
Citation: Wei, L.; Hu, J.; Wang, J.; Wu,

H.; Li, K. Theoretical Analysis of

Light-Actuated Self-Sliding Mass on a

Circular Track Facilitated by a Liquid

Crystal Elastomer Fiber. Polymers

2024, 16, 1696. https://doi.org/

10.3390/polym16121696

Academic Editors: Vineet Kumar and

Md Najib Alam

Received: 12 May 2024

Revised: 6 June 2024

Accepted: 11 June 2024

Published: 14 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Theoretical Analysis of Light-Actuated Self-Sliding Mass on a
Circular Track Facilitated by a Liquid Crystal Elastomer Fiber
Lu Wei, Junjie Hu, Jiale Wang, Haiyang Wu and Kai Li *

School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; weilu@ahjzu.edu.cn (L.W.);
13966837296@163.com (J.H.); wjl1230504@163.com (J.W.); hywu@stu.ahjzu.edu.cn (H.W.)
* Correspondence: kli@ahjzu.edu.cn

Abstract: Self-vibrating systems obtaining energy from their surroundings to sustain motion can
offer great potential in micro-robots, biomedicine, radar systems, and amusement equipment owing
to their adaptability, efficiency, and sustainability. However, there is a growing need for simpler,
faster-responding, and easier-to-control systems. In the study, we theoretically present an advanced
light-actuated liquid crystal elastomer (LCE) fiber–mass system which can initiate self-sliding motion
along a rigid circular track under constant light exposure. Based on an LCE dynamic model and
the theorem of angular momentum, the equations for dynamic control of the system are deduced
to investigate the dynamic behavior of self-sliding. Numerical analyses show that the theoretical
LCE fiber–mass system operates in two distinct states: a static state and a self-sliding state. The
impact of various dimensionless variables on the self-sliding amplitude and frequency is further
investigated, specifically considering variables like light intensity, initial tangential velocity, the angle
of the non-illuminated zone, and the inherent properties of the LCE material. For every increment of
π/180 in the amplitude, the elastic coefficient increases by 0.25% and the angle of the non-illuminated
zone by 1.63%, while the light intensity contributes to a 20.88% increase. Our findings reveal that,
under constant light exposure, the mass element exhibits a robust self-sliding response, indicating
its potential for use in energy harvesting and other applications that require sustained periodic
motion. Additionally, this system can be extended to other non-circular curved tracks, highlighting
its adaptability and versatility.

Keywords: self-sliding; liquid crystal elastomer; light-actuated; sliding mass; curved track

1. Introduction

Self-vibration exists widely in natural phenomena and engineering applications [1–3].
It is a phenomenon wherein the system changes periodically under consistent external stim-
uli [4–6], equivalent to stimulation, controlling the phase of the movement. A self-vibrating
system typically comprises vibrating elements, reliable energy sources and mechanisms
for feedback control [7,8]. In particular, self-vibration is a steady-state cycle movement
maintained by the system itself, which means that it can be sustained without the external
force of periodic change [9]. This is why it is fundamentally different from forced vibration;
hence, self-actuated vibration merits in-depth investigation [10–12]. Self-actuated vibration
has varied positive aspects, namely, self-actuated vibration is capable of constantly main-
taining periodic motion without periodic external stimuli and additional manual control
components [13,14], which greatly reduces the requirements for system motion regulation,
eliminating the necessity of designing intricate control systems [15–17]. Furthermore, this
characteristic enables the control system to directly draw energy from a consistent external
source to sustain periodic motion [3–5]. The self-vibration phenomenon exists in many
fields, for instance, non-linear friction inspirational self-vibration [2], steering wheel vibra-
tion [11], rotor vortex [18], fluid incentive tremor [13], fluid electromagnetic vibration [19],
chemical reaction system vibration [9], and similar instances.
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In recent years, significant advancements have been achieved in the research on self-
vibration systems, among which, active material-based self-vibration systems have attracted
widespread research interest [20–24]. Active materials can respond to various external
stimuli to undergo deformation and movement, such as light [2,3], heat [1], electricity [6],
magnetism [19,23], etc. Light stands out among the various stimuli due to its distinct
advantages, including environmental friendliness [25–27], precise controllability, contact-
free nature, repeatability, and multifunctionality. In addition, with the intention of upsetting
the system’s equilibrium, advanced feedback systems have been established for energy
compensation [6,9]. This disturbance prompts a steady and enduring response from the
active material, subsequently leading to self-vibration. Examples of such systems include
the self-adjusting shading device [28], the integration of large-scale deformation with
chemical reactions [9], the connection of fluid evaporation and structural deformation [29],
and gradients in surface tension due to photothermal heating [30,31]. The active materials
that have the potential to produce self-actuated vibration phenomena include, but are not
restricted to, hydrophilic polymer gel [32,33], ionic polymer gel [34], and liquid crystal
elastomers (LCEs) [35–37].

