sweat
secretion. The electrochemical sensor utilized a tannin-silver-carbon nanotube-polyaniline
(TA-Ag-CNT-PANI) hydrogel to modify the WE, and the hydrogel film exhibits excellent
mechanical elasticity and structural stability. The sensor records the pH response ranging
from 3.98 to 8.09, encompassing the entire pH range of sweat, and exhibits a sensitivity of
−71.86 mV·pH−1.
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2.1.2. Glucose

Diabetes is a metabolic disorder with multiple etiologies that manifests as hyper-
glycemia. The associated risks of diabetes include cardiovascular disease, retinopathy,
nephropathy, neuropathy and other complications that can result in blindness, renal failure
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and serious health consequences [77]. The prevalence of diabetes worldwide has witnessed
a rapid surge in recent decades, and it is projected by the International Diabetes Feder-
ation that the global number of diabetes cases will escalate to 600 million by 2035 [78].
The presence of elevated blood glucose levels is a prominent characteristic in individuals
diagnosed with diabetes, and when the blood glucose levels exceed 6.5 mM, it indicates
the likelihood of diabetes [79,80]. Therefore, accurate and timely glucose detection is of
paramount importance in safeguarding human lives. Electrochemical techniques have
garnered significant attention for their cost-effectiveness, direct quantification capabili-
ties, ease of miniaturization, and suitability for wearable devices compared to alternative
methods such as colorimetry, optical coherence tomography, and near-infrared reflectance
spectroscopy [81–85].

PANI is a promising material for modifying electrochemical sensor electrodes. Zhai
developed a highly sensitive glucose sensor using PANI hydrogels [86]. The heterostructure
and reaction mechanism of the glucose sensor, which is based on PtNPs/PANI, are depicted
in Figure 9, showcasing the synergistic benefits derived from the integration of conductive
polymer hydrogels (CPHs) and nanoparticles. The porous cross-linked structure of PANI
facilitates the efficient immobilization of glucose oxidases and PtNPs, thereby enhancing
the permeability for water-soluble molecules and effectively catalyzing glucose oxidation
(Figure 9b). As shown in Figure 9c, the typical current–time response of the electrode
at 0.56 V with continuous glucose addition. As the glucose concentration increases, the
current increases immediately and quickly reaches a steady state. The average response
time of the sensor is as short as 3 s (95% of steady-state current). Figure 9d shows the
relationship between current and glucose concentration. In the concentration range of
0.01–8 mM, the steady-state current of the enzyme sensor was linearly correlated with the
amount of glucose added to the buffer solution, and the correlation coefficient was 0.993.
The calibrated linear portion calculated a sensitivity of up to 96.1 µA·mM−1·cm−2, higher
than previously reported values for sensor electrodes based on platinum and polyaniline
composites, polypyrrole, or multi-walled carbon nanotubes (MWCNT).
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Figure 9. (a) The 3D heterostructural diagram depicts the integration of PtNPs/PANI hydrogels,
wherein PANI hydrogels function as substrates for immobilizing GOx enzymes and facilitating
uniform loading of PtNPs. (b) The reaction mechanism of glucose sensor based on PtNPs/PANI hy-
drogel electrode. (c) Amperometric response of the PtNPs/PANI hydrogel electrode after successive
addition of glucose in 0.1 M PBS (pH = 5.6) at an applied potential of 0.56 V. Inset: the magnified part
of the curve marked with red square. (d) The calibration curve for glucose concentrations from 0.001
to 80 mM. Reprinted with permission from ref. [86].
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The integration of miniature sensors on a chip has led to the emergence of multi-
plexing as a prominent trend in biosensors, enabling simultaneous detection of multiple
analytes. However, the precise deposition of electrode materials and selective enzymes on
different microelectrode arrays remains a significant challenge for the mass production of
multiplexed sensors. Li et al., introduced a three-indicator biosensor based on conductive
PANI hydrogels, which was fabricated using an inkjet printing process [87]. The conductive
PANI hydrogels were prepared using an all-solution method, enabling their deposition
as the interface material through inkjet printing (Figure 10a–e). Subsequently, PtNPs and
enzymes were precisely printed onto the designated working electrode. The PANI-based
printed biosensor exhibits the capacity to simultaneously detect glucose, lactic acid, and
triglycerides. Figure 10f–h records the detection mechanism of triglyceride, lactic acid,
and glucose, as well as the instantaneous current–time relationship of the biosensor. It
was found that the detection ranges of triglyceride, lactic acid and glucose were 0.1–6 mM,
0.08–5 mM, and 1–25 mM, respectively, and the detection limits were 0.07, 0.06, and 0.2 mM
(S/N = 3). The linear range of these sensors can meet the requirements of human metabolic
level sensing.
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an alternating manner. Reprinted with permission from ref. [87].

Pan et al., also developed CPs for glucose detection, utilizing a novel composite CPs
electrode composed of MXene and conductive PEDOT/PSS hydrogel. They successfully
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fabricated a non-invasive flexible electrochemical glucose sensor for continuous monitor-
ing of human glucose levels through a simplified one-step synthesis method [88]. The
PEDOT–PSS/MXene solution is mixed with ethylene glycol to enhance the polymer chain
elongation and facilitate the formation of a homogeneous hydrogel solution. This approach
effectively enhances the film-forming properties, flexibility, and stability of the material
while mitigating issues related to powder accumulation and spalling. Moreover, this glu-
cose biosensor demonstrated exceptional electrochemical performance in sweat, which
exhibited a strong correlation with blood glucose concentration. Therefore, it is anticipated
to further enhance the potential of non-invasive blood glucose monitoring.

The enzyme-free glucose electrochemical sensor is one of the sensors utilized for glu-
cose detection. An enzyme-free glucose sensing microneedle was developed by combining
PEDOT/PSS with Ag-Pt nanoparticles [89]. The low-cost hydrogel microneedle-continuous
glucose meter method employed an expandable dopamine-hyaluronic acid hydrogel for the
determination of glucose in dermal interstitial fluid. Platinum and silver nanoparticles were
synthesized within a 3D porous hydrogel scaffold to enable non-enzymatic electrochemical
sensing of glucose, while the incorporation of a highly aqueous dispersible conductive
polymer enhanced the electrical properties of the hydrogel microneedle array, making it
suitable for use as a working electrode in the sensor.

