Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Instrumentation
2.3. Experimental
2.3.1. Preparation of Amino-Functionalized Mesoporous Silica Spheres (AMS)
2.3.2. Preparation of Xanthosoma Sagittifolium Leaves (XSL)
2.3.3. Preparation of Epoxy/AMS Nanocomposite Coatings with and without Biomimetic Structure
2.4. Experimental Methods of Electrochemical and Corrosion Properties
2.5. Antibacterial Adhesion/Growth Experiment
2.5.1. Observation of Bacterial Adhesion via SEM
2.5.2. Crystal Violet Staining
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization and Property Analysis of Mesoporous Materials Prepared via the Non-Surfactant Templating Method
3.1.1. Microscopic Morphology of AMS
3.1.2. Chemical Structure Identification and Analysis of Mesoporous Material (AMS)
3.1.3. BET Analysis of Mesoporous Properties
3.2. The Identification and Application of the Epoxy Resin/Silica Mesoporous Composite with a Structure Biomimetic of the XSF Surface
Fourier Transform Infrared Spectra Analysis of Epoxy Resin
3.3. Observation of Surface Morphology of Biomimetic Epoxy/Silica Mesoporous Composites
3.4. Static and Dynamic Contact Angle Measurements and Analysis
3.5. Corrosion Protection Application Testing
3.5.1. Electrochemical Potentiodynamic Testing
3.5.2. Electrochemical Impedance Testing
3.6. Inhibition of Biofilm Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.Y.; Tian, W.; Ye, Y.H.; Chen, Y.; Wu, W.J.; Jiang, S.H.; Wang, Y.L.; Han, X.S. Surface modifications towards superhydrophobic wood-based composites: Construction strategies, functionalization, and perspectives. Adv. Colloid Interface Sci. 2024, 326, 103142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J.; Mo, J.; Sun, R.; Li, Z.; Guo, Z. Fabrication of superhydrophobic aluminum surface by droplet etching and chemical modification. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 205–212. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Zhang, J. Bioinspired one step hydrothermal fabricated superhydrophobic aluminum alloy with favorable corrosion resistance. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124469. [Google Scholar] [CrossRef]
- Mirzadeh, M.; Dehghani, K.; Rezaei, M.; Mahidashti, Z. Effect of stearic acid as a low cost and green material on the self-cleaning and anti-corrosion behavior of anodized titanium. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123971. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Tian, Y. Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 205–212. [Google Scholar] [CrossRef]
- Fan, Y.; Li, C.; Chen, Z.; Chen, H. Study on fabrication of the superhydrophobic sol–gel films based on copper wafer and its anti-corrosive properties. Appl. Surf. Sci. 2012, 258, 6531–6536. [Google Scholar] [CrossRef]
- Qing, Y.; Long, C.; An, K.; Hu, C.; Liu, C. Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances. J. Colloid Interface Sci. 2019, 548, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tang, Y.; Zhao, K.; Zhang, Q. Superhydrophobic SiO2 micro/nanofibrous membranes with porous surface prepared by freeze electrospinning for oil adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 356–361. [Google Scholar] [CrossRef]
