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Abstract: The semiconductor-sensitized thermal cell (STC) is a new thermoelectric conversion
technology. The development of nonliquid electrolytes is the top priority for the practical ap-
plication of the STC. In this study, a novel gel polymer electrolyte (PH-based GPE) composed of
poly(vinylidenefluoride-co-hexafluoropropylene) (PH), 1-Methyl-2-pyrrolidone (NMP), and Cu ions
was synthesized and applied to the STC system. The PH-based GPE synthesized at 45 ◦C showed
higher open-circuit voltage (−0.3 V), short-circuit current density (59 µA cm−2) and diffusion coef-
ficient (7.82 × 10−12 m2 s−1), indicating that a well-balanced structure among the NMP molecules
was formed to generate a high-efficiency conduction path of the Cu ions. Moreover, the ion diffusion
lengths decreased with decreasing content rates of NMP for the PH-based GPEs, indicating that the
NMP plays an important role in the diffusion of Cu ions. Furthermore, the activation energy was
calculated to be 107 kJ mol−1, and that was smaller compared to 150 kJ mol−1 for the poly(ethylene
glycol)-based liquid electrolyte. These results play an important reference role in the development
of electrolytes for STC systems. At the same time, they also provide a new avenue and reference
indicator for the synthesis of high-performance and safe GPEs.

Keywords: gel polymer electrolyte; thermal energy conversion; thermoelectric material; semiconductor;
redox reaction; renewable energy

1. Introduction

The consumption of fossil energy such as oil and coal is continuing to increase with
global population growth and economic growth. At the same time, climate change caused
by greenhouse gas emissions would cause an unpredictable impact on the living envi-
ronment of animals and plants. Thus, clean energy such as solar, wind, and geothermal
power is expected to be used to reduce the burden on the environment. Compared with
the unstable power generation of solar energy and wind power, thermal energy such as
geothermal energy is a clean and stable energy supply method. In order to effectively
utilize thermal energy, conversion technology of thermal energy is indispensable. The
typical conversion technologies of thermal energy are geothermal power generation by
turning the turbine [1] and thermoelectric energy conversion using the Seebeck effect [2,3].
The geothermal power generation would not emit greenhouse gases and can produce
stable power generation. However, the development area competes with protected areas
such as national parks and the hot spring industry, and the huge cost and risk involved
in construction is a challenge. On the other hand, thermoelectric energy conversion using
the Seebeck effect utilizes the number of excited carriers in a material due to temperature
difference. By creating a temperature difference between the two ends of a certain material,
carriers can flow from the high-temperature part to the low-temperature part and generate
electric power. However, it is necessary to incorporate a low-temperature section to gener-
ate electricity, which makes the structure of the device complex and prevents its practical
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applications. Therefore, an effective and practical thermal energy conversion technology
is needed.

The semiconductor-sensitized thermal cell (STC) has been developed to establish a new
thermoelectric conversion technology in our group [4–9]. In detail, when thermal energy is
applied to the semiconductor, thermally excited charges (electrons and holes) are generated
in the semiconductor, and then they reduce and oxidize electrolyte ions. Subsequently,
thermal electricity generation was achieved through diffusion and self-electron exchange of
electrolyte ions. According to our previous reports [7–9], electricity is generated at 80 ◦C in
the STC system using an n-Si/Ge substrate as the working electrode, a fluoride-doped tin
oxide (FTO) substrate as the counter electrode, and Cu2+ and Cu+ electrolyte ions dissolved
in poly(ethylene glycol) (PEG600) as the liquid electrolyte. This electricity generation is
terminated when the diffusion and supply of electrolyte ions cannot keep up with the
charge transfer at the electrode/electrolyte interface. Moreover, it has been found that the
cell can be discharged again by leaving the discharged cell in an open-circuit state because
ions can be rediffused in the electrolyte during the open-circuit process. However, the shape
change of the PEG600 is easy to generate because it is a liquid polymer with fluidity. Thus,
the contact area between the PEG600-based liquid electrolyte and the electrode is easy to
change, resulting in unstable generation. The freedom of design is also limited. In addition,
the liquid polymer electrolyte has the risk of leakage during long-term charge/discharge
cycles in the STC system. Therefore, it is necessary to develop a more sustainable and safer
electrolyte for STC system.

