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Abstract: Nanomaterials have attracted specific consideration due to their specific characteristics
and uses in several promising fields. In the present study, Chondrilla juncea was employed as a
biological extract to facilitate the reduction of copper and silver ions within garlic peel powders. The
resulting garlic-CuO and garlic-AgO nanocomposites were characterized using several analytical
methods including FTIR, TGA/DTG, SEM, TEM, and XRD analyses. The garlic peel exhibited a
rough surface. The nanoparticles were evenly dispersed across its surface. The incorporation of CuO
and AgO nanoparticles affected the crystal structure of garlic peel. The establishment of CuO and
AgO nanoparticles was evidenced by the highest residual mass values observed for the prepared
nanocomposites. The thermogravimetric analysis showed that the prepared nanocomposites had
lower thermal stability compared with garlic peel powders. The prepared nanocomposites were
used for catalytic degradation of naphthol blue black B and calmagite. The decolorization process
depended on the quantity of H2O2, initial concentration of azo dyes, duration of contact, and temper-
ature of the bath. The calculated activation energy (Ea) values for the garlic-CuO nanocomposites
were found to be 18.44 kJ mol−1 and 23.28 kJ mol−1 for calmagite and naphthol solutions, respectively.
However, those calculated for garlic-AgO nanocomposites were found to be 50.01 kJ mol−1 and
12.44 kJ mol−1 for calmagite and naphthol, respectively.

Keywords: garlic-CuO; garlic-AgO; catalytic degradation; naphthol blue black B; calmagite

1. Introduction

Green preparation of nanomaterials, using natural products, constitutes an interesting
topic due to the numerous advantages offered by this method compared with common
chemical methods [1–5]. Indeed, natural products contain active molecules such as ter-
penoids, polyphenols, alkaloids, proteins, acids, etc. These biomolecules serve not only
as reducing agents but also as capping agents for nanoparticles. Many natural substrates
have been investigated in the literature for the purpose of designing nanostructures. These
include capparious zeylanica [6], ocimum sanctum [7], vitis vinifera [8], azadirachta in-
dica [9], symphyti radix [10], piper betle [11], phyllanthus plant [12], marine fungi [13],
microorganisms [14], and many others.

The application of nanomaterials encompasses various fields such as sensors [15,16],
medicine [17–19], water treatment [20–22], etc. In addition, significant attention has been
directed toward the elimination of harmful contaminants from water through the imple-
mentation of nanostructured materials. The elimination of azo dyes, a type of pollutant
found in water, has attracted high interest among researchers due to their harmful effects
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on aquatic and human life. Various methods, including oxidation [23], photocatalysis [24],
electrochemical processes [25], and adsorption [26], have been studied to remove these
hazardous contaminants from water. The utilization of H2O2 as an environmental oxidant
confirms that oxidative degradation is indeed an effective approach for color removal. In
addition, these approaches could employ biomaterials as carriers [27]. To our knowledge,
several studies focused on the oxidative degradation of dyes using nanomaterials. For
instance, Malakootian et al. [28] proposed a system constituted of phytochemical silver
nanoparticles, H2O2, and ozone for reactive blue 19 degradation. Qing et al. [29] studied
the potential of a AgO/H2O2 mixture to degrade ethyl violet and methylene blue. In our
recent works, we investigated the oxidative degradation of some dye molecules using
chitosan–copper oxide and pectin-MnO2 [30,31].

Therefore, it is necessary to find a suitable technique in order to efficiently treat and
manage wastewater. It was demonstrated that filtration, biological treatments, oxidation,
adsorption, flocculation, and membranes can be achieved by, importantly, using polymeric
materials (including polymeric flocculants, polymeric filters, polymeric composites, poly-
meric membranes, etc.). Nano-adsorbents are generally considered more favorable for
sustainable processing, including size controllable synthesis [32].