2.1.3. Cholesterol

Cholesterol is a vital structural component of both the plasma membrane and nerve
cells [90]. The normal concentration of cholesterol in the blood can vary between 5.2 and
6.2 mM, depending on factors such as body weight, age, and sex. Hypercholesterolemia
occurs when levels exceed 6.21 mM, which significantly increases the risk of myocardial
infarction, atherosclerosis, high blood pressure, and coronary heart disease. Conversely,
low cholesterol levels can lead to anemia and liver disease [91]. Therefore, accurately
determining cholesterol is crucial for analyzing clinical diseases caused by its abnormal-
ity [92–94].

The conventional approach to cholesterol detection involves the utilization of an elec-
trochemical cholesterol biosensor, which relies on the activity of cholesterol oxidase (ChOx).
The selectivity of this sensor can be significantly enhanced through the incorporation of
an enzyme electrode. Alagappan prepared an cholesterol biosensor based on AuNPs-f-
MWCNTs-PPy-ChOx/GCE [95]. The biosensor was fabricated through a two-step process,
involving the preparation of AuNPs-f-MWCNT via wet chemical method followed by
electrical polymerization of pyrrole. PPy serves as a supportive matrix for immobilizing
ChOx, while the presence of Au-f-MWCNT enhances conductivity. The PPy-based biosen-
sor exhibited a linear response within the concentration range of 2–8 mM, demonstrating
sensitivity and detection limits of 10.12 µA·mM−1·cm−2 and 0.1 mM, respectively. Li
et al., developed and fabricated a biosensor platform based on CPHs [96]. The biosensor
can be prepared using an all-solution process, utilizing phytic acid as both crosslinkers
and dopants. The PANI hydrogel film can be formed within 3 min, while cholesterol
esterase/cholesterol oxidase (ChEt/ChOx) was cross-linked in the PANI hydrogel matrix
with the bifunction compound glutaraldehyde, enabling high-density and uniform deposi-
tion of the enzyme onto the three-dimensional nanostructure of polyaniline. Due to the
unique characteristics of CPHs, such as their high permeability to biological substrates
and rapid electron transfer, this biosensor exhibits excellent sensing performance with a
wide linear range (0.3–9 mM), high sensitivity, low detection limit, and fast response time
(approximately 3 s). Due to the easily scalable workability of CPs, the proposed CPs-based
biosensor platform exhibits significant potential as a cost-effective sensor suite for medical
monitoring, clinical diagnostics, and biomedical devices. A cholesterol biosensor without
the need for enzymes can also be prepared by coating a screen-printed electrode with
taurine (TA) modified PEDOT [97]. The sulfonic acid in TA forms electrostatic interactions
with the polymerization main chain, exhibiting exceptional stability, high dispersion, and
significant surface area adsorption of cholesterol through the induction matrix, thereby
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enhancing its electrochemical performance. The results demonstrate that the sensor exhibits
an extremely low detection limit of 0.95 µM (S/N = 3), enabling rapid detection of low
concentrations of cholesterol in various bodily fluids.

2.1.4. DNA and RNA

Although society is making continuous progress, it also faces numerous challenges
stemming from these advancements, such as the prevalence of life-threatening diseases
that include cancer, genetic disorders, and infectious ailments. The identification and
diagnosis of these sicknesses hold paramount importance, thus necessitating the utilization
of electrochemical biosensors as potent bioanalytical tools, particularly for nucleic acid
detection. Electrochemical DNA (E-DNA) sensors are favored by researchers for their fast
response time, accurate measurement and stability, and seamless integration with electronic
devices [98–102].

The application of the E-DNA sensor relies on the process of DNA hybridization [103].
Kiransan et al., developed polymer-supported graphene-based materials utilizing DNA
hybridization for electrochemical determination [104]. The first step involved transforming
a polymer dispersion of graphene oxide (GO) and PEDOT/PSS with varying compositions
into a hydrogel through hydrothermal treatment. Subsequently, a 3D flexible composite
sponge material consisting of PEDOT/PSS and reduced graphene oxide (RGO) was pre-
pared using the freeze-drying technique (Figure 11a). The structural and morphological
characterization results revealed that the PEDOT/PSS polymer formed a mesh-like struc-
ture, effectively covering the graphene layer, thereby providing support and enhancing
the mechanical strength and electrochemical performance of the 3D material through a
reduction in pore size (Figure 11b). The PEDOT–PSS/RGO composite sponge exhibits a
significantly high electrical conductivity of 158 S·cm−1, making it suitable for use as an
electrode. Additionally, its durability is enhanced by a remarkable factor of 700. The MB-
ssDNA probes, labeled with single-stranded DNA (ssDNA) and methylene blue (MB), were
immobilized onto a PEDOT–PSS/RGO composite sponge. Subsequently, electrochemical
assays were conducted under optimized conditions (Figure 11c). The detection limit of the
sensor can be reduced to 17 fM, and the linear range spans from 5 × 10−11 to 2 × 10−3 mM,
rendering it suitable for the detection of hybrid DNA.

The PANI/PA hydrogels with a mesoporous structure were synthesized by Yang using a
one-step electrochemical method and have been utilized for the detection of microRNA [105].
The biosensor was developed by immobilizing the DNA probe onto the PANI/PA interface
and utilizing the REDOX current of PANI as the sensing signal for detecting DNA/RNA hy-
bridization reaction (Figure 12). Due to the characteristic properties of PANI/PA hydrogels, this
biosensor exhibits a wide linear range (1 × 10−12–1 × 10−9 mM), a low detection limit (0.34 fM),
and efficient detection capability for microRNA mismatch. Importantly, PANI/PA hydrogels
not only offer a plethora of active sites for DNA immobilization but also generate inherent
electrochemical signals through the reduction and oxidation reactions in PANI, eliminating the
need for additional REDOX probes.
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2.1.5. Other Substances