Compared with the liquid polymer electrolytes, solid polymer electrolytes are gen-
erally more stable against external factors [10], which have been studied as promising
alternatives to liquid polymer electrolytes [11–13]. Solid polymer electrolytes offer several
advantages, including nonflammable properties, no risk of internal short circuits, and no
leakage issues. However, solid polymer electrolytes also have some disadvantages such as
low ionic conductivity (10−8 S cm−1) and weak electrolyte–electrode interface [14–16]. In re-
cent years, various strategies and efforts have been undertaken to improve the electrochemi-
cal performance of electrolytes. In particular, gel polymer electrolytes (GPEs) have received
considerable attention because they combine the diffusion properties of liquids and the
physical stability of solids [17–19]. Moreover, GPEs are able to overcome the disadvantages
of liquid and solid polymer electrolytes, showing higher electrochemical stability and more
stable interface with the electrodes [20,21]. The polymers used as matrixes for GPEs include
Poly(acrylonitrile) (PAN) [22], poly(methyl methacrylate) (PMMA) [23], poly(ethylene
oxide) (PEO) [24], poly(vinylidenedifluoride) (PVDF) [25], and poly(vinylidenefluoride-
co-hexafluoropropylene) (PVDF-HFP) [26]. Among them, PVDF-HFP is a potential choice
for GPE matrixes due to their high dielectric constants, prominent mechanical strength,
electrochemical stability, and the presence of strong electron-withdrawing C–F bonds.
PVDF-HFP consists of crystalline phases and amorphous phases, and its crystallinity de-
creases with increasing content of amorphous HFP. Thus, compared with highly crystalline
PVDF, PVDF-HFP has better properties, such as easier plasticizing, higher solubility in
organic solvents, and better electrochemical stability due to the combination of HFP [27,28].
For example, there was a report that a GPE composed of PVDF-HFP as matrix and N-
methyl-2-pyrrolidone (NMP) as organic solvent was prepared through the solution-casting
method [29]. It demonstrates an excellent interfacial stability with the electrode and a high
ionic conductivity (7.24 × 10−4 S cm−1). Thus, it is worth researching the electrochemical
performance of the GPE applied to the STC system.

In this study, a novel gel polymer electrolyte composed of PVDF-HFP (PH), NMP
(PH-based GPE), and Cu ions was developed. It is the first report using PH-based GPE
in the STC system. In order to determine the optimal gelation temperature condition, the
chemical properties and electrochemical performance of the PH-based GPE synthesized
under different temperatures were evaluated. We are devoted to finding the suitable
synthesis conditions of the PH-based GPE with high performance for the STC system.
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2. Materials and Methods
2.1. Chemicals

The n-Si/Ge substrate (Ge layer, 2 µm) was manufactured by Tohnic Corp., Chigasaki,
Japan. A Cr layer (20 nm) was deposited on the n-Si wafer (0.02 Ω cm, 15 × 25 × 0.5 mm)
to improve the adhesion of the n-Si/Ge interface. The resistivities of n-Si and Ge sides
were 3.18 and 3.27 Ω/sq, which were measured by a four-probe resistivity meter (Loresta
GP MCP-T600, Mitsubishi Chemical Corp., Tokyo, Japan) at room temperature. The
fluorine-doped tin oxide (FTO, sheet resistivity: 10 Ω, 25 × 25 × 1.1 mm) substrate was
manufactured by Peccell Technologies, Inc. Yokohama, Japan. Ethanol, hydrofluoric
acid (HF), copper(I) chloride (CuCl), and copper(II) chloride (CuCl2) were purchased
from FUJIFILM Wako Pure Chemical Corp., Osaka, Japan. 1-Methyl-2-pyrrolidone (NMP)
was purchased from Tokyo Chemical Industry Co., Ltd., Tokyo, Japan. Poly(vinylidene
fluoride-co-hexafluoropropylene) (PH) was purchased from Sigma-Aldrich Co. LLC,
St. Louis, MO, USA. Electric insulation double-sided tape (thickness: 85 µm) was pur-
chased from Chukoh Chemical Industries, Ltd., Tokyo, Japan. Sealing material was pur-
chased from Momentive Performance Materials Worldwide LLC, New York, NY, USA.

2.2. Electrodes

The n-Si/Ge substrate as working electrode was ultrasonically washed in ethanol for
5 min and then immersed with 5% HF for 5 min to remove the oxide layer on the Ge surface,
and washed with ultrapure water and promptly introduced into the purge-type glove box
with a gas recycle purification system (Miwa Manufacturing Co., Ltd., Osaka, Japan). The
glove box was hermetically filled with Ar gas (the oxygen concentration was 0.2~0.5 ppm).
On the other hand, the FTO substrate as counter electrode was also ultrasonically washed in
ethanol for 5 min and then introduced into the glove box. FTO is known for its excellent cost
performance because it is cheaper than indium tin oxide. Moreover, it has chemically stable,
high-temperature resistance and optical transparency. Thus, FTO transparent electrodes
are used as counter electrodes to conveniently observe the state of the electrolyte in the
STC system.