Garlic, renowned for its intriguing nature, has been utilized both as a culinary ingre-
dient and for medicinal purposes. It is recognized as being valuable in tumor treatments,
metabolic diseases, heart diseases, and it has anti-bacterial, and anti-inflammatory prop-
erties [33,34]. In the garlic cultivation sector, garlic straws and peels are well recognized
as waste; simply, small amounts are used as food and most are cooked [35]. Chemically,
garlic peel is constituted of cellulose, lignin, hemicellulose, and other extractives [36]. In the
current research, garlic peel powders are used as carriers for the ecological preparation of
copper and silver, and Chondrilla juncea as a biological extract. Several analytical techniques
are used to analyze the resulting garlic-CuO and garlic-AgO nanocomposites, including
FTIR, XRD, SEM, TEM, and TGA/DTG. Degradation experiments are assessed for naphthol
blue black B and calmagite. The investigation focuses on examining the experimental fac-
tors that affect the decolorization process. These experimental factors include the quantity
of H2O2, initial concentration of the dye, duration of contact, and temperature of the bath.
To gain a deeper understanding of the decolorization mechanism involving calmagite
and naphthol, garlic-CuO and garlic-AgO nanocomposites are utilized as catalysts, and
0th-order, 1st-order, and 2nd-order kinetic models are employed. Furthermore, free energy,
entropy, activation energy, and enthalpy are determined by calculating the kinetic rate
parameters at various temperatures.

2. Experimental
2.1. Materials and Reagents

Garlic was bought from a local market (Zulfi, KSA). All chemicals and reagents were
supplied by Sigma Aldrich and were of analytical grade. Naphthol blue black B (chemical
formula: C22H14N6Na2O9S2, M.W = 616.5 g/mol, λmax = 610 nm) and calmagite (chemical
formula: C17H14N2O5S, M.W = 358.3 g/mol, λmax = 538 nm) dyes were purchased to study
catalytic degradation. The chemical structures of both dyes are displayed in Figure 1.
H2SO4 and NaOH were used to adjust pH at constant values. Distilled water was used to
prepare all aqueous solutions.

2.2. Preparation of Chondrilla juncea Aqueous Extract

Chondrilla juncea was collected from the region of Zulfi, Riyadh, KSA. The extraction
protocol was the same as mentioned in our previous investigation [30]. The leaves were
extracted manually and subsequently cleansed with distilled water to eliminate any impu-
rities that adhered to their surface. Following this, they were dried in darkness for a period
of 7 to 10 days. Once completely dried, the leaves were ground into a fine powder using
an electric mixer. Next, a mixture containing 450 mL of water and 30 g of grinded leaves
was prepared and heated for 120 min at 70 ◦C. Subsequently, the solution was allowed to
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cool down to ambient temperature and then filtered; the resulting extract (Figure 2) was
utilized for the synthesis of garlic-CuO and garlic-AgO nanocomposites.

Polymers 2024, 16, x  3 of 18 
 

 

 

 
(b) 

Figure 1. Chemical structures of (a) calmagite and (b) naphthol blue black B. 

2.2. Preparation of Chondrilla juncea Aqueous Extract 
Chondrilla juncea was collected from the region of Zulfi, Riyadh, KSA. The extraction 

protocol was the same as mentioned in our previous investigation [30]. The leaves were 
extracted manually and subsequently cleansed with distilled water to eliminate any im-
purities that adhered to their surface. Following this, they were dried in darkness for a 
period of 7 to 10 days. Once completely dried, the leaves were ground into a fine powder 
using an electric mixer. Next, a mixture containing 450 mL of water and 30 g of grinded 
leaves was prepared and heated for 120 min at 70 °C. Subsequently, the solution was al-
lowed to cool down to ambient temperature and then filtered; the resulting extract (Figure 
2) was utilized for the synthesis of garlic-CuO and garlic-AgO nanocomposites. 

 
Figure 2. Preparation of extract from Chondrilla juncea. 

2.3. Synthesis of Garlic-CuO and Garlic-AgO Nanocomposites 
The initial step involved grinding the dried garlic peel into a fine powder using an 

electric pro grinder device. The garlic straw powders were rinsed repeatedly with water 
to remove impurities and were dried at 50 °C overnight. Afterward, 5 g of garlic powder 
underwent treatment with solutions of copper sulfate and silver nitrate (1 M, volume = 
250 mL) for 6 h. Next, after the addition of 250 mL of a freshly prepared Chondrilla juncea 
solution into pretreated garlic powder, an additional time of 2 h was allotted for the tem-
perature to be raised to 70 °C. The gradual change of color solution throughout the reac-
tion might indicate the conversion of copper and silver ions into nanoparticles. The result-
ing materials were separated by filtration, washed many times with distilled water, and 

Figure 1. Chemical structures of (a) calmagite and (b) naphthol blue black B.