Among these numerous active materials, LCEs are a Liquid Crystal Polymer material
synthesized through the cross-linking of liquid crystal monomer molecules. When syn-
thesizing liquid crystal elastomers, different intermediate molecules can be introduced to
create different types of LCEs, providing them with the ability to react to multiple external
triggers, including light [38], heat [39,40], electricity [41], magnetism [33], and so forth.
LCE materials generally have numerous advantages, such as a rapid deformation response,
recoverable deformation, and no noise [42–44]. Compared with other active materials cate-
gories, these materials have distinctive advantages, such as wireless non-contact driving, a
lightweight structural design, and a reduced environmental impact [45,46]. Considering
the advantageous characteristics of light, there is a wide range of self-vibrating systems
enabled by light-actuated liquid crystal elastomers (LCEs), encompassing actions like bend-
ing [47,48], synchronization [49], rolling [50,51], shuttling [52], jumping [31], flying [53],
floating [16], swimming [22], spinning [54], chaos [55,56], and various other self-vibration
mechanisms. Light-responsive LCEs exhibit extensive applicability and broad prospects in
the fields of micro robots [57–59], biomimetic soft robots [60–63], biomedicine [64], and en-
ergy harvesting [65], due to their reversible contraction [66] and relaxation properties [67,68]
under light stimuli.

There have been many studies on self-vibration based on liquid crystal elastomers,
especially the self-vibration mode. However, the diversity of self-vibration modes is not
sufficient, and the construction of self-vibration systems is not systematic, which limits the
application of self-vibration phenomena in many fields, such as energy harvesting, soft
robots, medical equipment, amusement equipment and micro nano devices. In summary, it
is imperative to fabricate additional LCE self-vibration structures which exhibit simplicity,
controllability, and integrability. In light of this, the paper creatively proposes the LCE
fiber–sliding mass system, which consists of a light-actuated LCE fiber, a sliding mass, and
a rigid circular track, and investigates several critical aspects, including the conditions for
obtaining self-sliding modes, the dynamic mechanisms underlying self-sliding, and the
influence of system dimensionless variables on self-sliding modes, amplitudes, and periods.
Compared with previous self-oscillating systems, the proposed system features a simplified
structure, rapid response, high controllability, and multifunctionality. Importantly, the
system’s adaptability extends beyond circular tracks, accommodating a range of non-
circular curved paths as well. The objective is to develop a novel light-actuated self-sliding
system based on active materials.

The structure of this paper is outlined below. Firstly, based on the available dynamic
behavior model of LCE materials and the theorem of angular momentum, the equations for
dynamic control of the sliding mass enabled by LCE fibers are deduced in Section 2. Next,
the two unique motion states of the LCE fiber–sliding mass system, namely, the static state
and self-sliding state, are presented, and a detailed explanation of the operational principle
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of self-sliding is presented in Section 3. Then, a quantitative analysis is performed to
explore the impact of diverse dimensionless variables on both the amplitude and frequency
characteristics of self-sliding of the system, as explained in Section 4. Finally, this study’s
critical conclusions are precisely abstracted in Section 5.

2. Theoretical Model and Formulation

This section begins with a description of a light-actuated self-sliding system, which
includes an LCE fiber, a sliding mass, and a rigid circular track. Subsequently, we derive
the equations used for dynamic control of the sliding mass enabled by LCE fibers based
on the dynamic model of LCE, the theorem of angular momentum, and vibrating theory.
Finally, the nondimensionalization and the numerical solution method of the dynamic
control equation are introduced.

2.1. Dynamics of Self-Sliding System

Figure 1 and Video S1 schematically present a dynamic simulation of a self-sliding
actuated system via light, which is capable of sliding continuously and stably under
designated initial tangential speed and illumination conditions. The self-sliding system
comprises an azobenzene-based LCE fiber, a sliding mass, and a rigid circular track. The
photosensitive molecules in LCE fibers, such as azobenzene molecules, are aligned along
the fiber axis. The lower end of the LCE fiber is fastened to a horizontal fixed support,
while the upper end is linked to a sliding mass with a weight of m. The sliding mass is
mounted on the rigid circular track and can slide on it, while the upper end of the track
is fixed to a horizontal rigid base. In addition, the weight of the LCE fiber is much lower
than the weight of the sliding ball, so it is neglected in this study. In the reference state,
the radius of the rigid circular track is denoted as r and the LCE fiber is stress-free with
an original length of L0, as shown in Figure 1a. We designate the starting position of the
sliding mass as the center point of the polar coordinate system, establishing the polar axis,
which extends in a radial direction from the core of the circular track. Since the sliding
mass is set on the rigid circular track, it can only slide along the tangential direction of the
track, with an angular displacement of θ.
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Figure 1. Diagram of the side view of a self-sliding system comprised of a light-actuated LCE fiber,
a sliding mass, and a rigid circular track: (a) reference state; (b) initial state; (c) current state; and
(d) force analysis. In the self-sliding model, the sliding mass with the LCE fiber can slide continuously
and periodically along the rigid circular track under sustained illumination.

