Piezoelectric Outputs of Electrospun PVDF Web as Full-Textile Sensor at Different Mechanical Excitation Frequencies
Abstract
:1. Introduction
2. Preparation and Testing
2.1. Preparation for PVDF Fibrous Mats
2.2. Piezoelectric Device and Measuring Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Deng, Y.; Qi, H. Microstructure dependence of output performance in flexible PVDF fiezoelectric nanogenerators. Polymers 2021, 13, 3252. [Google Scholar] [CrossRef]
- Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A Review of piezoelectric PVDF film by electrospinning and its applications. Sensors 2020, 20, 5214. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Jiang, B.; Zhang, Q.; Chen, H.; Shen, Y.; Wang, Z.; Yin, X. Process investigation on robust electrospinning of non-aligned and aligned polyvinylidene fluoride nanofiber mats for flexible piezoelectric Sensors. Polymers 2024, 16, 816. [Google Scholar] [CrossRef]
- Swallow, L.; Luo, J.; Siores, E. Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv. Fiber Mater. 2024, 6, 133–144. [Google Scholar]
- Zandesh, G.; Gheibi, A.; Bafqi, M.S.S.; Bagherzadeh, R.; Ghoorchian, M.; Latifi, M. Piezoelectric electrospun nanofibrous energy harvesting devices Influence of the electrodes positions and finite variation of dimensions. J. Ind. Text. 2017, 47, 348–362. [Google Scholar] [CrossRef]
- Feng, Z.; Zhao, Z.; Liu, Y.; Liu, Y.; Cao, X.; Yu, D.-G.; Wang, K. Piezoelectric Effect Polyvinylidene Fluoride (PVDF): From Energy Harvester to Smart Skin and Electronic Textiles. Adv. Mater. Technol. 2023, 8, 2300021. [Google Scholar] [CrossRef]
- Azimi, S.; Janqamsari, A.; Jafari, A.; Rayati, M.T.; Noori, E.; Rafiee, E.; Davoodbeygi, Y.; Nia, N.Y.; Abdi, H.; Abolhasani, M.M. PVDF composite fibers for wireless fall-alert detection. Mater. Today Commun. 2024, 38, 107899. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Jin, Y.M.; Ouyang, H.; Zou, Y.; Wang, X.X.; Xie, L.X.; Li, Z. Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semicond Sci Technol 2017, 32, 064004. [Google Scholar] [CrossRef]
- Li, T.; Qu, M.; Carlos, C.; Gu, L.; Jin, F.; Yuan, T.; Wu, X.; Xiao, J.; Wang, T.; Dong, W.; et al. High-performance poly (vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 2021, 33, 2006093. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Jin, Z.; Liu, Y.; Ning, H.; Liu, X.; Alamusi; Hu, N. Recent advances in the preparation of PVDF-based piezoelectric material. Nanotechnol. Rev. 2022, 11, 1386–1407. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF nanofibers for piezoelectric applications: A review of the Influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.Y.; Gu, Y.Y.; Zhu, Y.D. Effect of electrospinning parameters on piezoelectric properties of electrospun PVDF nanofibrous mats under cyclic compression. J. Text. Inst. 2018, 109, 843–850. [Google Scholar]
- Bhadwal, N.; Ben Mrad, R.; Behdinan, K. Review of piezoelectric properties and power output of PVDF and copolymer-based piezoelectric nanogenerators. Nanomateria 2023, 13, 3170. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Rault, F.; Vishwakarma, A.; Mohsenzadeh, E.; Salaün, F. High-Aligned PVDF nanofibers with a high electroactive phase prepared by systematically optimizing the solution property and process parameters of electrospinning. Coatings 2022, 12, 1310. [Google Scholar] [CrossRef]
- Choi, S.; Lim, J.; Park, H.; Kim, H.S. A flexible piezoelectric device for frequency sensing from PVDF/SWCNT composite fibers. Polymers 2022, 14, 4773. [Google Scholar] [CrossRef]
- Oflaz, K.; Özaytekin, İ. Analysis of electrospinning and additive effect on β phase content of electrospun PVDF nanofiber mats for piezoelectric energy harvester nanogenerators. Smart Mater. Struct. 2022, 31, 105022. [Google Scholar] [CrossRef]
- Ico, G.; Showalter, A.; Bosze, W.; Gott, S.C.; Kim, B.S.; Rao, M.P.; Myung, N.V.; Nam, J. Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting. J. Mater. Chem. A 2016, 4, 2293. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, C.; Li, B.; Shen, Y.; Wang, H.; Ji, K.; Mao, X.; Wei, L.; Sun, R.; Zhou, F. Electrospun PVDF-based piezoelectric nanofibers: Materials, structures, and applications. Nanoscale Adv. 2023, 5, 1043–1059. [Google Scholar] [CrossRef]