Polymers 2024, 16, x  3 of 18 
 

 

 

 
(b) 

Figure 1. Chemical structures of (a) calmagite and (b) naphthol blue black B. 

2.2. Preparation of Chondrilla juncea Aqueous Extract 
Chondrilla juncea was collected from the region of Zulfi, Riyadh, KSA. The extraction 

protocol was the same as mentioned in our previous investigation [30]. The leaves were 
extracted manually and subsequently cleansed with distilled water to eliminate any im-
purities that adhered to their surface. Following this, they were dried in darkness for a 
period of 7 to 10 days. Once completely dried, the leaves were ground into a fine powder 
using an electric mixer. Next, a mixture containing 450 mL of water and 30 g of grinded 
leaves was prepared and heated for 120 min at 70 °C. Subsequently, the solution was al-
lowed to cool down to ambient temperature and then filtered; the resulting extract (Figure 
2) was utilized for the synthesis of garlic-CuO and garlic-AgO nanocomposites. 

 
Figure 2. Preparation of extract from Chondrilla juncea. 

2.3. Synthesis of Garlic-CuO and Garlic-AgO Nanocomposites 
The initial step involved grinding the dried garlic peel into a fine powder using an 

electric pro grinder device. The garlic straw powders were rinsed repeatedly with water 
to remove impurities and were dried at 50 °C overnight. Afterward, 5 g of garlic powder 
underwent treatment with solutions of copper sulfate and silver nitrate (1 M, volume = 
250 mL) for 6 h. Next, after the addition of 250 mL of a freshly prepared Chondrilla juncea 
solution into pretreated garlic powder, an additional time of 2 h was allotted for the tem-
perature to be raised to 70 °C. The gradual change of color solution throughout the reac-
tion might indicate the conversion of copper and silver ions into nanoparticles. The result-
ing materials were separated by filtration, washed many times with distilled water, and 
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2.3. Synthesis of Garlic-CuO and Garlic-AgO Nanocomposites

The initial step involved grinding the dried garlic peel into a fine powder using
an electric pro grinder device. The garlic straw powders were rinsed repeatedly with
water to remove impurities and were dried at 50 ◦C overnight. Afterward, 5 g of garlic
powder underwent treatment with solutions of copper sulfate and silver nitrate (1 M,
volume = 250 mL) for 6 h. Next, after the addition of 250 mL of a freshly prepared Chondrilla
juncea solution into pretreated garlic powder, an additional time of 2 h was allotted for the
temperature to be raised to 70 ◦C. The gradual change of color solution throughout the
reaction might indicate the conversion of copper and silver ions into nanoparticles. The
resulting materials were separated by filtration, washed many times with distilled water,
and dried at room temperature. Further, various analytical methods were employed to
examine the structure of the resulting nanocomposites. These materials were subsequently
utilized for the catalytic decomposition of naphthol blue black B and calmagite dyes.

2.4. Characterization Techniques

The studied materials were examined using a Perkin spectrum FTIR instrument (KSA).
The spectra were displayed from a range of 400 to 4000 cm−1, with a resolution equal
to 4 cm−1. A JEOL-5400 SEM (KSA) apparatus was used to evaluate the morphological
characteristics. For this, compounds were covered with Au using a vacuum coater with
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the goal to enhance both image and conductivity qualities. The voltage of accelerating
voltage was maintained at 20 kV. Thermal investigation was carried out in crucibles (Pt) in
air and heated at a rate equal to 10◦/min. Using a copper radiation source, the XRD-7000
SHIMADZU (KSA) (Kyoto, Japan) was employed to investigate X-ray diffraction patterns
of the samples. The diffraction angle (2θ) was between 10◦ and 90◦, the scanning speed was
2◦/min, and the voltage and current were 40 kV and 40 mA, respectively. TEM images were
obtained utilizing an 80 kV operated JEOL GEM-1010 transmission electron microscope
(Tokyo, Japan).

2.5. Catalytic Degradation Experiments

Catalytic experimentations were performed in Erlenmeyer flasks enclosing a mixture
of 20 mL of naphthol blue black B or calmagite and 0.01 g of garlic-CuO or garlic-AgO
nanocomposites and stirred at 150 rpm. A measured dose of H2O2 was then added to the
mixture. The pH of the solution was equal to 6, corresponding to the pH of the used water.
When the experiment was supposed to reach equilibrium, the content was filtered with a
filter paper. Then, absorbance of each colored solution was determined using a UV–Vis
spectrophotometer at λmax of 610 nm and 538 nm for naphthol blue black B or calmagite,
respectively. The experiments were also carried out at different H2O2 doses (0–14 mL/L),
contact times (0–10 min), temperatures (20–50 ◦C), and dye concentrations (10–50 mg/L).