As depicted in Figure 1b,c, the bright section denotes the illuminated region, while
the gray triangular section denotes the shadowed region, i.e., the non-illuminated region,
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with the angle from the origin to the first intersection point between the right side of the
shade and the circular track being denoted as θ0. Due to the initial tangential velocity in
the tangential direction, the sliding mass continues its right counterclockwise motion until
it enters the illuminated region. Within this region, the azobenzene molecules in the LCE
fibers can absorb light energy and isomerize from straight trans to bent cis, so the LCE
fibers contract. As the LCE fiber contracts and extends within the illuminated region, the
system’s elastic potential energy peaks when the sliding mass reaches maximum angular
displacement. Subsequently, propelled by the tensile force in the LCE fiber, the sliding mass
slides in the reverse direction. Upon entering the non-illuminated region, the light-actuated
shrinkage of the LCE fiber is restored, resulting in a decrease in its tension until it reaches
the lighted region on the opposite side. In this way, it stores potential energy from its
elastic deformation and subsequently repeats the entire process. By appropriately selecting
system variables and initial conditions, the light-actuated sliding mass structure can sustain
consistent and steady self-sliding motion.

The sliding mass bears a tensile force FL from the LCE fiber; the damping force FD,
and its gravity mg, as depicted in Figure 1d. Along the tangential direction, the dynamic
control equation of the sliding mass can be expressed as follows [69]:

mr2
..
θ = −mgsinθ·r − FLcosα·r − FD·r (1)

where
..
θ represents the acceleration of the sliding mass; FL denotes the tensile force of the

LCE fiber; FD refers to the damping force; θ is an angular displacement, measured relative
to the vertical line, with a counterclockwise direction designated as positive; α is the angle
between the force FD and the force FD; g is the gravitational acceleration.

According to the geometric relations in Figure 1d, cosα = (L0+r)sinθ√
r2+(L0+r)2−2r(L0+r)cosθ

,

where L0 is the initial length of the LCE fiber in a stress-free condition and r is the radius of
the rigid circular track.

The tension of the LCE fiber is assumed to be proportional to elastic strain, and can be
expressed as [70]:

FL = KL0εe(t) (2)

where K represents the elastic coefficient of LCE; εe(t) denotes the elastic strain in the LCE
fiber. For simplicity, the elastic strain εe(t) under small deformation can be assumed to
be a linear combination of the total strain εtot(t) and the light-actuated contraction strain
εL(t), i.e., εtot(t) = εe(t) + εL(t). Therefore, the tension of LCE fiber in Equation (2) can be
rewritten as:

FL = KL0(εtot(t)− εL(t)) (3)

For simplicity, the total strain εtot(t) is defined as εtot(t) = L−L0
L0

. Thus, the tension of
FL in Equation (3) can be rewritten as:

FL = K(L − L0(1 + εL(t))) (4)

where L is the length of the LCE fiber under stress, which can be expressed as√
r2 + (L0 + r)2 − 2r(L0 + r)cosθ based on the cosine theorem of a triangle.

For simplicity, when the velocity is low, the damping force is assumed to be approxi-
mately a quadratic function, which is always opposite to the direction of motion:

FD = β1r
.
θ + β2r2

.
θ

2
(5)

where β1 and β2 represent the linear and quadratic damping coefficients, and
.
θ refers to

the angular speed of the system.
By inserting Equations (4) and (5) into Equation (1), considering the counterclockwise

and clockwise motion directions, we can obtain:
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mr
..
θ = −sgn(θ)mgsinθ − sgn(θ)Kr

1 −
L0
r (1 + εL(t))√

1 +
(

1 + L0
r

)2
− 2

(
1 + L0

r

)
cosθ

(1 +
L0

r
) sin θ − β1r

.
θ − β2r2

.
θ
∣∣∣ .
θ
∣∣∣ (6)

2.2. Dynamic LCE Model

This part primarily illustrates the dynamic behavior of the light-actuated contraction
in LCE fibers. For simplicity, the contraction of LCE fibers under small deformation is
assumed to be a linearly related to the number fraction φ(t) cis-isomer in LCE fibers, i.e.,

εL(t) = −C0 φ(t) (7)

where C0 denotes the contraction coefficient of LCE fibers.
The light-actuated strain of LCE fibers during contraction is dependent on the cis-

isomer number fraction φ(t) in the LCE. According to the research, the cis-isomer number
fraction can be manipulated through exposure to UV light or laser irradiation at wave-
lengths specifically below 400 nm [71]. However, the precise wavelength within this range
significantly impacts the efficiency and dynamics of the isomerization process, with 365 nm
being a common choice for azobenzene-based systems due to its effectiveness in trigger-
ing the trans-to-cis transition [72]. The cis-isomer number fraction depends on thermally
excited trans-to-cis isomerization, thermally driven relaxation from cis to trans, and light-
driven trans-to-cis isomerization. Typically, thermally excited trans-to-cis isomerization can
be neglected relative to light-powered trans-to-cis isomerization. Therefore, the number
fraction of the cis-isomer in the LCE is governed by the following equation [73–75]:

∂φ

∂t
= η0 I(1 − φ)− φ

T0
(8)

where η0 refers to the constant for light absorption, T0 denotes the duration of thermally
induced relaxation process from cis to trans, and I represents the intensity of light. By
solving Equation (8), the number fraction of cis-isomer can be deduced as:

φ(t) =
η0T0 I

η0T0 I + 1
+

(
φ0 −

η0T0 I
η0T0 I + 1

)
exp

[
− t

T0
(η0T0 I + 1)

]
(9)

where φ0 is the initial cis number fraction at t = 0.
In the region that is illuminated, the initial number fraction is φ0 = 0. Then,

Equation (9) can be simplified as:

φ(t) =
η0T0 I

η0T0 I + 1

{
1 − exp

[
− t

T0
(1 + η0T0 I)

]}
(10)

In the region that is non-illuminated, when the light intensity is set to I = 0, we can
derive the following:

φ(t) = φ0exp
(
− t

T0

)
(11)

where φ0 can be designated as the peak value of φ in Equation (9), i.e., φ0 = η0T0 I
η0T0 I+1 . Then,

Equation (11) can be simplified as:

φ(t) =
η0T0 I

η0T0 I + 1
exp

(
− t

T0

)
(12)
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2.3. Nondimensionalization

To simplify calculations, enhance solution efficiency, and improve generality, the

following quantities are subjected to nondimensionalization: t = t/T0,
.
θ =

.
θT0,

..
θ =

..
θT2

0 ,

g = gT2
0 /r, K = KT2

0 /m, I = η0T0 I, β1 = β1T0/m, β2=β2r/m and φ = φ(η0T0 I+1)
η0T0 I . Thus,

Equation (6) can be written in a dimensionless form as:

..
θ = −sgn(θ)gsinθ − sgn(θ)K

1 −
L0
r (1 + εL(t))√

1 +
(

1 + L0
r

)2
− 2

(
1 + L0

r

)
cosθ

(1 +
L0

r
) sin θ − β1

.
θ − β2

.
θ

∣∣∣∣ .
θ

∣∣∣∣ (13)

In the region that is illuminated, Equation (11) can be expressed in another way, as:

φ(t) = 1 − exp
[
−t

(
I + 1

)]
(14)

In the region that is non-illuminated, Equation (12) can be rewritten as:

φ(t) = exp(−t) (15)

Meanwhile, the tension of the LCE fiber in Equation (4) and the damping force in
Equation (5) can be written in a dimensionless form as:

FL = K

1 −
L0
r (1 + εL(t))√

1 +
(

1 + L0
r

)2
− 2

(
1 + L0

r

)
cosθ

(1 +
L0

r
) sin θ (16)

FD = β1
.
θ + β2

.
θ

∣∣∣∣ .
θ

∣∣∣∣ (17)

The dynamics of the light-actuated sliding mass system are governed by
Equations (13)–(15), where the time-dependent number fraction of cis-isomer is intri-
cately linked to the position of the sliding mass. Making use of dimensionless and given
variables, including I, C0, g, K, β1, β2, and θ0, we can derive the temporal evolution of the
light-actuated contraction strain and the position of the sliding mass. Equations (13)–(15)
are evidently nonlinear differential equations, and it is challenging to acquire the analytical
calculation. In the study, the standard fourth-stage Runge–Kutta method and MATLAB
R2021a software are applied to numerically calculate the steady-state responses, including
the light-actuated contraction strain of the LCE fiber, and the angle and angular velocity of
the sliding mass at any time. Moreover, we can further obtain the tension of the LCE fiber
from Equation (16) and the damping force from Equation (17).

3. Two Motion States and Mechanism of Self-Sliding

Rooted in the control equations deduced in Section 2, in this section we discuss the
dynamics of the light-actuated sliding mass system under a state of steady illumination.
Two typical dynamic modes of self-sliding are first presented, which are categorized as the
static state and self-sliding state. Subsequently, we describe the corresponding mechanism
of self-sliding.

3.1. Two Motion States

To further investigate the self-sliding motion behavior of the LCE fiber–sliding mass
system, it is first necessary to determine the typical values of the parameters in the dimen-
sionless equations in Section 2. Based on previously studied outcomes and experimental
results [76–78], the empirical values of the parameters required in a sliding mass system are
collected and presented in Table 1. Using the variable data from Table 1, the corresponding
dimensionless variable values can be derived and are listed in Table 2.
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Table 1. Material properties and geometric parameters.

Parameter Definition Value Unit

I light intensity 0~80 kW/m2

C0 contraction coefficient of LCE fiber 0~0.5 /
K elastic coefficient of LCE fiber 20~40 N/m
T0 Cis to trans thermal relaxation time 0.02~0.45 s
η0 light absorption constant 0.002 m2/(s·W)
m mass of sliding mass 0~0.02 kg
β1 linear damping coefficient 0~0.3 kg/s
β2 quadratic damping coefficient 0~0.15 kg/m
v0 initial tangential velocity 0~2.5 m/s
θ0 angle of non-illuminated zone 0~0.5 rad
r radius of circular track 0.01~0.15 m

L0 original length of LCE fiber 0.1~0.5 m

Table 2. Dimensionless parameters.