2.3. Electrolyte

The electrolyte solution was prepared in the glove box by mixing NMP (4.0 g) and PH
(1.0 g), which was stirred at 50 ◦C for 6 h. Subsequently, CuCl (0.16 g) and CuCl2 (0.21 g)
were added and stirred at 50 ◦C for 12 h to obtain the electrolyte solution (PH-NMP-Cu).
The Cu ion concentration was determined by referring to the report about electrolytes of
lithium metal batteries [29]. As for reference samples, a reference solution (NMP-Cu) was
prepared by mixing NMP, CuCl and CuCl2, and another reference solution (PH-NMP) was
prepared by mixing PH and NMP under the same conditions as above.

2.4. Cell Assembly

The cell assembly procedure is shown in Figure 1, which was also conducted in
the glove box. In detail, in order to control the distance between the FTO and n-Si/Ge
electrodes, the electric insulation double-sided tape was pasted on the edges of the FTO
substrate as a spacer. After that, 3.0 µL of the electrolyte solution (PH-NMP-Cu) was
dropped onto the center of the FTO substrate, and then the n-Si/Ge substrate was placed to
cover the electrolyte solution where the electrolyte was sandwiched between the FTO and
n-Si/Ge electrodes. Subsequently, the gap between the electrodes was sealed by the sealing
material to obtain the assembled cell. Finally, the cells were dried in a constant-temperature
drying oven at different temperatures (30, 35, 40, 45, 50, 55, and 60 ◦C) for 18 h, respectively,
to control the gelation temperatures of the electrolytes. As for the cells sealed by the
sealing material and dried at different temperatures for 18 h, colors and morphologies of
the electrolytes were confirmed to be unchanged, even leaving them in the air more than
one month.
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Figure 1. (a) Illustration of the cell assembly procedure and (b) digital camera image of the assem-
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Figure 1. (a) Illustration of the cell assembly procedure and (b) digital camera image of the assembled cell.

2.5. Characterization

Infrared spectra were measured by a Fourier transform infrared (FT-IR) spectroscopic
method with attenuated total reflectance (FT/IR-4X, JASCO Corp., Tokyo, Japan). All
the spectra were measured in the range of 2000~400 cm−1 with an accumulation time of
256 and a spectral resolution of 2 cm−1. The integrated area of the C=O absorption band
due to NMP between 1740 and 1540 cm−1 and that of the C-CF2 absorption band due to
PVDF-HFP between 900 and 860 cm−1 were calculated and named A1 and A2, respectively,
to calculate the band ratio of A1 to A2 (A1/A2). Here, the integrated area was obtained by
fitting a Gaussian function using the attached software (Spectrum Manager Ver 2.5, JASCO
Corp., Tokyo, Japan). The content rates of NMP (wt%) in the electrolytes gelled at different
temperatures were calculated through Equation (1). Here, the content rate of NMP in the
PH-NMP-Cu solution was calculated to be 74.5 wt% (Experimental Procedure S1) and T
represents the gelation temperature.

Content rate of NMP =
74.5 × (A1/A2)T

(A1/A2)PH−NMP−Cu
(1)

Microphotographs of the electrolytes were taken with a reflected light microscope
(BX51TRF, OLYMPUS Corp., Tokyo, Japan). All of the following electrochemical measure-
ments were performed using a VSP-300 instrument (Bio-Logic, Seyssinet-Pariset, France).
The cells were connected to the VSP-300 and set in ovens where the measuring temperatures
were the same as their gelation temperatures (30, 35, 40, 45, 50, 55, and 60 ◦C). The cyclic
voltammetry (CV) curves were measured at the scan rate of 10 mV/s. Moreover, in order
to perform the long-term measurements, chronopotentiometry (CP) was also performed at
a constant current of 200 nA. Temperature dependence of short-circuit current density (Ar-
rhenius plot) was measured to calculate activation energy through Equation (2) [30]. Here,
Isc (A cm−2) is the short circuit current density which was calculated by dividing the short-
circuit current through the contact area between the gelled electrolyte and the electrode; the
area was measured by a program named ImageJ where the part lacking integrity was not
included in the calculation; Ea (kJ mol−1) is the activation energy; R (J K−1 mol−1) is the
gas constant; T (K) is the temperature; and K is the constant independent of temperature
(frequency factor).

ln Isc = −Ea

R
× 1000

T
+ ln K (2)
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The electrolytes were measured with a UV–Vis spectrophotometer (V-770, JASCO
Corp.). The absorbance in the wavelength range between 600 and 1400 nm was measured
under the bandwidth of 2 nm and scanning speed of 400 nm min−1.