- Weng, C.J.; Chang, C.H.; Peng, C.W.; Chen, S.W.; Yeh, J.M.; Wei, Y. Advanced anticorrosive coatings prepared from the mimicked Xanthosoma sagittifolium-leaf like electroactive epoxy with synergistic effect of super-hydrophobicity and redox catalytic capability. Chem. Mater. 2011, 23, 2075–2083. [Google Scholar] [CrossRef]
- Yang, T.I.; Peng, C.W.; Lin, Y.L.; Weng, C.J.; Edgington, G.; Mylonakis, A.; Huang, T.C.; Hsu, C.H.; Yeh, J.M.; Wei, Y. Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multi-scale structures mimicking the surface of Xanthosoma sagittifolium leaf. J. Mater. Chem. 2012, 22, 15845–15852. [Google Scholar] [CrossRef]
- Peng, C.W.; Chang, K.C.; Weng, C.J.; Chang, C.H.; Hsu, C.H.; Li, P.L.; Hsu, C.L.; Yeh, J.M. UV-curable nanocasting technique to prepare advanced anticorrosive coatings with bio-mimicked leaf-like non-fluorinated super-hydrophobic polymeric surfaces. Polym. Chem. 2013, 4, 926–932. [Google Scholar] [CrossRef]
- Hwang, J.J.; Wu, C.Y.; Hung, Y.H.; Li, M.X.; Luo, K.H.; Jia, H.W.; Balitaan, J.N.I.; Lin, S.R.; Yeh, J.M. Biomimetic PMMA coating surface and its application on inhibition of bacterial attachment and anti-biofilm performance. Surf. Interfaces 2023, 36, 102548. [Google Scholar] [CrossRef]
- Cao, Y.; Jana, S.; Bowen, L.; Tan, X.; Liu, H.; Rostami, N.; Brown, J.; Jakubovics, N.S.; Chen, J. Hierarchical rose petal surfaces delay the early-stage bacterial biofilm growth. Langmuir 2019, 35, 14670–14680. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.W.; Chen, X.Y.; Tsai, W.P.; Lee, M. Inhibition of biofilm formation by rough shark skin-patterned surfaces. Colloids Surf. B Biointerfaces 2020, 186, 110738. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.M.; Weng, C.J.; Chien, C.M.; Chuang, T.L.; Lee, T.Y.; Yeh, J.M.; Wei, Y. Polyaniline/carbon nanotube nanocomposite electrode with biomimetic hierarchical structure for supercapacitor. J. Mater. Chem. A 2013, 1, 14719–14728. [Google Scholar] [CrossRef]
- Chang, C.M.; Hu, Z.H.; Lee, T.Y.; Hang, Y.A.; Ji, W.F.; Liu, W.R.; Yeh, J.M.; Wei, Y. Bio-templated hierarchical polyaniline composite electrode with high performance for flexible supercapacitors. J. Mater. Chem. A 2016, 4, 9133–9145. [Google Scholar] [CrossRef]
- Ji, W.F.; Ahmed, M.M.M.; Bibi, A.; Chen, G.Y.; Lee, Y.C.; Yeh, J.M. Bio-inspired graphene-based PANI composite coatings with fine-tunable hierarchical structures prepared from photo-/colloidal- lithography technology for super-capacitor application. Electrochim. Acta 2021, 390, 138890. [Google Scholar] [CrossRef]
- Hsu, C.H.; Huang, T.Y.; Chen, R.D.; Liu, Y.X.; Chin, T.Y.; Chen-Yang, Y.W.; Yeh, J.M. Biomolding technique to fabricate the hierarchical topographical scaffold of POMA to enhance the differention of neural stem cells. ACS Biomater. Sci. Eng. 2017, 3, 1527–1534. [Google Scholar] [CrossRef]
- Kang, L.H.; Chang, P.Y.; Yeh, J.M.; Tsai, M.H.; Yang, T.I.; Ma, D.L.; Ko, C.J.; Tseng, I.H. Biomimetic polyimide-supported cuprous oxide photocatalytic film with tunable hydrophobicity, improved thermal stability, and photocatalytic activity toward CO2 reduction. ACS Omega 2019, 4, 1636–1644. [Google Scholar]