Parameter ¯
I C0

¯
K v0 β1 β2 θ0

Value 0~5 0~0.5 0~10 0~1 0~0.2 0~0.1 0~0.5

By numerically solving Equation (11), we can acquire the time–history curve of sliding as
well as the phase trajectory diagram for the LCE fiber–sliding mass system, which are depicted
in Figure 2. The results show the presence of two clearly distinguishable motion states, namely,
the static state and self-sliding state, under different light intensities: I = 0.15 and I = 0.6.
During the numerical computation, we set the other dimensionless variables of the sliding mass
system, including C0 = 0.45, K = 2.7, v0 = 0.7, β1 = 0.015, β2 = 0.003, θ0 = 0.09. For I = 0.15,
the system initially slides left and right but eventually comes to a stop due to the damping force,
reaching a static state as depicted in Figure 2a. Corresponding to Figure 2a, the phase trajectory
in Figure 2b stabilizes at a stationary point. In contrast, as illustrated in Figure 2c,d, where
I = 0.6, the sliding amplitude of the LCE fiber–sliding mass system progressively decreases
until it reaches a steady value, which is termed the self-sliding mode. Similarly, in the phase
trajectory diagram, the amplitude of the sliding mass gradually becomes constant, with its state
eventually settling into a limit cycle, signifying a periodic and stable behavior.

3.2. Mechanism of Self-Sliding

This section is specifically intended to elaborate the self-sliding mechanism, focusing
on the inherent energy-balancing mechanism in the system. To aid in a deeper under-
standing of this complex process, through the plotting of relationship curves, we depict
the correlations among several vital variables that are involved in the self-sliding process,
as depicted in Figure 3. Herein, the dimensionless variables of the system are selected as
I = 0.6, C0 = 0.45, K = 2.7, v0 = 0.7, β1 = 0.015, β2 = 0.003, and θ0 = 0.09. Figure 3a
depicts the change in the angular displacement of the LCE fiber–sliding mass system over
time. The yellow highlighted area denotes the illumination region where the LCE fiber
is illuminated. It is apparent that the LCE fiber–sliding mass system maintains a steady
amplitude and cycle, with the sliding mass moving to and fro within the illuminated
regions on the right and left sides. Figure 3b illustrates how the number fraction in the LCE
fiber varies with time due to light exposure. When the angular displacement of the sliding
mass is more than the angle of non-illuminated zone θ0, the LCE fiber enters the illumi-
nated regions, and the LCE fiber’s number fraction progressively goes up, approaching a
specific maximum. When the sliding mass moves from the illuminated regions into the
non-illuminated regions, the LCE fiber’s number fraction sharply decreases to zero. With
the system consistently traversing in and out of the illuminated regions, the LCE fiber’s
number fraction experiences recurring variations.
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Figure 2. Two typical dynamic modes of the self-sliding structure: static state and self-sliding state.
(a) Chronological graph of the angular displacement when I = 0.15; (b) phase space plot when
I = 0.15; (c) chronological graph of the angular displacement when I = 0.6; (d) the limit cycle in
phase space when I = 0.6. If the other dimensionless variables are the same, two distinct dynamic
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Polymers 2024, 16, x FOR PEER REVIEW 9 of 18 
 

 

clearly shown in Figure 3c. As is evident from Figure 3d, the damping force displays a 
periodic variation over time, similar to the tension variations observed in the LCE fiber. 

From Figure 3e, it is evident that the hysteresis loop formed by the tension of the LCE 
fiber illustrates the net work carried out the tension in one complete sliding cycle, which 
is numerically evaluated to be 0.085. Similarly, Figure 3f reveals the linkage of the damp-
ing force with the angular displacement, with the enclosed hysteresis curve signifying the 
amount of work carried out by the damping force in a full sliding cycle, representing the 
system’s damping dissipation. Calculations reveal that the area encompassed by the hys-
teresis loop in Figure 3f also equals 0.085, indicating that the energy dissipated due to the 
damping force during self-sliding is balanced by the work generated by the tensile force 
of the LCE fiber. Consequently, the self-sliding of the LCE fiber–sliding mass system re-
mains sustainable. 

 
Figure 3. Self-sliding mechanism of the LCE-fiber-based mass system. (a) Time–history curve of the 
angular displacement of the mass. (b) Time–history curve of the number fraction of the LCE fiber. 
(c) Variation in the tension of the LCE fiber with time. (d) Variation in the damping force with time. 
(e) Dependence of the tension of the LCE fiber on the angular displacement. (f) Dependence of the 
damping force on the angular displacement. Stable self-sliding is maintained in the system due to 
the light-actuated elastic force, compensating for damping dissipation. 