The CV curves with different scan rates changing from 10 to 90 mV s−1 were measured
to calculate the diffusion coefficients through Equation (3) [31–33]. The symmetric cells
were used for measurement, in which the electrolyte was sandwiched between the FTO and
FTO electrodes. This equation is derived from the similar adsorption process theory at the
electrode/electrolyte interface, in which the charge transfer at the interface is fast enough
compared with the ion diffusion. Here, Ip (A) is the peak current, n is the number of reaction
electrons, A (cm2) is the contact area between electrolyte and electrode, D (cm2 s−1) is the
diffusion coefficient which is average value of diffusion coefficient of oxidant and reductant,
c (mol cm−3) is ion concentration, and v (V s−1) is scan rate.

Ip =
(

2.69 × 105
)

n3/2 A D1/2 c v1/2 (3)

Potentiostat electrochemical impedance spectroscopy (PEIS) was also performed. The
symmetric cells were used for PEIS measurement, in which the electrolyte was sandwiched
between the FTO and FTO electrodes. In PEIS, the amplitude of the alternative current was
set to 10 mV. The frequency range was from 7 MHz to 50 mHz. ZView software (Ver 3.5i,
Scribner Associates Inc. Southern Pines, U.S.) was employed for the fitting to calculate the
electrolyte resistance (Re (Ω)) and Warburg element representative of ion diffusion (W (s)).
Moreover, the ion conductivities (σ (cm−1 Ω−1)) and the ion diffusion lengths (l (cm)) were
calculated through Equations (4) [34] and (5) [35], respectively. Here, d (cm) is the distance
between the electrodes, which is 85 × 10−4 cm.

σ = d/(A Re) (4)

l = (D W)1/2 (5)

3. Results
3.1. Chemical Bonding States and Morphologies of GPEs

Chemical bonding states of electrolyte and reference solutions. FT-IR spectra of
PH-NMP-Cu, NMP-Cu, PH-NMP, pure NMP, and PH are shown in Figure 2. The char-
acteristic absorption bands due to NMP and PH were observed for PH-NMP-Cu elec-
trolyte solution [36–39]. As for pure NMP, the C=O stretching vibration mode appeared
at 1664 cm−1 [36]. It is worth noting that the C=O stretching vibrations of PH-NMP-Cu
and NMP-Cu solutions appeared at 1623 and 1651 cm−1, which were shifted to the lower
wavenumber side compared with that of the NMP solution. It indicated that there are
chemical interactions between Cu ions and electronegative C=O of NMP [29,36], in which
the bonding electrons existing in the C=O were partially transferred to the Cu resulting
in reduction in the bond energy and shift of the stretching vibration region for C=O. The
adsorption peak due to the C=O stretching vibrations of PH-NMP-Cu shifted to lower
wavenumber side than that of NMP-Cu, suggesting that the proportion of free NMP was
lower and the proportion of NMP combined with Cu was higher for the PH-NMP-Cu.

Morphologies of cells and electrolytes. Digital camera images of the fabricated
cells and electrolytes taken from cells are shown in Figures 3a–g and S1, which were
gelled at different temperatures (30, 35, 40, 45, 50, 55, and 60 ◦C). It is worth noting
that the color suddenly changes from yellow–green to orange at 50 ◦C. The reason is
considered to be that the chemical bonding state around Cu atoms changed. The middle
part of the electrolyte gelled at higher temperatures (50~60 ◦C) lacks integrity because
the evaporated NMP diffuses from the middle to the surroundings during the gelation
process. The evaporated NMP was adsorbed by the sealing material which was composed
of Poly(alkylalkoxysiloxane), Poly(alkylsiloxane), silica, etc. Moreover, microphotographs
of the electrolytes were observed from the FTO side, as shown in Figure 3h–n. The surface
morphology of the electrolyte is changed from a smooth structure to a particle domain
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structure with increasing gelation temperature, suggesting that the gelled state of the
electrolyte changes with temperature.
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Figure 3. (a–g) Digital camera images of the fabricated cells and (h–n) microphotographs of the
electrolytes observed from FTO side at different gelation temperatures ((a,h) 30 ◦C, (b,i) 35 ◦C,
(c,j) 40 ◦C, (d,k) 45 ◦C, (e,l) 50 ◦C, (f,m) 55 ◦C, and (g,n) 60 ◦C).