- Tseng, I.H.; Liu, Z.C.; Chang, P.Y. Bio-friendly titania-grafted chitosan film with biomimetic surface structure for photocatalytic application. Carbohydr. Polym. 2020, 230, 115584. [Google Scholar] [CrossRef]
- Luo, K.H.; Hung, Y.H.; Bibi, A.; Li, Y.M.; Hu, C.; Yeh, J.M. Nanocasting technique for imprinting a natural leaf pattern on biomimetic polyaniline to yield an artificial hierarchical surface structure for gas sensing. Sens. Actuators B Chem. 2024, 401, 135000. [Google Scholar] [CrossRef]
- Rao, A.V.; Latthe, S.S.; Mahadik, S.A.; Kappenstein, C. Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate. Appl. Surf. Sci. 2011, 257, 5772–5776. [Google Scholar] [CrossRef]
- Albert, E.; Cotolan, N.; Nagy, N.; Sáfrán, G.; Szabó, G.; Muresan, L.-M.; Hórvölgyi, Z. Mesoporous silica coatings with improved corrosion protection properties. Microporous Mesoporous Mater. 2015, 206, 102–113. [Google Scholar] [CrossRef]
- Volentiru, E.; Nyari, M.; Szabo, G.; Horvolgyi, Z.; Muresan, L.M. Silica sol–gel protective coatings against corrosion of zinc substrates. Period. Polytech. Chem. 2014, 58, 61–66. [Google Scholar] [CrossRef]
- Changjean, W.C.; Huang, L.Y.; Liu, P.Y.; Tsai, T.C. Repairable mesoporous silica film with replenishing corrosion inhibitor as corrosion protection layer of aluminum alloy. Micropor. Mesopor. Mater. 2014, 192, 82–88. [Google Scholar] [CrossRef]
- Borisova, D.; Mohwald, H.; Shchukin, D.G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 2011, 5, 1939–1946. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Zhang, M.N.; Zhou, R.F.; Han, X.S.; Wang, J.B. The Fluorescence Property and Thermal Stability of SrAl2O4: Eu2+, Dy3+/Silicone Rubber Composites. J. Macromol. Sci. Part B 2024, 63, 123–134. [Google Scholar]
- Wei, Y.; Jin, D.; Ding, T.; Shih, W.-H.; Liu, X.; Cheng, S.Z.D.; Qiang, F. A Non-surfactant Templating Route to Mesoporous Silica Materials. Adv. Mater. 1998, 3, 313–316. [Google Scholar] [CrossRef]
- Huang, K.Y.; Weng, C.-J.; Huang, L.T.; Cheng, T.H.; Wei, Y.; Yeh, J.M. Systematically comparative studies on the preparation and physical properties of PMMA–silica mesocomposite and nanocomposite membranes. Micropor. Mesopor. Mater. 2010, 131, 192–203. [Google Scholar] [CrossRef]
- Mostovoi, A.S.; Kurbatova, E.A. Controlling the properties of epoxy composites filled with brick dust. Russ. J. Appl. Chem. 2017, 90, 267–276. [Google Scholar] [CrossRef]
- Amirbeygi, H.; Khosravi, H.; Tohidlou, E. Reinforcing effects of aminosilane-functionalized graphene on the tribological and mechanical behaviors of epoxy nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47410. [Google Scholar] [CrossRef]
- Hameed, A.; Islam, M.; Ahmad, I.; Mahmood, N.; Saeed, S.; Javed, H. Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polymer Compos. 2015, 36, 1891–1898. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Yan, M.S.; Luo, K.-H.; Wei, Y.; Yeh, J.-M. Comparative Studies of the Dielectric Properties of Polyester Imide Composite Membranes Containing Hydrophilic and Hydrophobic Mesoporous Silica Particles. Materials 2023, 16, 140. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Full Name of Sample | DGEBA (g) | T-403 (g) | DMAc (g) | Silica | Silica Loading(g) | AMS (wt%) |