The range of biomolecules is extensive, encompassing tryptophan [106,107], dopamine
[108,109], and various others in addition to those previously mentioned. Among the crucial in-
dicators that facilitate various physiological processes, tryptophan plays a vital role in protein
synthesis and serves as a significant precursor to serotonin. Being an indispensable amino acid,
tryptophan exerts profound influence on human health [110,111]. Xu’s team incorporated
PEDOT/PSS into a zionotropic PSBMA (poly-sulfobetaine methacrylate) network to fabricate
an innovative semi-interpenetrating hydrogel [112]. This versatile hydrogel lays the founda-
tion for the development of a stain-resistant wearable molecularly imprinted sensor capable
of sensitive and robust detection of tryptophan in complex sweat. Dopamine modulates
motor, affective, cognitive, and endocrine functions within the central nervous system, while
also playing a role in the regulation of vasoconstriction. Rishabh Bansal’s team prepared the
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fabrication of a flexible sensor based on a hybrid nanocomposite of self-supporting polypyr-
role electrode modified copper nanoparticles (PPy-Cu) for the electrochemical detection of
dopamine [113]. The sensing capability of the self-standing PPy-Cu electrode was evaluated
by chronoamperometry and optimized for different copper deposition times. PPy-Cu 120 has
good dopamine detection performance. The lower limit of detection was 1.19 µM, and the
linear range was 2.5 × 10−3–2.5 × 10−1 mM. In addition, this self-standing sensor is entirely
composed of polypyrrole (a biocompatible polymer) and copper nanoparticles, making it
sustainable and environmentally friendly. These encouraging results pave the way for the
development of the next generation of flexible sensors that detect neurotransmitters and
environment-related analytes.

2.2. Cancer Markers

The accurate detection of disease biomarkers in human body fluids, such as blood,
urine, and saliva, with high sensitivity and specificity is crucial for early disease diagno-
sis and effective treatment [114–116]. The immunochemical methods based on antigen–
antibody interactions have been widely adopted in daily clinical practice as the preferred
approach for sensitive and reliable detection of protein-based cancer biomarkers in body
fluids [117–119]. Over the years, various immunochemical methods have been developed,
with electrochemical immune sensors being the preferred choice among scientists. How-
ever, the limited conductivity, small surface area, and poor anti-interference capabilities
of general electrochemical immune sensors have hindered their development. The issue
was addressed by scientists through the introduction of CPs, which fix antibodies within a
network structure of these polymers using binders. This approach significantly increases
the contact area and accelerates electron transmission while enhancing anti-interference
ability [120,121].

Aydin developed an immunosensor utilizing gold nanoparticles/amino-functionalized
thiophene polymer (AuNPs/P(ThiAmn)) for impedance-based detection of GM2 activating
protein (GM2A) [122]. The AuNPs/P(ThiAmn) multilayer films were fabricated using
electrochemical synthesis technology, thereby yielding conductive multilayer films suit-
able for biosensor applications. Due to the increased surface area and enhanced electron
transfer properties of AuNPs and conjugated polymers, numerous anti-GM2A antibodies
were attached to the amino group of P(ThiAmn) polymers. As a result, the modified
electrode surface was prepared for the selective analysis of GM2A. Even in the presence
of other interfering biomolecules, the proposed biosensor exhibits exceptional analytical
detection performance with high sensitivity and specificity towards GM2A. Under opti-
mal conditions, electrochemical impedance spectroscopy (EIS) enables determination of
GM2A within a linear concentration range of 0.0185–111 pg·mL−1, achieving a limit of
detection as low as 5.8 fg·mL−1. Similarly, Zhao et al., utilized AuNPs embedded within
multiple 3D layers in various CPs substrates, such as poly (thiophen-3-acetic acid), poly
(pyrrolio-2-carboxylic acid), and poly (pyrrolio-3-carboxylic acid), exploiting their exten-
sive surface area and superior conductivity as transducers [123]. The identification of
Amyloid-β oligomers (AβO), which are believed to be responsible for the neurotoxic effects
associated with Alzheimer’s disease, was specifically accomplished by utilizing cellular
prion protein (PrPC) as a biometric component. The PrPC/AuNPs embedded PPy-3-COOH
matrix exhibits enhanced sensitivity and an extended detection range (10−15–10−9 mM).
Additionally, a high-performance sensor based on a double-template molecularly imprinted
polymer has been successfully utilized for the specific detection of lung cancer biomark-
ers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) [124]. The impedance
method was employed to detect the rebinding of template antigens, wherein an increase in
charge transfer resistance was observed with escalating concentrations of CEA and AFP.
The linear dynamic ranges for CEA and AFP were 5–104 and 10–104 pg·mL−1, respectively,
while the detection limits stood at 1.6 and 3.3 pg·mL−1.

Kilic has developed a novel CPs material called zwitterionic polypyrrole (ZiPPy),
which offers optimal surface conditions for biosensing electrodes (Figure 13) [125]. ZiPPy
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possesses two distinct advantages: the zwitterion functionality effectively hydrates the
electrode surface and impedes non-specific binding of hydrophobic proteins. Compared
to bare and PPy-modified electrodes, the ZiPPy-modified electrode exhibits lower electro-
chemical impedance and reduced non-specific protein adsorption (low dirt). Furthermore,
in a one-step electropolymerization process, affinity ligands for target biomarkers can be
immobilized with ZiPPy. Specifically, a ZiPPy-modified electrode was designed for the
detection of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), achieving a
LOD as low as 5 × 10−4 pg·mL−1 in human saliva without the need for sample purification
or secondary labeling.
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2.3. Drug Screening and Delivery

The role of CPs-based sensors in drug screening and delivery is to monitor drug
release in real time, assess drug activity and efficacy, and evaluate the biocompatibility of
drug carrier materials to support precision therapy.