Chemical bonding states of electrolytes changing with gelation temperatures. FT-IR
spectra of the electrolytes at different gelation temperatures are shown in Figure 4a, in
which A1 is the absorption band area (1740~1540 cm−1) due to C=O stretching vibration of
NMP [36] and A2 is the absorption band area (900~860 cm−1) due to CF2 stretching vibration
of PH [38,39]. The content rates of NMP for the electrolytes gelled at different temperatures
were calculated by Equation (1). The content rates of NMP tend to decrease with increasing
gelation temperature (Figure 4b), indicating that the NMP was gradually evaporated. Thus,
the color of the electrolyte was changed with gelation temperature and 80 wt% NMP was
evaporated at 60 ◦C. UV–Vis absorption spectra of the electrolytes gelled at 35 ◦C, 45 ◦C,
and 55 ◦C are shown in Figure S2. Comparing the electrolytes gelled at 35 and 45 ◦C, there
was a new absorption band caused by d-d transition due to Cu complex observed for the
electrolytes gelled at 55 ◦C [40–43]. Thus, it indicated that the chemical bonding states of
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the electrolytes changed depending on gelation temperatures. The Cu complex was formed
when the NMP was largely evaporated at the higher gelation temperature.
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Figure 4. (a) FT-IR spectra and (b) content rates of NMP for the electrolytes at different gelation
temperatures, where A1 is the absorption band due to C=O stretching vibration of NMP and A2 is the
absorption band due to CF2 stretching vibration of PVDF-HFP.

3.2. Electrochemical Performances of GPEs

CV measurements. CVs of the cells measured at different temperatures are shown in
Figure 5a, where the measurement temperatures are equal to the gelation temperatures.
The open-circuit voltages and short-circuit current densities were obtained from CV curves,
which are shown in Figure 5b. The open-circuit voltages and short-circuit current densities
show the similar tendency changing with the temperatures where they reached a maximum
at around 45 ◦C. The open-circuit voltage of the STC system is the difference between the
Fermi level of the semiconductor and the redox potential of the ions [8,44]. According to
the Nernst equation, the redox potential increased with increasing temperature. Thus, the
open-circuit voltages increased with the temperature changing from 30 ◦C to 45 ◦C. On
the other hand, the concentration of Cu ions in the electrolyte increased with increasing
temperature due to the gradual evaporation of NMP. As a result, the short-circuit current
densities increased with the temperatures changing from 30 ◦C to 45 ◦C. The open-circuit
voltages and the short-circuit current densities decreased with the temperatures changing
from 45 ◦C to 60 ◦C because the internal resistances of cells increased with solidifying of
electrolytes (Figure 3 and Figure S1). It was found that there was no faradaic current for the
cell gelled and measured at 60 ◦C, indicating that the internal impedance of the electrolyte
was very large. The temperature dependence of short-circuit current density (Arrhenius
plot) in the range of 30~45 ◦C was plotted as shown in Figure S3. The activation energy
was calculated to be 107 kJ mol−1 based on Equation (1), and that was smaller compared to
the PEG600-based liquid electrolyte (150 kJ mol−1) in the STC system [7].