Additionally, Figure 4 displays several defining snapshots representing the self-slid-
ing motion of the LCE-fiber-based mass system during a complete sliding cycle under 

Figure 3. Self-sliding mechanism of the LCE-fiber-based mass system. (a) Time–history curve of the
angular displacement of the mass. (b) Time–history curve of the number fraction of the LCE fiber.
(c) Variation in the tension of the LCE fiber with time. (d) Variation in the damping force with time.
(e) Dependence of the tension of the LCE fiber on the angular displacement. (f) Dependence of the
damping force on the angular displacement. Stable self-sliding is maintained in the system due to the
light-actuated elastic force, compensating for damping dissipation.
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Figure 3c demonstrates the time-dependent tension variations in LCE fiber. The
tension changes due to the cyclical self-sliding of the system, showing a periodic trend.
As the LCE fiber enters the illuminated regions, the tension in the LCE fiber increases as
a consequence of the light-actuated shrinkage. However, when the system departs from
the illuminated regions, the tension decreases as the light-actuated contraction reverses,
as clearly shown in Figure 3c. As is evident from Figure 3d, the damping force displays a
periodic variation over time, similar to the tension variations observed in the LCE fiber.

From Figure 3e, it is evident that the hysteresis loop formed by the tension of the LCE
fiber illustrates the net work carried out the tension in one complete sliding cycle, which is
numerically evaluated to be 0.085. Similarly, Figure 3f reveals the linkage of the damping force
with the angular displacement, with the enclosed hysteresis curve signifying the amount of
work carried out by the damping force in a full sliding cycle, representing the system’s damping
dissipation. Calculations reveal that the area encompassed by the hysteresis loop in Figure 3f
also equals 0.085, indicating that the energy dissipated due to the damping force during self-
sliding is balanced by the work generated by the tensile force of the LCE fiber. Consequently,
the self-sliding of the LCE fiber–sliding mass system remains sustainable.

Additionally, Figure 4 displays several defining snapshots representing the self-sliding
motion of the LCE-fiber-based mass system during a complete sliding cycle under constant
light exposure. As the LCE-fiber-based mass system moves from a non-illuminated region
to an illuminated region, the increase in the number fraction φ(t) of the LCE fiber results
in a corresponding increase in the contraction strain, reaching a maximum value, as shown
in Figure 4a,c. During this process, the system decelerates due to the combined effects of
damping forces and the negative work performed via the tension of the LCE fiber, ultimately
reducing the velocity to zero. Conversely, when the sliding mass moves from the illuminated
regions into the non-illuminated regions, the sharp decrease in the LCE fiber’s number fraction
leads to a gradual reduction in the contraction strain, as depicted in Figure 4b,d. Despite
this decrease in contraction strain, the tension of the LCE fiber has a positive effect, enabling
the system to re-enter the illuminated region and absorb light energy to compensate for the
negative effects of damping. This cyclic process allows for continuous self-sliding motion.
The variation in the contraction strain of the LCE fiber, as described in Figure 4, aligns with
the theoretical framework outlined in the study and specifically with Equation (7).
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Figure 4. Snapshots of the self-sliding motion in a cycle. (a) Move into right illuminated region;
(b) Sliding in right illuminated region; (c) Move into the left illuminated region; (d). Sliding in left
illuminated region. Under constant light exposure, the periodic changes in contraction actuated by
light result in a continual and recurring self-sliding behavior of the system.
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4. Parameter Study

When dynamically modeling the self-sliding behavior of the LCE fiber–sliding mass
system, we consider six dimensionless system variables, namely, I, C0, K, v0, β1, β2,
and θ0. In this section, we undertake a quantitative analysis to examine the impact of
these variables on the self-sliding characteristics of the LCE fiber–sliding mass system,
particularly highlighting their influence on the amplitude and frequency. Specifically, the
dimensionless amplitude and frequency of self-sliding are denoted as A and F, respectively.

4.1. Influence of the Light Intensity

Figure 5 demonstrates how light intensity influences the self-sliding, considering
specific values of the additional dimensionless variables where C0 = 0.45, K = 2.7, v0 = 0.7,
β1 = 0.015, β2 = 0.003, and θ0 = 0.09. The corresponding limit cycles of self-sliding
for I values 0.6, 0.9, and 1.2 are presented in Figure 5a. The amplitude of self-sliding is
expressed through the horizontally measured width of the limit cycle, with the vertical
height representing the angular velocity of the self-sliding. It can be seen from Figure 5a that
the critical light intensity separating the static state from self-sliding state is I = 0.596. At
light intensities lower than 0.596, the LCE fiber lacks the necessary light energy absorption
to overcome the damping dissipation, resulting in a transition to a static state due to an
inability to sustain motion. In contrast, light intensities exceeding 0.596 allow the LCE fiber
to absorb sufficient energy to overcome damping dissipation, thereby sustaining continuous
and steady self-sliding, which characterizes the self-sliding state. The relationship between
light intensity and its influence on amplitude and frequency is shown in Figure 5b. It can
be seen from Figure 5b that the amplitude and frequency exhibit a direct correlation as the
light intensity rises. The reason for this is stronger light intensities facilitate the LCE fiber’s
ability to obtain a greater amount of energy and convert it into kinetic energy, enabling
the system to achieve a higher amplitude. The findings indicate that increasing the light
intensity plays an important role in enhancing the efficiency of energy utilization within
the LCE fiber–sliding mass system.
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4.2. Influence of the Contraction Coefficient of LCE