Bipolar disorder is a chronic psychiatric condition that imposes significant social and
economic burdens, characterized by pronounced mood fluctuations in affected individu-
als [126,127]. Valproic acid is the first-line pharmacological treatment for stabilizing daily
mood in patients with bipolar disorder [128]. However, elevated levels of valproic acid
in the bloodstream can lead to severe adverse reactions, necessitating regular monitoring
of blood valproic acid concentrations in patients [129]. Yuan et al., developed an innova-
tive electrochemical sensor for the selective and facile detection of valproate, utilizing a
molecularly imprinted polymer film prepared via one-step electro-polymerization [130].
The binding of the target molecule to the custom bionic PPy membrane of valproic acid
obstructs the cavity within the membrane and induces alterations in its electrical properties,
which can be detected through differential pulse voltammetry (DPV) as a reduction in peak
current. The peak current changes exhibited a strong logarithmic response to the concen-
tration of valproate. Similarly, tramadol (TRA) is a weak opioid analgesic utilized for the
management of mild to moderately severe pain [131]. However, excessive use of TRA has
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been frequently associated with adverse effects such as vomiting, depression, tachycardia,
convulsions, morbidity, and mortality [132]. Diouf developed an electrochemical sensor
based on a molecularly imprinted conductive polymers (MICP) for the quantitative and
non-invasive detection of TRA [133]. The MICP-based sensor was fabricated by employ-
ing self-assembly techniques to deposit a layer of PANI coated with silver nanoparticles
(AgNPs) onto a screen-printed gold electrode (Au-SPE), followed by polymerization of
2-aminothiophene in the presence of TRA. Under optimized conditions, the response of
this sensor is directly proportional to the concentration of TRA within the range from
1 × 104 to 1 × 108 pg·mL−1.

An updated comparative list of different CPs applications in biomedicine is presented
in Table 1.

Table 1. The main electrochemical sensors based on CPs and their parameter analysis, the application
of electrochemical technology and its application in biomedical detection are introduced.

CPs Analyte LOD (mM) Linear Range(mM) Application Ref.

PANI PH 0.0014 10−5–0.1 Biomolecular detection [70]

PANI pH 0.0016 8 × 10−6–0.1 Biomolecular detection [74]

PANI Glucose 0.0007 0.01–8 Biomolecular detection [86]

PANI Glucose 0.2 1–25 Biomolecular detection [87]

PEDOT/PSS Glucose 0.0019 10−3–0.094 Biomolecular detection [88]

PEDOT/PSS Glucose 0.0009 0.094–1.294 Biomolecular detection [89]

PPy Cholesterol 0.1 0.0002–0.5 Biomolecular detection [95]

PANI Cholesterol 0.00095 2–8 Biomolecular detection [96]

PEDOT/PSS DNA 1.7 × 10−11 0.003–1 Biomolecular detection [104]

PANI microRNA 3.4 × 10−13 5 × 10−11–2 × 10−3 Biomolecular detection [105]

PEDOT/PSS tryptophan 0.00067 1 × 10−12–1 × 10−9 Biomolecular detection [112]

PPy Dopamine 0.00119 0.002–0.1 Biomolecular detection [113]

PTH GM2A 2.13 × 10−11 2.5 × 10−3–2.5 × 10−1 Cancer makers [122]

PPy AβO 10–15 6.79 × 10−11–4.07 × 10−7 Cancer makers [123]

PPy CEA, AFP 5.87 × 10−12, 1.21 × 10−11 10−15–10−3 Cancer makers [124]

PPy SARS-CoV-2 1.84 × 10−4 1.83 × 10−11–3.67 × 10−8, 3.67 ×
10−11–3.67 × 10−8 Cancer makers [125]

PPy Valprate 0.01748 5.5 × 10−12–3.67 × 10−7 Drug screening and delivery [130]

PANI TRA 0.0346 1.84 × 10−14–2.75 × 10−13 Drug screening and delivery [133]

3. Environmental Applications

Electrochemical sensors based on CPs have been extensively utilized in environmental
monitoring, encompassing the determination of nitrate nitrogen, heavy metals, antibiotics,
and pesticides in soil and water environments. Additionally, they have also been employed
for the detection of toxic gases.

3.1. Nitrate Nitrogen

The expansion of industrialization and excessive fertilizer use in agriculture con-
tribute to the escalation of nitrate pollution in water and soil [106,134]. Overuse of nitrate
leads to increased algae growth, contamination of groundwater and surface water, and
ecological damage. Moreover, excessive intake of nitrate by humans can cause various
complications [135]. Bacterial enzymes convert nitrate to nitrite in the human digestive
system, disrupting hemoglobin’s oxygen transportation function and causing symptoms
of hypoxia [136,137]. Additionally, it reacts with amines in the gastrointestinal tract to
produce carcinogens [138]. Nitrate presence can also lead to other health issues such as
headaches, nausea, and vomiting. Therefore, developing an accurate and efficient method
for detecting nitrate is crucial.

Both Zhang’s and Motaghedifard’s teams have developed all-solid ion selective elec-
trode (ASS-ISE) that incorporate CPs and other nanoparticles for the detection of nitrate
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ion [139,140]. While the main difference lies in the selection of modified CPs at the electrode
interface. The sensor developed by Zhang’s group utilizes a molecularly imprinted PPy
membrane and exhibits a linear range of 5.25 × 10−2–1 × 102 mM, with a response slope of
−50.4 mV·dec−1 [139]. The molecularly imprinted PPy membrane significantly improves
the limitations of the PVC sensitive membrane, while incorporating AuNPs to enhance
electrical conductivity and promote stronger bonding properties. Motaghedifard’s research
group developed a hybrid nanocomposite of Au-modified MWCNT/Cu/PANI for the
detection of nitrate ions [141]. This sensor utilizes precious metal bimetallic nanoparticles
(gold and copper) to catalyze the reduction of nitrates in polymer carbon modifiers, achiev-
ing a remarkable detection limit of 0.09 µM. The electrode has been successfully employed
for the determination of nitrate ions in both industrial wastewater and aqueduct water
from a barium chromate production line.