---|---|---|---|---|---|---|---|
EP | Epoxy resin | 1 | 0.424 | 1.256 | -- | 0 | 0 |
EAMS1 | Epoxy/amino-modified mesoporous silica nanocomposite | 1 | 0.424 | 1.256 | AMS | 0.05 | 1 |
EAMS2 | 1 | 0.424 | 1.256 | AMS | 0.10 | 2 | |
EAMS3 | 1 | 0.424 | 1.256 | AMS | 0.15 | 3 | |
BEP | Biomimetic Epoxy | 1 | 0.424 | 1.256 | -- | 0 | 0 |
BEAMS3 | Biomimetic Epoxy/amino-modified mesoporous silica nanocomposite | 1 | 0.424 | 1.256 | AMS | 0.15 | 3 |
Sample Code | Receding Angle (θR) | Static Contact Angle (θ) | Advancing Angles (θA) | Hysteresis (H) |
---|---|---|---|---|
XSF Leaf | 130.87° ± 0.2 | |||
EP | 66.90° | 69.27° ± 0.2 | 71.53° | 4.63° |
EAMS1 | 70.75° | 78.90° ± 0.1 | 83.67° | 12.92° |
EAMS2 | 67.94° | 81.18° ± 2.5 | 83.31° | 15.36° |
EAMS3 | 82.56° | 91.67° ± 0.5 | 104.99° | 22.43° |
BEP | 115.33° | 134.85° ± 0.4 | 14.42° | 27.09° |
BEAMS3 | 123.24° | 152.86° ± 0.3 | 154.46° | 31.22° |
Sample Code | Electrochemical Corrosion Measurements | PEF (%) | Electrochemical Impedance | Thickness (μm) | ||||
---|---|---|---|---|---|---|---|---|
Ecorr (mV) | Rp (KΩcm2) | Icorr (μA/cm2) | Rcorr (m/Year) | Z’ (Ω) | log Z (Ω) | |||
CRS | −767.21 | 82.8 | 0.3256 | 3.784 | - | 27.48 | 1.41 | - |
EP | −639.39 | 349 | 0.0092 | 0.107 | 97.17% | 3.67 × 105 | 5.38 | 92 ± 1.4 |
EAMS1 | −594.57 | 3185 | 0.0009 | 0.011 | 99.72% | 2.79 × 106 | 5.77 | 92 ± 0.7 |
EAMS2 | −590.56 | 3295 | 0.0007 | 0.009 | 99.77% | 4.32 × 106 | 5.92 | 94 ± 2.1 |
EAMS3 | −583.09 | 6316 | 0.0005 | 0.006 | 99.84% | 5.33 × 106 | 5.97 | 93 ± 1.4 |
BEP | −556.39 | 14,655 | 0.0003 | 0.004 | 99.90% | 5.81 × 106 | 5.98 | 95 ± 1.3 |
BEAMS3 | −542.19 | 20,292 | 0.0001 | 0.002 | 99.95% | 8.66 × 106 | 6.00 | 97 ± 2.3 |
S. aureus | E. coli | |||
---|---|---|---|---|
Sample | 1 Day | 7 Day | 1 Day | 7 Day |
EP | - | - | - | - |
EAMS3 | 11.2% | 32.6% | 35.1% | 55.9% |
BEP | 22.2% | 62.3% | 56.0% | 71.7% |
BEAMS3 | 25.8% | 68.6% | 70.5% | 82.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.-J.; Chen, P.-Y.; Luo, K.-H.; Wang, Y.-C.; Lai, T.-Y.; Balitaan, J.N.I.; Lin, S.-R.; Yeh, J.-M. Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings. Polymers 2024, 16, 1673. https://doi.org/10.3390/polym16121673
Hwang J-J, Chen P-Y, Luo K-H, Wang Y-C, Lai T-Y, Balitaan JNI, Lin S-R, Yeh J-M. Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings. Polymers. 2024; 16(12):1673. https://doi.org/10.3390/polym16121673
Chicago/Turabian StyleHwang, Jiunn-Jer, Pei-Yu Chen, Kun-Hao Luo, Yung-Chin Wang, Ting-Ying Lai, Jolleen Natalie I. Balitaan, Shu-Rung Lin, and Jui-Ming Yeh. 2024. "Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings" Polymers 16, no. 12: 1673. https://doi.org/10.3390/polym16121673
APA StyleHwang, J. -J., Chen, P. -Y., Luo, K. -H., Wang, Y. -C., Lai, T. -Y., Balitaan, J. N. I., Lin, S. -R., & Yeh, J. -M. (2024). Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings. Polymers, 16(12), 1673. https://doi.org/10.3390/polym16121673