3. Discussion of Results
3.1. FT-IR Exploration

The FT-IR spectra of garlic peel and prepared garlic-CuO and garlic-AgO nanocom-
posites are displayed in Figure 3. The extensive peaks observed in the region of
3310 to 3286 cm−1 are the stretching vibration peaks of –OH [37]. The absorption peaks
observed at 2919 and 2851 cm−1 are believed to be the stretching vibration peak of -CH in
methyl and methylene [38]. The peak at 1744–1736 cm−1 is attributed to the C=O group
present in hemicelluloses. The absorption peaks recorded at 1584–1607 cm−1 are attributed
to the stretching vibration of C=C aromatic groups of lignin. The absorption peaks at
1417 cm−1 and 1321 cm−1 correspond to the bending vibration of -CH2 [39]. The peak of
1122 cm−1 is assigned to the asymmetric stretching vibration of C-O-C in cellulose. The
absorption peak of 1017 cm−1 is attributed to the stretching vibration of the C-O group.
The β-D-glucoside bond in the cellulosic material is observed at 913 cm−1. The comparison
between the spectrum of the prepared garlic-CuO and garlic-AgO nanocomposites reveals
that the main peaks of the studied materials remain similar, with a slight chemical shift
during the chemical modification with silver nitrate and copper sulfate. For example, the
position of the hydroxyl groups shifts from 3326 cm−1 to 3286 cm−1. Such a shift suggests
that copper and silver ions interact with the garlic surface through the –OH groups. It
is also worth noting that the biomolecules naturally found in the biological extract of
Chondrilla juncea are able to reduce copper and silver ions into CuO and AgO nanoparticles.

3.2. Morphological Investigation

Figure 4 shows the SEM photos of garlic peel powders observed at different magnifi-
cations (×500 and ×1000) and the prepared garlic-CuO and garlic-AgO nanocomposites.
As observed, the SEM images of the starting cellulosic material show particles of var-
ied sizes and irregular shapes. After saturation with silver nitrate and copper sulfate
ions and synthesis of CuO and AgO nanoparticles, the surfaces of the materials become
rougher, and the particles are much more agglomerated, with greater swelling. Garlic-AgO
nanocomposites show very significant material surface changes compared with garlic-CuO
composites. Higher magnification (×5000) (Figure 5) of garlic-AgO images shows spherical
AgO nanoparticles that are clearly observed and fully distributed on the surface of the
garlic peel.
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3.3. XRD Data

Figure 6 gives the XRD patterns of garlic peel powders, garlic-CuO, and garlic-AgO
nanocomposites. As shown, the XRD data of the garlic peel powder display three diffraction
peaks at 2θ = 16.2◦, 22◦, and 32.4◦ which correspond to the (101), (002), and (040) crystal
planes, respectively. It is assigned to cellulose type I [40]. The strong diffraction peak, seen
at 2θ = 29.2◦, might be due to the presence of hemicellulose existing in cellulose [41]. Other
observed diffraction hyphen might be assigned to the presence of other non-cellulosic
constituents naturally existing in garlic peels. The three main diffraction peaks observed for
garlic peel powders are also observed in the XRD pattern of the garlic-CuO nanocomposite
but with slight shifting. They are observed at 2θ = 17.4◦, 21◦, and 32.6◦. The peak intensities
are significantly lower than that of garlic peel powders. The results show that, during the
incorporation of CuO nanoparticles into garlic powders, the crystal structure of cellulose
is changed. Moreover, the XRD pattern of the garlic-CuO nanocomposite exhibits the
appearance of new diffraction peaks observed at 2θ = 33.5◦, 35.9◦, 37◦, 38.4◦, 42◦, 45.1◦,
46.6◦, 51.8◦, 55◦, and 57.7◦, which are related to (1 1 0), (1 1 −1), (1 1 1), (2 0 −2), (1 1 2),
(2 0 2), (1 1 −3), (3 1 0), (1 1 3), and (2 2 1) planes of the CuO monoclinic phase (JCPDS
No: 98-009-2367). The presence of other peaks in the range 2θ = 30◦–38.4◦ proves the
formation of CuO [42]. The XRD reflections of 2θ at 30◦, 34.7◦, 38.3◦, 40◦, 43◦, 48.2◦, and
56◦ can be ascribed to the (1−1-11), (002), (111), (2−2-02), (102), (2−2-12), and (1−1-13)
crystallographic planes of monoclinic AgO (JCPDS No. 74-1750) [43].