The continuous measurement of nitrate nitrogen holds significant potential applica-
tions in the fields of plant biology, plant breeding, environmental science, and agricultural
production. In contrast to the aforementioned preparation of ASS-ISEs, Ali reported a novel
ASS-ISE for real-time continuous monitoring of soil nitrate levels [142]. The patterned gold
WE of this sensor was modified with poly(3-octylthiophene) and molybdenum disulfide
(POT-MoS2). The POT-MoS2 layer acts as an ion-to-electron transduction layer, possessing
high hydrophobicity and REDOX properties. This layer significantly enhances conductivity
and anion exchange while minimizing the formation of a thin water layer at the interface
between the Au electrode and the ion-selective membrane (ISM). Consequently, this sensor
exhibits exceptional performance in terms of selectivity, sensitivity, and long-term stability
even when exposed to significant concentrations of other anions. Vapor phase polymer-
ization (VPP) is a common technique for directly polymerizing gaseous monomers into
polymers under gas phase conditions [143]. In the VPP process, monomer gases undergo a
series of chemical reactions in the gas phase to form a polymer film or coating [143]. By
employing VPP technology, Kohler’s group prepared a real-time sensor based on PEDOT
for the detection of nitrate ions through monitoring changes in electrical properties [144].
The sensitivity of the sensor to nitrates is influenced by various polymerization parameters
such as temperature, pressure, and time. Under optimized conditions, the sensor exhibits a
resistance response of 41.79% to a nitrate solution concentration of 1000 ppm. Furthermore,
it has the capability to detect nitrate concentrations ranging from 1 ppm to 1000 ppm.
The proposed sensor demonstrates significant potential for the real-time monitoring of
excessive nitrate ions in aqueous solutions.

3.2. Heavy Metal Ions

The presence of heavy metal ions (HMIs) in water, soil, and other natural environments
is a significant environmental concern. These pollutants originate from various sources
such as nature, industrial discharges, agricultural activities, sewage treatment plants,
and drinking water pipes. Due to their high toxicity and non-degradability, HMIs pose
serious threats to the ecological environment as well as public and human health. The
toxic metal ions, such as cadmium (Cd2+), lead (Pb2+), mercury (Hg2+), cobalt (Co2+)
and others, exhibit high mobility in aquatic environments and have a propensity for
bioaccumulation along the food chain, thereby posing a potential risk to human health
even at low concentrations [10,145]. The detrimental effects of HMIs on the human body
are mediated through various mechanisms, including induction of oxidative stress, DNA
damage, impairment of protein function, initiation of cell apoptosis, and promotion of
inflammatory reactions [146].

Xiao et al., designed and prepared a 3D high-porosity CPHs-based sensor, which
successfully enabled the detection of Cd2+, Cu2+, Pb2+ and Hg2+ [147]. The synthesis of a
g-C3N4-P(ANI-Py)-PAAM polymer hydrogel involved the crosslinking of aniline pyrrole
copolymer with acrylamide, phytic acid as both dopant and crosslinking agent, followed by
integration with g-C3N4 (Figure 14). The 3D mesh high-porosity hydrogels not only exhibit
excellent electrical conductivity, but also offer a substantial surface area for augmenting
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the population of immobilized ions [148]. The LOD for Cd2+, Cu2+, Pb2+ and Hg2+ by
this sensor were determined to be 2.608 × 10−5 mM, 5.323 × 10−5 mM, 1.484 × 10−5 mM
and 6.835 × 10−5 mM, respectively, making it suitable for trace analysis. In addition,
the sensor demonstrates exceptional accuracy in lake water quality assessments. The
preparation and implementation of hydrogels in electrochemical sensors offer a viable
approach for the electrochemical capture and detection of diverse hazardous materials
in solution, thereby presenting significant prospects for commercial applications. The
group led by Kulkarni has also developed a sensor utilizing PPy to detect HMIs, effectively
combining the exceptional properties of graphene nanoribbons (GNR) with conductive
PPy [149]. GNR was synthesized via the MWCNT decompression method, while GNR/PPy
was synthesized through in situ polymerization. The material comprises multiple layers of
carbon and nitrogen that facilitate binding to Pb2+. The modified electrochemical sensor
exhibited significantly enhanced peak current intensity for the rapid detection of Pb2+,
achieving a remarkable detection limit of 0.03 nM. Moreover, the electrode demonstrated
exceptional selectivity towards Pb2+, even in the presence of Cu2+, Zn2+, and Hg2+.
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The utilization of PANI as an interface modification material for HMIs detection is also
investigated [150]. The composites of polyaniline-benzothiazole [(3,5-bis(benzo[d]thiazol-2-
yl)-[1,1–biphenyl]-4-ol)] (PANI-BEN) were synthesized for the detection of Hg2+ and Pb2+,
achieving detection limits of 1pM and 4.6pM, respectively [151]. Some researchers have
investigated the combination of metal–organic frameworks (MOFs) and PANI [152]. PANI
was synthesized in both conductive (emerald salt, ES) and non-conductive forms (emerald
base, EB), with six different mass ratios of MOF-5 and PANI used to produce the conjugated
polymer. The electrochemical response of all composites towards the presence of Cd2+

and Pb2+ is consistently observed. Among them, the MOF/EB-1 composite with 71.0 wt.%
MOF-5 exhibits the highest oxidation current when both HMIs are detected individually or
simultaneously. The current density recorded by MOF/EB-1 is also higher than that of its
individual components, indicating a synergistic effect wherein MOF-5 offers a substantial
surface area for the adsorption of Cd2+ and Pb2+, while PANI facilitates an electron transfer
network during the subsequent metal oxidation.

Furthermore, a novel composite consisting of a mercaptan (-SH) grafted polymer
(3,4-propenedioxthiophene)/porous silicon sphere (PProDOT(MeSH)2@Si) has been em-
ployed for the electrochemical detection of Cd2+, Pb2+ and Hg2+ (Figure 15) [153]. The
PProDOT(MeSH)2@Si composite was synthesized via chemical oxidation polymerization,
and the detection of Cd2+, Pb2+ and Hg2+ was performed using differential pulse voltam-
metry (DPV). The results demonstrated that the incorporation of two sulfhydryl chains into
the monomer unit enhances the electrochemical sensitivity of PProDOT(MeSH)2, which
can be attributed to the interaction between sulfhydryl (-SH) groups and heavy metal
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ions. Moreover, the integration of PProDOT(MeSH)2 with porous Si sphere significantly
improves the electrocatalytic efficiency of the electrode material.
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3.3. Antibiotics

Concern over the hazardous accumulation of antibiotics in food and water resources
has significantly increased in the past decade. The excessive use and improper disposal
of antibiotics, as well as the discharge of animal and human waste, aquaculture practices,
hospital and industrial waste, along with inefficient removal during conventional water
treatment processes contribute to the build-up of antibiotics in both food and the envi-
ronment. Consequently, antibiotics have been identified as an emerging environmental
pollutant in recent years [154–156].