- Pourbafrani, M.; Azimi, S.; Yaghoobi Nia, N.; Zendehdel, M.; Abolhasani, M.M. The effect of electrospinning parameters on piezoelectric PVDF-TrFE nanofibers: Experimental and simulation study. Energies 2023, 16, 37. [Google Scholar] [CrossRef]
- Son, H.Y.; Park, J.S.; Huang, J.; Kim, J.; Nam, Y.S.; Kim, W.S. Flexible fibrous piezoelectric sensors on printed silver electrodes. IEEE Trans. Nanotechnol. 2014, 13, 709–713. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, X.; Lin, T. Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 2011, 21, 11088–11091. [Google Scholar] [CrossRef]
- Ren, G.; Cai, F.; Li, B.; Zheng, J.; Xu, C. Flexible pressure sensor based on a poly(VDF-TrFE) nanofiber web. Macromol. Mater. Eng. 2013, 298, 541–546. [Google Scholar]
- Lee, S.; Ahn, Y.; Prabu, A.; Kim, K. Piezoelectric polymer and piezocapacitive nanoweb based sensors for monitoring vital signals and energy expenditure in smart textiles. J. Fiber Bioeng. Inform. 2013, 6, 369–381. [Google Scholar]
- Zeng, W.; Tao, X.-M.; Chen, S.; Shang, S.; Chan, H.L.W.; Choy, S.H. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 2013, 9, 2631–2638. [Google Scholar] [CrossRef]
- Li, B.; Zhang, F.; Guan, S.; Zheng, J.; Xu, C. Wearable piezoelectric device assembled by one-step continuous electrospinning. J. Mater. Chem. C 2016, 4, 6988–6995. [Google Scholar] [CrossRef]
- Wang, Y.R.; Zheng, J.M.; Ren, G.Y.; Zhang, P.H.; Xu, C. A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct. 2011, 20, 045009. [Google Scholar] [CrossRef]
- Li, L.; Peng, F.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Electrospun Core–Sheath PVDF Piezoelectric Fiber for Sensing Application. ACS Appl. Mater. Interfaces 2023, 15, 15938–15945. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.; Lund, A.; Jonasson, C.; Johansson, C.; Hagström, B. Poling and characterization of piezoelectric polymer fibers for use in textile sensors. Sens. Actuators A 2013, 201, 477–486. [Google Scholar] [CrossRef]
- Hu, J.Y.; Zhu, Y.D.; Zhang, H.L.; Gu, Y.; Yang, X. Mixed effect of main electrospinning parameters on the β-phase crystallinity of electrospun PVDF nanofibers. Smart Mater. Struct. 2017, 26, 085019. [Google Scholar]
- Zaarour, B.; Liu, W. Enhanced piezoelectric performance of electrospun PVDF nanofibers by regulating the solvent systems. J. Eng. Fibers Fabr. 2022, 17, 15589250221125437. [Google Scholar] [CrossRef]
- Dhakras, D.; Borkar, V.; Ogale, S.; Jog, J. Enhanced piezoresponse of electrospun PVDF mats with a touch of nickel chloride hexahydrate salt. Nanoscale 2012, 4, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Kashfi, M.; Fakhri, P.; Amini, B.; Yavari, N.; Rashidi, B.; Kong, L.; Bagherzadeh, R. A novel approach to determining piezoelectric properties of nanogenerators based on PVDF nanofibers using iterative finite element simulation for walking energy harvesting. J. Ind. Text. 2022, 51 (Suppl. S1), 531S–553S. [Google Scholar] [CrossRef]
Applied Voltage (kV) | Flow Rate (mL/h) | Needle Tip Diameter (mm) |
---|---|---|
14, 16, 18, 20, 22, 24 | 1.0 | 0.6 |
18 | 0.5, 1.0, 1.5, 2.0, 3.0 | 0.6 |
18 | 1.0 | 0.3, 0.4, 0.6, 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Hu, J. Piezoelectric Outputs of Electrospun PVDF Web as Full-Textile Sensor at Different Mechanical Excitation Frequencies. Polymers 2024, 16, 1728. https://doi.org/10.3390/polym16121728
Meng F, Hu J. Piezoelectric Outputs of Electrospun PVDF Web as Full-Textile Sensor at Different Mechanical Excitation Frequencies. Polymers. 2024; 16(12):1728. https://doi.org/10.3390/polym16121728
Chicago/Turabian StyleMeng, Fenye, and Jiyong Hu. 2024. "Piezoelectric Outputs of Electrospun PVDF Web as Full-Textile Sensor at Different Mechanical Excitation Frequencies" Polymers 16, no. 12: 1728. https://doi.org/10.3390/polym16121728
APA StyleMeng, F., & Hu, J. (2024). Piezoelectric Outputs of Electrospun PVDF Web as Full-Textile Sensor at Different Mechanical Excitation Frequencies. Polymers, 16(12), 1728. https://doi.org/10.3390/polym16121728