3.4. TEM Images

TEM pictures of garlic-CuO and garlic-AgO nanocomposites reveal a spherical mor-
phology (Figure 7). The prepared nanoparticles generally demonstrate a spherical bent
structure. The overlap of the synthesized nanoparticles results in diverse patterns justified
by the presence of garlic peel powders as support to CuO and AgO nanoparticles. The
TEM results also agree with FT-IR, XRD, and SEM results.

3.5. Thermal Examination

TGA/DTG analysis is used to inspect the thermal strength of the studied compounds.
Figure 8 depicts the TGA/DTG curves of garlic peel powders, garlic-CuO, and garlic-AgO
nanocomposites. The thermal decomposition of garlic peel powders proceeds in different
pyrolysis steps due to many reaction steps. As observed, at an initial stage, thermal curves
show weight loss lower than 10% at 66 ◦C, 61.4 ◦C, and 63.1 ◦C for garlic powders, garlic-CuO,
and garlic-AgO, respectively. This first weight loss is attributed to moisture evaporation and
absorbed water in hydrophilic natural products [44]. The residual mass, achieved at 799.6 ◦C,
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is equal to 13.52 ◦C for garlic powders. The DTG curve of garlic powders reveals a series
of thermal events observed at 136.5 ◦C, 249.5 ◦C, 305.4 ◦C, 457.9 ◦C, and 643.1 ◦C, which
could be related to the essential pyrolytic reaction of cellulose and also the oxidation of the
burned residues. The thermal events of garlic-CuO nanocomposites reveal that the residual
mass, reached at 799.6 ◦C, is equal to 29.72 ◦C. The DTG curve of garlic-CuO nanocomposites
shows a series of thermal decompositions observed at 189.5 ◦C, 281.6 ◦C, 316.8 ◦C, and 403.9
◦C. However, the thermal events of garlic-AgO nanocomposites exhibit that the residual
mass, reached at 799.6 ◦C, is equal to 14.87 ◦C. The DTA curve of garlic-AgO nanocomposites
shows only one thermal decomposition observed at 251.2 ◦C. Indeed, the highest residual
mass values observed for the prepared nanocomposites prove the formation of metal oxide
nanoparticles. In addition, the thermal events prove that the prepared nanocomposites are
thermally less stable than the garlic peel powders. Such a transformation in thermal results
ensures again the chemical change in garlic powders. This change in thermal degradation
after in situ synthesis of metal oxide nanoparticles indicates that the incorporation of CuO
and AgO onto the surface of garlic affects the thermal behavior of the resulting materials. A
different structure of garlic peel powder could be arranged. Possibly, the establishment of
new bonds could faintly disturb the thermal stability of the studied material.
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sites reveal that the residual mass, reached at 799.6 °C, is equal to 29.72 °C. The DTG curve 
of garlic-CuO nanocomposites shows a series of thermal decompositions observed at 189.5 
°C, 281.6 °C, 316.8 °C, and 403.9 °C. However, the thermal events of garlic-AgO nanocom-
posites exhibit that the residual mass, reached at 799.6 °C, is equal to 14.87 °C. The DTA 
curve of garlic-AgO nanocomposites shows only one thermal decomposition observed at 
251.2 °C. Indeed, the highest residual mass values observed for the prepared nanocompo-
sites prove the formation of metal oxide nanoparticles. In addition, the thermal events 
prove that the prepared nanocomposites are thermally less stable than the garlic peel pow-
ders. Such a transformation in thermal results ensures again the chemical change in garlic 
powders. This change in thermal degradation after in situ synthesis of metal oxide nano-
particles indicates that the incorporation of CuO and AgO onto the surface of garlic affects 
the thermal behavior of the resulting materials. A different structure of garlic peel powder 
could be arranged. Possibly, the establishment of new bonds could faintly disturb the 
thermal stability of the studied material. 