Cefixime (CEF, a semi-synthetic antibiotic, third-generation cephalosporin) exhibits
bactericidal properties by inhibiting bacterial cell wall formation, growth, and proliferation,
ultimately leading to bacterial death [157]. A novel electrochemical sensor was developed
by incorporating expanded graphene oxide and gold nanowires, followed by the electrical
polymerization of PANI MIPs on the electrode surface [158]. This sensor demonstrates
linear response within a concentration range of 2 × 10−5–9.5 × 10−4 mM with a detection
limit of 7.1 nM.

Sulfonamides (SAs) are a class of broad-spectrum synthetic antibacterial and anti-
inflammatory antibiotics, including sulfamethizole, sulfadiazine, and sulfisoxazole. Due
to their high efficacy and cost-effectiveness, SAs have been extensively utilized for the
prevention and control of human and animal infections as well as for promoting animal
husbandry growth [159]. Kong’s group demonstrated a reusable and label-free electro-
chemical sensor utilizing an electropolymeric MIP film as an identification layer for rapid
and sensitive detection of sulfamethozole [155]. In order to achieve effective identification,
computational simulation and subsequent experimental evaluation were conducted for
monomer screening of four 3-substituted thiophenes, ultimately selecting 3-thiophene
ethanol. The synthesis of MIPs is rapid and environmentally friendly, allowing for in situ
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manufacturing on the sensor surface. Under optimized experimental conditions, the sensor
exhibits a good linear relationship within the range of 1 × 10−6–1 × 10−2 mM, with a
detection limit as low as 0.18 nM.

Oxacillin (OXC) is a penicillin-based antibiotic commonly employed for the treatment
of infections caused by susceptible strains, including those affecting the respiratory tract,
skin, soft tissues, and other infection symptoms. The mechanism of action of oxacillin
involves inhibiting bacterial cell wall synthesis, ultimately leading to bacterial death [160].
The screen-printed carbon electrode (SPCE) was utilized to fabricate an oxacillin sen-
sor. The SPCE underwent modification with nano-gold and graphene oxide, followed
by electropolymerization of aniline in the presence of graphene oxide [156]. Under a
typical peak potential of 0.82 mV (relative to Ag/AgCl), the response exhibited a linear
range spanning from 7 × 10−7 to 5.75 × 10−4 mM. The sensitivity was determined as
9.76 × 104 µA·mM−1·cm−2, while the detection limit stood at 2 × 10−7 mM. In the case of a
concentration of OXC at 2 × 10−4 M, the relative repeatability for six repeated experiments
was found to be 2.6%.

Dimetronidazole (DMZ), a derivative of nitroimidazole, is a veterinary drug used as an
antibiotic to treat bacterial or protozoan infections in poultry. The electrochemical detection of
DMZ was conducted using SPCE modified with PANI-Cu@BSA/RGO nanocomposites [161].
The PANI-Cu@BSA electrocatalyst was synthesized through one-step biomimetic miner-
alization polymerization, utilizing bovine serum albumin (BSA) as a stabilizer. And the
PANI-Cu@BSA/reduced graphene oxide (RGO) nanocomposites were prepared through
ultrasonic coating, exhibiting exceptional water dispersibility, high electrical conductivity, and
nano-sized particles. The increase in current intensity primarily stems from the enhanced
rapid electron transfer between the electrode and the analyte, facilitated by the combination of
PANI-Cu@BSA with RGO. This synergistic effect leads to an exceptional electrical conductivity
and active surface area at the analyte–electrode junction.

3.4. Pesticide

Pesticide residues can pose various risks to human health, primarily through the long-
term consumption of food containing such residues, which may result in chronic poisoning
and adversely affect the nervous system, endocrine system, immune system, among others.
This can lead to chronic diseases like cancer and nervous system dysfunction. Children
and pregnant women are particularly vulnerable to pesticide residues as their growth and
development can be negatively impacted by prolonged exposure, increasing the risk of
adverse effects and disease. Furthermore, pesticide residues not only harm human health
but also contribute to soil and water pollution while disrupting ecological balance [162].

To tackle this problem, researchers have devised electrochemical sensors utilizing CPs
to detect pesticide residues. The electrochemical sensor developed by Anirudhan utilized a
combination of MWCNT and CPs to effectively detect chlorpyrifos (CPF) in vegetable sample
solutions [163]. The copolymerization of 3-thiophenic acid and 3,4-ethylenedioxythiophene
was conducted on the surface of MWCNTs, followed by drop-casting onto the electrode surface
for highly sensitive detection of CPF. Under optimal conditions, the sensor has an extremely
low detection limit of 0.004 nM. The detection of glyphosate (Gly) was accomplished by Ding
through the utilization of molecularly imprinted PPy nanotubes, which were fabricated by
imprinting Gly binding sites onto the surface of PPy nanotubes [164]. The modified SPCE
electrode exhibited excellent conductivity and rapid adsorption rate, as well as enhanced
affinity and specificity towards Gly. The portability of this sensor makes it highly suitable
for real-time detection, as evidenced by its successful application in detecting Gly in orange
juice and rice beverage samples. This demonstrates its efficacy for pesticide monitoring in
practical food and environmental matrices. Similarly, Deller proposes a novel electrochemical
sensor based on modified SPCE to quantify Pirimicarb (PMC), a carbamate pesticide that is
challenging to detect electrochemically due to its high oxidation potential [165]. To enhance
the electrochemical performance for PMC oxidation at low potential, SPCE was modified with
conductive PEDOT and AuNPs. This modification enables the exploration of the correlation
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between oxidation peak and pesticide concentration through an electrocatalytic effect, leading
to the development of a sensitive, selective, and cost-effective electrochemical sensor for future
environmental monitoring.

3.5. Toxic Gases

Humans are exposed to a wide range of air pollutants in both indoor and outdoor
environments. Poor air quality is recognized as a trigger for various health issues that
often result in life-threatening and costly emergency medical care [166]. Therefore, accurate
detection of toxic gases would not only bring significant benefits to industries but also
greatly improve the daily lives of individuals.