Figure 6 demonstrates how the contraction coefficient influences the self-sliding con-
sidering specific values of the additional dimensionless variables, where I = 0.6, K = 2.7,
v0 = 0.7, β1 = 0.015, β2 = 0.003, and θ0 = 0.09. The corresponding limit cycles of self-
sliding for C0 values 0.4, 0.45, and 0.5 are presented in Figure 6a. As observed in Figure 6a,
the limit cycle associated with a higher contraction coefficient completely envelopes the one
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with a lower coefficient, showing that a decrease in the contraction coefficient weakens the
LCE fiber–sliding mass system’s ability to absorb light, leading to a decreased amplitude
and kinetic energy. Figure 6b illustrates how the amplitude and frequency of self-sliding
are influenced by the contraction coefficient. As observed in Figure 6b, a distinct threshold
value exists for the contraction coefficient, which is mathematically determined to be 0.398,
and serves as the tipping point for inducing self-sliding. Below a contraction coefficient of
0.398, the sliding mass maintains a stationary condition. However, once the contraction
coefficient rises above 0.398, the system enters a self-sliding state. The finding suggests that
the efficient conversion of light energy to mechanical energy can be improved by increasing
the contraction coefficient of the LCE fiber.
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4.3. Influence of the Elastic Coefficient of LCE

Figure 7 demonstrates how the elastic coefficient influences the self-sliding, consider-
ing the specific values of the additional dimensionless variables, where I = 0.6, C0 = 0.45,
v0 = 0.7, β1 = 0.015, β2 = 0.003, and θ0 = 0.09. For K = 2.7, K = 3.7, and K = 4.7, the
corresponding limit cycles of self-sliding are presented in Figure 7a. From Figure 7a, it is ev-
ident that K = 2.257 represents the threshold value of the elastic coefficient that determines
whether the system remains in static mode or self-sliding mode. Under steady illumination,
if the elastic coefficient is smaller than 2.257, the LCE fiber is unable to absorb adequate light
energy. Consequently, the system lacks sufficient energy to counteract damping dissipation
and eventually settles into a static state. Conversely, when the elastic coefficient is more
than 2.257, the LCE fiber has the ability to absorb an ample amount of energy, counteract-
ing the system’s damping dissipation and thereby sustaining self-sliding. As depicted in
Figure 7b, the elastic coefficient plays a vital role in determining the magnitude and period-
icity of the self-sliding. As the elastic coefficient increases, there is a corresponding increase
in the magnitude and periodicity of self-sliding. This is because a greater elastic coefficient
generates a stronger elastic force from the LCE fiber. As a result, the system gains more
elastic potential energy that can be converted into kinetic energy, thus leading to a higher
amplitude of self-sliding. Therefore, selecting the appropriate elastic coefficient is essential
in achieving superior performance when designing an LCE-based tension system.
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4.4. Influence of the Initial Tangential Velocity

Figure 8 demonstrates how initial tangential velocity influences the self-sliding, con-
sidering specific values of the additional dimensionless variables where I = 0.6, C0 = 0.45,
K = 2.7, β1 = 0.015, β2 = 0.003, and θ0 = 0.09. The numerical simulations reveal that
initiating self-sliding in the LCE fiber–sliding mass system is possible with initial tangential
velocities of v0 = 0.3, v0 = 0.5, and v0 = 0.7. The limit cycles resulting from these velocities
are presented in Figure 8a and it is worth mentioning that all three limit cycles overlap.
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Figure 8b represents the dependency of the characteristics of self-sliding on the initial
tangential velocity, namely its amplitude and frequency. Based on Figure 8b, it is evident
that the system enters a static state when the initial tangential velocity is below 0.267.
This occurs because the insufficient initial tangential velocity prevents the LCE fiber from
accessing the illumination zone, thereby hindering the absorption of the light energy
necessary to maintain dynamic motion, ultimately resulting in a static state. When the
initial tangential velocity exceeds 0.267, given v0 = 0.3, v0 = 0.5, and v0 = 0.7, the
system enters a self-sliding state, during which the ultimate amplitude and frequency
are unaffected by the variable initial tangential velocities. The reason for this is that the
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amplitude of self-sliding is determined by the energy conversion process between damping
dissipation and the net work carried out by the LCE fiber, which form the system’s internal
properties. Since the initial tangential velocity has no impact on the system’s energy
conversion mechanism, the amplitude remains unaffected.

4.5. Influence of the Damping Coefficients

Figure 9 demonstrates how damping coefficients influence the self-sliding, considering
specific values of the additional dimensionless variables where I = 0.6, C0 = 0.45, K = 2.7,
v0 = 0.7, and θ0 = 0.09.
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Figure 9. Influence of damping coefficients on the self-sliding system. (a) Limit cycles with β1 = 0.005,
β1 = 0.01, and β1 = 0.015. (c) Limit cycles with β2 = 0.001, β2 = 0.003, and β2 = 0.005. (b,d) Changes
in amplitude and frequency with varying damping coefficients.