Figure 7. TEM pictures of (a) garlic-CuO and (b) garlic-AgO nanocomposites.
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3.6. Degradation of Dye Solutions
3.6.1. Effect of Experimental Conditions

In this section, we discuss the influence of time of reaction, dye concentrations, and bath
temperature on the degradation of naphthol blue black B and calmagite using the two binary
garlic-CuO/H2O2 and garlic-AgO/H2O2 systems. Initially, we observe that naphthol and
calmagite solutions are stable in the presence of H2O2 and no decolorization is shown. In
addition, the adsorption of the two studied dyes onto nanocomposites alone is too small.
However, after the addition of H2O2 into the dye solutions, the decolorization occurs in just a
few minutes. Figure 9 gives the impact of the reaction time on the decolorization of naphthol
and calmagite solutions. As observed, the decolorization yield of calmagite is equal to 98% in
the garlic-CuO/H2O2 system after 10 min of reaction. However, the decolorization yield of
naphthol is equal to 82% in the garlic-CuO/H2O2 system. This variation in the decolorization
process between the two studied dyes is justified by the number of azo groups present in
each dye structure and the difference in the molecular weight. Indeed, the highest yield of
dye degradation is reached using the garlic-CuO nanocomposite. This might be related to
the power of metal oxide itself. Overall, the highest degradation yields obtained within the
prepared nanocomposites are explained by the combination of the radical OH• and garlic-
CuO or garlic-AgO to break the azo groups, chromophoric groups of calmagite, and naphthol
molecules. The maximum yield of decolorization is achieved using an amount of H2O2 equal
to 10 mL/L. A high amount of H2O2 (14 mL/L) decreases the yield of decolorization. In
fact, the accumulation of high amounts of oxidant into the solution undergoes self-quenching
(scavenger) of OH• to yield HO2• radicals [45–47].
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Figure 9. Effect of H2O2 on the catalytic degradation of calmagite and naphthol (T = 20 ◦C, pH = 6,
C0 = 30 mg/L) solutions in the presence of garlic-CuO and garlic-AgO nanocomposites.

The efficiency of garlic-CuO and garlic-AgO nanocomposites/H2O2 to decolorize
calmagite and naphthol solutions is also studied by varying the initial dye concentrations
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from 10 mg/L to 50 mg/L (Figure 10), while maintaining constant the amount of H2O2 at
8 mL/L. Results indicate that the decolorization yield decreases with the increase in initial
dye concentrations. This indicates that there is only one optimum dose of H2O2 for every
single initial dye concentration. As shown in Figure 11, the decolorization yield of the two
studied solutions increases with the increase in bath temperature from 20 ◦C to 50 ◦C. This
result proves that the degradation process is favored at high energies.
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Figure 10. Effect of initial concentrations of calmagite and naphthol solutions (T = 20 ◦C, pH = 6,
H2O2 = 10 mL/L) on catalytic degradation in the presence of garlic-CuO and garlic-AgO nanocomposites.

3.6.2. Kinetic and Thermodynamic Investigations

In this study, 0th-order, 1st-order, and 2nd-order kinetic equations are used to better
apprehend the decolorization process of calmagite and naphthol using garlic-CuO and
garlic-AgO nanocomposites as catalysts. The expressions of the used kinetic equations are
given in the following equations [48]:

Ct = C0 − k0t (1)

Ct = C0e−k1t (2)

1
Ct

=
1

C0
+ K2t (3)

where C0 is the initial dye concentration, Ct is the concentration at time t, k0–2 are the
apparent kinetic rate constants of 0th-, 1st- and 2nd-order kinetic equations, respectively.
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Figure 11. Effect of temperature on the catalytic degradation of calmagite and naphthol solutions (pH = 6,
C0 = 30 mg/L, H2O2 = 10 mL/L) in the presence of garlic-CuO and garlic-AgO nanocomposites.