Ammonia is harmful to the respiratory system, skin and eyes, digestive system and
nervous system, and also causes environmental pollution [167]. The PPy-based gas sensor
for NH3 detection, developed by Jain, utilizes a combination of oxidizer and pyrrole to
achieve exceptional thermal stability, superior electrical conductivity, and environmental
stability [168]. The chemical oxidation polymerization method was employed to syn-
thesize PPy in an aqueous solution, utilizing ferric chloride (FeCl3) as the oxidant and
cetrimonium bromide as the solvent [169]. With the increase in the molar ratio of FeCl3
to pyrrole, the conductivity of PPy increased, and the conductivity of PPy was analyzed
by I-V characteristics to get the optimal ratio. The influence of different concentrations of
NH3 on the conductivity of PPy was used to achieve the detection of NH3. While Bhardwaj
prepared a three-phase Cu-MOF/graphene/PANI composite for NH3 sensing [170]. The
three-phase composite has been synthesized in the presence of ammonium persulfate as
an oxidizing agent. In this mixture, the aniline component undergoes polymerization to
form PANI, which acts as a connecting bridge between Cu-MOF and graphene within
the composite. The incorporation of Cu-MOF into the matrix facilitates the attainment of
an electrochemically active sensing material possessing a surface area of approximately
756 m2·g−1, which is advantageous for NH3 diffusion. Moreover, this porous PANI-based
sensor demonstrates remarkable sensitivity towards NH3 detection, exhibiting linear detec-
tion ranges spanning from 1 to 100 ppm and low detection limits of 0.6 ppm. In addition to
PPy and PANI, PEDOT has also been utilized for the detection of NH3. A high-performance
chemically resistant NH3 sensor was developed by preparing an ultra-thin Janus film con-
sisting of AuNWs/PEDOT–PSS double layers [171]. The AuNWs/PEDOT–PSS Janus
film was fabricated by subjecting the AuNWs membrane to H2S treatment, resulting in a
hydrophilic surface, which was subsequently combined with a layer of PEDOT/PSS. The
Janus film containing a single layer of AuNWs exhibited the most pronounced response
to NH3. Furthermore, as the thermal annealing treatment temperature increased within
the range of 80 to 200 ◦C, the sensitivity towards NH3 also escalated due to the alteration
in the state of AuNWs, leading to an enlargement in available surface area for NH3 ad-
sorption. Significantly, this study introduces a novel approach for fabricating flexible,
transparent, and conductive Janus films, thereby establishing a promising platform for
electrochemical sensors.

H2S is a gaseous compound of hydrogen and sulfur, characterized by a potent odor
and exhibiting toxic effects on the respiratory system, nervous system, and biomolecules
in humans [172]. The biodegradable electroactive polymer, polyurethane-urea (PUU) and
PUU-activated carbon (AC) composites were utilized as sensitive materials for successfully
fabricate a high-performance H2S sensor capable of operating at room temperature [173].
The PUU was synthesized through the copolymerization of biodegradable polycaprolac-
tone diol and electroactive amine-coated aniline trimers, while the activated carbon was
prepared from waste coconut shell. The investigation of PUU and AC was conducted
in varying proportions, resulting in a higher sensitivity to H2S gas when AC was added.
It is hypothesized that the enhanced response of the PUU-AC composite to H2S can be
attributed to its elevated surface area and abundant reaction sites, which facilitate gas
diffusion, adsorption, and electron transfer. The successful fabrication of interdigitated
electrode (IDE) coated with PANI-AC composites enables the homoplastic detection of
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H2S [174]. The PANI was synthesized through oxidative coupling polymerization of aniline
monomers, while the AC was obtained by calcinating coconut husks from agricultural
waste at 800 ◦C with ZnCl2 as a catalyst. The superior gas-sensitive properties of PANI-AC
composites can be attributed to the increased surface area, providing more active sites for
doping and enhancing sensing capability. Specifically, incorporating AC into the PANI
matrix significantly improves the doping process, resulting in a stronger response to H2S,
higher repeatability, and greater stability compared to pure PANI-coated IDE sensors.

PANI is a potential material for electrochemical sensors because of its special physical
and chemical characteristics, which include outstanding gas absorption, little dielectric
loss, and exceptional durability in both chemical and thermal conditions. However, the
sensing performance is highly dependent on the structure and size of PANI [175–177].
Although in situ oxidation polymerization combined with self-assembly processes has
become the primary method for fabricating flexible PANI-based gas sensors, achieving a
uniform array of microwires remains an urgent challenge that needs to be addressed. Zhao
adopted a novel approach to fabricate one-dimensional PANI microwire arrays via the
liquid film-induced capillary bridge method, utilizing an extremely low concentration of
PANI solution [178]. The formation rate of PANI microwire can be significantly enhanced
by employing a silicone template modified with hydrophobic 1H,1H,2H,2H perfluorodecyl
triethoxysilane (PTES) (Figure 16). The PANI solution, with a concentration of 1 × 1012

pg·mL−1 and a silicon template of 10 µm, was evaporated at 80 ◦C for 18 h, resulting in
a 100% rate of PANI microwire formation. The obtained PANI microwires demonstrate
uniformity in size and possess well-defined shapes, with respective widths and heights
measuring 2 µm and 250 nm (Figure 16b). The prepared microwire array enables the
detection of SO2 at room temperature, exhibiting a response time of 20 s and a detection
limit of 1 ppm. As a result, the liquid film-induced capillary bridge method offers an
innovative opportunity for fabricating gas sensor devices based on insoluble polymers.
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ducting polymer poly (3−hexylthiophene)(P3HT) acts as a charge transport agent and is 

Figure 16. (a) Schematic diagram of PANI microwire array prepared by liquid film-induced capillary
bridge method. (b) FTIR spectra of the initial PANI (black) and PANI array (red) (A). The FTIR
spectra of the two samples were consistent, indicating that the PANI micron array was prepared by
liquid film-induced capillary bridge method. SEM image of PANI array with microarrays arranged
in parallel and evenly spaced (B). SEM image of PANI array after partial amplification (C). The edge
of the microwire is straight and the width is uniform. Reprinted with permission from ref. [178].