Figure 9a,c further illustrate that as the damping coefficient increases, the limit cycle
decreases in size. When the damping coefficient surpasses a certain critical value, the system
transitions from a self-sliding state to a static state. As the damping coefficient rises, a
greater amount of energy becomes necessary to overcome the energy dissipation that occurs
due to the damping forces, thus marking this transitional change. The energy harvested
by the LCE in the illuminated zone becomes insufficient to overcome the damping forces,
ultimately leading the system to settle into a static state. In practical system design, it is
imperative to devise strategies that minimize energy losses due to resistance, enabling the
energy generated by the LCE fiber in the illuminated zone to be more efficiently utilized
for the system’s intrinsic self-sliding motion. From Figure 9b,d, it is evident that whether it
is β1 or β2, a smaller damping coefficient results in a larger amplitude of self-sliding, and
vice versa. The amplitude is significantly affected by the damping coefficient, whereas the
impact on the frequency of self-sliding is less significant.
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4.6. Influence of the Angle of Non-Illuminated Zone

Figure 10 demonstrates how non-illuminated zone angle influences the self-sliding,
considering specific values of the additional dimensionless variables where I = 0.6,
C0 = 0.45, K = 2.7, v0 = 0.7, β1 = 0.015, and β2 = 0.003. For θ0 = 0.03, θ0 = 0.09,
and θ0 = 0.15, the corresponding limit cycles of self-sliding are presented in Figure 10a. It
can be seen from Figure 10a that the critical angle of the non-illuminated zone separating the
static state from the self-sliding state is θ0 = 0.154. Once the angle of the non-illuminated
zone exceeds 0.154, the LCE fiber is incapable of entering the illuminated zone to gather
sufficient light energy to overcome the damping-induced energy loss. Consequently, due to
the exhaustion of the kinetic energy, the system inevitably transitions into a static state. In
contrast, when the angle of the non-illuminated zone is less than 0.154, the LCE fiber is able
to reach the illuminated zone to absorb sufficient energy to overcome damping dissipation,
thereby sustaining continuous and steady self-sliding, which characterizes the self-sliding
state. The relationship between the angle of the non-illuminated zone and its influence on
amplitude and frequency is shown in Figure 10b. It can be seen from Figure 10b that the
amplitude exhibits a direct correlation with the increase in the angle of the non-illuminated
zone. The explanation lies in the fact that, with a small angular non-illumination, the LCE
fiber promptly enters the illuminated zone, causing its increasing tension to restrict the
sliding mass from continuing its forward movement and thereby limiting the amplitude
of self-sliding. In contrast, a larger angular non-illumination allows for greater angular
displacement of the LCE fiber–sliding mass system before it reaches the illuminated zone,
subsequently enhancing the total amplitude of self-sliding.
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5. Conclusions

Existing self-vibrating systems, despite offering adaptability, efficiency, and sustain-
ability, are complex, hard to produce, and challenging to control. This highlights the
urgency of developing more advanced and practical self-oscillation structures. In the
study, we propose a light-actuated LCE fiber–sliding mass system consisting of a light-
actuated LCE fiber, a sliding mass, and a rigid circular track, which can sustain periodic
and continuous sliding under constant light exposure. Derived from the available dynamic
behavior model of LCEs, and the theorem of angular momentum and vibration theory,
the equations for dynamic control of the sliding mass enabled by the light-actuated LCE
fiber are deduced. Using the standard fourth-stage Runge–Kutta method and MATLAB
R2021a software, the numerical calculation of the dynamic control equations is acquired.
According to the results, two motion states of the self-sliding mass system are explained
in detail, which are categorized as the static state and self-sliding state. In particular, the
self-sliding process, along with its energy balancing system, is clarified. Herein, the energy
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drawn from a constant external source serves to balance out the dissipation caused by
system damping, preserving its dynamic equilibrium.

Moreover, the influences of light intensity, contraction coefficient, elastic coefficient,
initial tangential velocity, linear and quadratic damping coefficients, and angle of the non-
illuminated zone are quantitatively analyzed. The numerical calculation results reveal
an increase in light intensity, contraction coefficient, elastic coefficient, and angle of the
non-illuminated zone, which leads to an augmentation in both the amplitude and frequency
of the system. Specifically, the elastic coefficient and the angle of the non-illuminated zone
exert a profound influence on the amplitude, with each π/180 increment in amplitude
leading to a 0.25% increase in the elastic coefficient and a 1.63% expansion in the angle of
the non-illuminated zone. Additionally, light intensity plays a crucial role, contributing to a
20.88% augmentation for every increment of π/180 in the amplitude. In contrast, while an
increase in the damping coefficient leads to a notable reduction in both the amplitude and
frequency, the initial tangential velocity has no discernible effect on either the amplitude or
the frequency of the system.

While the simplicity, controllability, and rapid response to the light of the proposed
LCE fiber–sliding mass system render it a promising candidate for widespread adoption,
it is important to acknowledge the limitations of the small deformation assumption, the
simplified damping consideration, and the neglect of viscoelastic effects in LCE fibers. To
further enhance the system’s potential for broad applications, future research will aim to
incorporate viscoelasticity into the model and investigate the system’s performance on
non-circular curved tracks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16121696/s1, Video S1: The process of the self-sliding
motion of the system in a cycle.
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