When the values of Ct, Ln Ct/C0, and 1/Ct are plotted vs. the time of reaction
under the conducted conditions (H2O2 dose, temperature, and initial dye concentrations)
(Figures 12 and 13), the kinetic rate constants and regression coefficients are deduced. The
values of the regression coefficients (R2) (Tables 1 and 2) vary from 0.90 to 0.99 for the
2nd-order reaction kinetic, which are much higher than those determined for both 0th-order
(0.47 < R2 < 0.78) and 1st-order (0.25 < R2 < 0.87) kinetic equations. Based on the obtained
results, we can conclude that the decolorization of calmagite solution using garlic-CuO and
garlic-AgO nanocomposites/H2O2 fits well to the 2nd-order reaction model.
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Figure 12. (a) Arrhenius plot and (b) plot of Ln (K2/T) vs. 1/T for calmagite and naphthol degradation
using garlic-CuO nanocomposites.
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Ea values calculated for garlic-CuO nanocomposite are equal to18.44 kJ mol−1 and 
23.28 kJ mol−1 for calmagite and naphthol solutions, respectively (Figures 12 and 13). How-
ever, Ea values calculated for garlic-AgO nanocomposite are equal to 50.01 kJ mol−1 and 
12.44 kJ mol−1 for calmagite and naphthol solutions, respectively. The calculated low Ea 
values suggest that the prepared nanocomposites are efficient for the degradation of cal-
magite and naphthol solutions. It is noteworthy to clarify that the calculated Ea values are 
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4. Conclusions 
In summary, Chondrilla juncea was used as a biological extract to prepare stable CuO 

and AgO nanoparticles into garlic peel powders. The evidence of the formation of garlic-
CuO and garlic-AgO nanocomposites was confirmed using FTIR, XRD, SEM, TEM, and 
TGA/DTG analyses. CuO and AgO nanoparticles were well distributed on the surface of 
the garlic peel. The incorporation of CuO and AgO nanoparticles affected the crystal struc-
ture of garlic peel. The thermal events confirmed that the prepared nanocomposites were 
thermally less stable compared with garlic peel powders, confirming again the incorpora-
tion of nanoparticles. The catalytic degradation experiments were assessed for naphthol 
blue black B and calmagite dye solutions. The decolorization mechanism depended on 
several experimental parameters such as amount of H2O2, initial dye concentration, time 
of contact, and bath temperature. The activation energy (Ea) values calculated for garlic-
CuO nanocomposite were equal to 18.44 kJ mol−1 and 23.28 kJ mol−1 for calmagite and 
naphthol solutions, respectively. However, those calculated for garlic-AgO nanocompo-
site were found to be 50.01 kJ mol−1 and 12.44 kJ mol−1 for calmagite and naphthol, respec-
tively. The calculated low Ea values suggested that the prepared nanocomposites could 
be used as efficient catalysts for the catalytic degradation of azo dye solutions. Further 
experiments will be extended for the preparation of new nanocomposite-based natural 
products for water remediation. Other toxic pollutants will be investigated including met-
als, phenolic compounds, pesticides, etc. 
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Table 1. Kinetic rates and thermodynamic parameters calculated during degradation of calmagite
using garlic-CuO nanocomposite/H2O2.

Parameters
0th-Order 1st-Order 2nd-Order

k0 R2 k1 R2 k2 R2

H2O2 amount (mL)

2 0.11 0.75 0.27 0.87 0.69 0.97

5 0.099 0.52 0.33 0.50 0.86 0.95

8 0.10 0.52 0.36 0.53 1.17 0.96

10 0.101 0.50 0.47 0.52 3.20 0.96

Calmagite concentration (mg/L)

10 0.104 0.50 0.58 0.74 9.20 0.96

30 0.101 0.50 0.47 0.52 3.20 0.96

50 0.09 0.53 0.25 0.35 0.37 0.90

Temperature (◦C)

20 0.101 0.50 0.47 0.52 3.20 0.96

40 0.102 0.51 0.52 0.56 4.58 0.98

50 0.103 0.47 0.56 0.55 6.70 0.96

Thermodynamic parameters

Temperature (◦C) Ea (kJ/mol) ∆S* (J/mol/K) ∆H* (kJ/mol) ∆G* (kJ/mol)

20
18.44 −0.18 15.89

68.96

40 72.85

50 74.40

Table 2. Kinetic rates and thermodynamic parameters calculated during degradation of naphthol
using garlic-CuO nanocomposite/H2O2.

Parameters
0th-Order 1st-Order 2nd-Order

k0 R2 k1 R2 k2 R2

H2O2 amount (mL)

2 0.102 0.78 0.15 0.83 0.16 0.98

5 0.109 0.75 0.18 0.83 0.29 0.99

8 0.09 0.71 0.20 0.78 0.23 0.99
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Table 2. Cont.