Jang has created a highly sensitive OFET-based gas sensor to detect NO2. The conduct-
ing polymer poly (3-hexylthiophene)(P3HT) acts as a charge transport agent and is placed
in a semiconductor layer with a field effect transistor (OFET) [179]. The surface chemistry
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of the perovskite NCs is modified by ligand exchange treatment so that the NCs is encased
in a photoionic polymer that strongly interacts not only with the surface of the perovskite
NCs, but also with the target gas molecules (Figure 17). In addition, the researchers used
hydrated perovskite NCs to optimize their ability to capture NO2 through interactions with
water molecules and NO2. These results demonstrate the potential of organic–inorganic
hybrid sensors, which will provide a new approach for developing gas sensors based on
composites of different materials, aimed at increasing sensitivity and selectivity.
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An updated comparative list of different CPs applications in environmental monitoring
is presented in Table 2.

Table 2. The main electrochemical sensors based on CPs and their parameter analysis, the application
of electrochemical technology and its application in environmental detection are introduced.

CPs Analyte LOD (mM) Linear Range (mM) Application Ref.

PPy nitrate 0.0537 0.0525–100 Nitrate nitrogen [139]

PANI nitrate 9 × 10−5 0.0008–0.03 Nitrate nitrogen [141]

POT nitrate 2.1 × 10−5 1.61 × 10−5–24.19 Nitrate nitrogen [142]

PEDOT nitrate 1.61 × 10−5 1.61 × 10−5–16.13 Nitrate nitrogen [144]

PANI,
PPy Cd2+, Cu2+, Pb2+, Hg2 2.608 × 10−5, 5.323 × 10−5, 1.484 × 10−5,

0.835 × 10−5 0.0005–0.1, 0.001–0.1, 0.0001–0.1, 0.001–0.01 Heavy metal ions [147]

PPy Pb2+ 3 × 10−8 10−7–10−3 Heavy metal ions [149]

PANI Pb2+, Hg2 4.6 × 10−9, 10−9 0.001–0.0248 Heavy metal ions [151]

PANI Cd2, Pb2+ 6.85 × 10−4, 1.59 × 10−4 4.8 × 10−6–1.02 × 10−5, 1.11 × 10−3–1.93 × 10−3 Heavy metal ions [152]

PEDOT Cd2+, Cu2+, Pb2+ 5.78 × 10−6, 2.7 × 10−6, 1.7 × 10−6 4 × 10−5–2.8 × 10−3, 2.4 × 10−5–2.8 × 10−3,
1.6 × 10−4–3.2 × 10−3 Heavy metal ions [153]

PANI CEF 7.1 2 × 10−5–9.5 × 10−5 Antibiotics [158]

PTh SAs 1.7 × 10−7 1 × 10−6–1 × 10−2 Antibiotics [155]

PANI OXC 2 × 10−7 7 × 10−7–5.75 × 10−4 Antibiotics [156]

PANI DMZ 1.78 × 10−6 7.9 × 10−4–2.057 Antibiotics [161]

PTh CPF 0.04 nM 2 × 10−8–10−3 Pesticide [163]

PPy GIy 7.12 × 10−6 9.18 × 10−6–1.28 × 10−3 Pesticide [164]

PEDOT/PSS PMC 0.02834 0.09381–0.75 Pesticide [165]

PANI NH3 3.52 × 10−5 5.87 × 10−5–5.87 × 10−3 Toxic gas [170]

PEDOT/PSS NH3 2.94 × 10−5 5.87 × 10−4–5.87 × 10−3 Toxic gas [171]

PANI H2S 5.87 × 10−4 2.93 × 10−5–1.47 × 10−4 Toxic gas [173]

PANI SO2 1.56 × 10−5 1.56 × 10−5–7.8 × 10−4 Toxic gas [178]

P3HT NO2 6.91 × 10−12 2.17 × 10−4–2.17 × 10−2 Toxic gas [179]

4. Summary and Prospect

Recent research has significantly advanced our understanding of the potential of CPs
in electrochemical sensors, which holds great promise for revolutionizing current practices
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in medical care and environmental monitoring by shifting the focus from traditional off-site
laboratory analysis to in situ detection. CPs can be functionalized with diverse groups,
enabling their transformation into a wide range of biometric molecules. Furthermore,
integration with organic/inorganic nanomaterials enhances their sensitivity and selectivity
in detecting biological analytes.

Although CPs-based electrochemical sensors have advantages in biomedical and envi-
ronmental applications, there are still areas for improvement, such as CPs being affected
by oxidation, hydrolysis, light, and other factors, resulting in limited stability and service
life. Some CPs may be too sensitive to specific molecules under certain conditions, causing
the presence of interfering substances to interfere with the accuracy of the sensor. Some
CPs are difficult to regenerate or recycle, resulting in resource waste and environmental
burden. Therefore, improving the reliability and applicability of electrochemical sensors
is an important research field, which involves many aspects of optimization. In terms of
improving sensitivity, the signal response of the sensor can be enhanced by optimizing
the electrode design and material selection of the sensor. Increasing specificity requires
selectively improving the properties of the target analyte, such as surface modifications or
the introduction of molecular recognition elements. Long-term stability can be achieved by
preventing contamination and oxidation of the electrode surface. In terms of biocompati-
bility, materials compatible with the organism should be selected to ensure the safe and
reliable application of the sensor in the organism. In terms of practicality and portability,
miniaturization technology and portable test platforms can be used to simplify the opera-
tion process and improve the ease of use. Finally, in terms of cost-effectiveness, costs can be
reduced by optimizing material selection, the manufacturing process and production scale,
thus promoting the commercialization and scale application of electrochemical sensors.
It is believed that with the development of the CPs field, new conductive polymers can
be designed to improve their stability, selectivity and repeatability to meet the needs of
different application fields. Intelligent technologies such as artificial intelligence and ma-
chine learning can be combined to optimize sensor response and performance and improve
accuracy and reliability. The development of multifunctional CPs capable of simultaneously
detecting multiple target substances has improved the applicability and practicality of
sensors. The preparation method of environmentally friendly CPs was studied to reduce en-
ergy consumption and environmental pollution and promote the sustainable development
of electrochemical sensors. In the future, CPs have broad application prospects in the field
of electrochemical sensors, but the field also needs continuous technological innovation
and improvement to solve existing defects and meet the needs of future applications.
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