Parameters
0th-Order 1st-Order 2nd-Order

k0 R2 k1 R2 k2 R2

10 0.093 0.64 0.21 0.65 0.30 0.96

Naphthol concentration (mg/L)

10 0.012 0.74 0.58 0.74 9.17 0.97

30 0.093 0.64 0.21 0.65 0.30 0.96

50 0.104 0.53 0.25 0.35 0.40 0.90

Temperature (◦C)

20 0.093 0.64 0.21 0.65 0.30 0.96

40 0.109 0.57 0.25 0.54 0.40 0.94

50 0.114 0.53 0.33 0.52 0.80 0.95

Thermodynamic parameters

Temperature (◦C) Ea (kJ/mol) ∆S* (J/mol/K) ∆H* (kJ/mol) ∆G* (kJ/mol)

20
23.28 −0.19 20.74

74.84

40 78.53

50 80.38

The apparent rate constants, calculated at different temperatures, allow us to calculate
entropy, activation energy, enthalpy, and free energy.

The values of the activation energies of the reaction, Ea (kJ mol−1), are calculated
according to the Arrhenius law [49]:

K = Ae−( Ea
RT ) (4)

where A is the Arrhenius factor, T is the temperature, R is the gas constant (J K−1 mol−1),
and K is the calculated constant kinetic rate.

The values of ∆S* (J mol−1 K−1) and ∆H* (kJ mol−1) are determined using the Eyring
formula: [50]:

Ln
(

K
T

)
= Ln

(
Kb
h

)
+

∆S◦

R
− ∆H◦

RT
(5)

where Kb is the Boltzmann constant and h is the Plank constant.
Ln K2 values are plotted vs. 1/T values. Then, gradients of the plots are used to define

activation energy (Figures 12a and 13a). However, activation enthalpy and entropy values
are calculated using Ln (K2/T) plots vs. 1/T (Figures 12b and 13b). Finally, activation
energy (kJ mol−1) is calculated from Equation (6):

∆G0= ∆H0− T.∆S0 (6)

The negative values of entropy of the system indicate the fall of the disorder dur-
ing dye degradation, while the positive values of the enthalpy prove that the studied
system is endothermic, which is consistent with the increase in decolorization when the
temperature increases.

Ea values calculated for garlic-CuO nanocomposite are equal to18.44 kJ mol−1 and
23.28 kJ mol−1 for calmagite and naphthol solutions, respectively (Figures 12 and 13).
However, Ea values calculated for garlic-AgO nanocomposite are equal to 50.01 kJ mol−1

and 12.44 kJ mol−1 for calmagite and naphthol solutions, respectively. The calculated low
Ea values suggest that the prepared nanocomposites are efficient for the degradation of
calmagite and naphthol solutions. It is noteworthy to clarify that the calculated Ea values
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are comparable to results reached using some other prepared compound-based catalysts for
the degradation of different organic molecules investigated in the literature [23,31,51–56].

4. Conclusions

In summary, Chondrilla juncea was used as a biological extract to prepare stable CuO
and AgO nanoparticles into garlic peel powders. The evidence of the formation of garlic-
CuO and garlic-AgO nanocomposites was confirmed using FTIR, XRD, SEM, TEM, and
TGA/DTG analyses. CuO and AgO nanoparticles were well distributed on the surface of
the garlic peel. The incorporation of CuO and AgO nanoparticles affected the crystal struc-
ture of garlic peel. The thermal events confirmed that the prepared nanocomposites were
thermally less stable compared with garlic peel powders, confirming again the incorpora-
tion of nanoparticles. The catalytic degradation experiments were assessed for naphthol
blue black B and calmagite dye solutions. The decolorization mechanism depended on
several experimental parameters such as amount of H2O2, initial dye concentration, time of
contact, and bath temperature. The activation energy (Ea) values calculated for garlic-CuO
nanocomposite were equal to 18.44 kJ mol−1 and 23.28 kJ mol−1 for calmagite and naphthol
solutions, respectively. However, those calculated for garlic-AgO nanocomposite were
found to be 50.01 kJ mol−1 and 12.44 kJ mol−1 for calmagite and naphthol, respectively.
The calculated low Ea values suggested that the prepared nanocomposites could be used
as efficient catalysts for the catalytic degradation of azo dye solutions. Further experiments
will be extended for the preparation of new nanocomposite-based natural products for
water remediation. Other toxic pollutants will be investigated including metals, phenolic
compounds, pesticides, etc.
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