CP measurements. CP of the cells measured at different temperatures is shown in
Figure 5c, where the measurement temperatures are equal to the gelation temperatures.
As shown in Figure 5d, the discharge times of the cells tend to decrease with increasing
temperature from 30 ◦C to 60 ◦C, which is consistent with the decreasing trend of NMP.
On the other hand, it was found that when the diffusion and supply of Cu ions could not
keep up with the charge transfer at the electrode/electrolyte interface, the discharge was
terminated (the voltage reaches 0) for all cells. Thus, it indicates that the NMP plays an
important role in the diffusion of Cu ions during the discharge process, NMP acts as a
medium for Cu ion diffusion, so the decrease in NMP leads to a reduction in the discharge
time. From the CP curves, there was a behavior of the temporary increase in voltage
over time at 30 ◦C and 35 ◦C. The reason is considered to be that part of the free NMP
molecules exist in the electrolytes gelled at 30 ◦C and 35 ◦C, and free NMP molecules were
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further evaporated during the discharge process causing the concentration of Cu ions in the
electrolyte to increase, thereby temporarily increasing the voltage over time. According to
the above results, the possible chemical bonding states for the electrolytes gelled at different
gelation temperatures were considered and are shown in Figure S4. It is inferred that the Cu
ions combined with PH and NMP to form the different chemical composite structures such
as PH/NMP/Cu and NMP/Cu for the electrolyte gelled at lower temperatures (30~40 ◦C).
Moreover, based on the shape of the CV, the charge transfer due to the chemical reaction
was rate-limiting in the measurement range. As a result, slower charge transfer was caused
at the electrode/electrolyte interface and the smaller short-circuit current densities were
obtained for the electrolyte gelled at lower temperatures. Moreover, there was a large
evaporation of NMP in the electrolyte gelled at higher temperatures (50~60 ◦C) that led to
the formation of Cu complexes, which further caused larger internal resistance and lower
short-circuit current densities and the color of electrolyte changes from yellow–green to
orange at 50 ◦C. As for the electrolyte gelled at 45 ◦C, a well-balanced structure among
the NMP molecules was formed to generate a high-efficiency conduction path of the Cu
ions [29] and further cause the highest short-circuit current density.

Polymers 2024, 16, x FOR PEER REVIEW 8 of 12 
 

 

was smaller compared to the PEG600-based liquid electrolyte (150 kJ mol−1) in the STC 
system [7]. 

 
Figure 5. (a) Cyclic voltammetry and (c) chronoamperometry of the cells measured at different tem-
peratures which are equal to the gelation temperatures. (b) Open−circuit voltages, short−circuit cur-
rent densities, and (d) discharge times of the cells are obtained from CV and CP measurements. 

CP measurements. CP of the cells measured at different temperatures is shown in 
Figure 5c, where the measurement temperatures are equal to the gelation temperatures. 
As shown in Figure 5d, the discharge times of the cells tend to decrease with increasing 
temperature from 30 °C to 60 °C, which is consistent with the decreasing trend of NMP. 
On the other hand, it was found that when the diffusion and supply of Cu ions could not 
keep up with the charge transfer at the electrode/electrolyte interface, the discharge was 
terminated (the voltage reaches 0) for all cells. Thus, it indicates that the NMP plays an 
important role in the diffusion of Cu ions during the discharge process, NMP acts as a 
medium for Cu ion diffusion, so the decrease in NMP leads to a reduction in the discharge 
time. From the CP curves, there was a behavior of the temporary increase in voltage over 
time at 30 °C and 35 °C. The reason is considered to be that part of the free NMP molecules 
exist in the electrolytes gelled at 30 °C and 35 °C, and free NMP molecules were further 
evaporated during the discharge process causing the concentration of Cu ions in the elec-
trolyte to increase, thereby temporarily increasing the voltage over time. According to the 
above results, the possible chemical bonding states for the electrolytes gelled at different 
gelation temperatures were considered and are shown in Figure S4. It is inferred that the 
Cu ions combined with PH and NMP to form the different chemical composite structures 
such as PH/NMP/Cu and NMP/Cu for the electrolyte gelled at lower temperatures (30~40 
°C). Moreover, based on the shape of the CV, the charge transfer due to the chemical re-
action was rate-limiting in the measurement range. As a result, slower charge transfer was 
caused at the electrode/electrolyte interface and the smaller short-circuit current densities 
were obtained for the electrolyte gelled at lower temperatures. Moreover, there was a large 
evaporation of NMP in the electrolyte gelled at higher temperatures (50~60 °C) that led to 
the formation of Cu complexes, which further caused larger internal resistance and lower 
short-circuit current densities and the color of electrolyte changes from yellow–green to 

Voltage / V

C
ur

re
nt

 / 
μA

0

2

4

6

8

-0.4 -0.3 -0.2 -0.1 0

(a) 

Vo
lta

ge
 / 

V

Time / h

── 30 oC
── 35 oC
── 40 oC
── 45 oC
── 50 oC
── 55 oC
── 60 oC

-0.4

-0.3

-0.2

-0.1

0 0

10

20

30

40

50

60

70

25 30 35 40 45 50 55 60 65

O
pe

n 
ci

rc
ui

t v
ol

ta
ge

 / 
V

Sh
or

t c
irc

ui
t c

ur
re

nt
de

ns
ity

 / 
μA

cm
-2

Temperature / oC

(b)

D
is

ch
ar

ge
 ti

m
e 

/ h

Temperature / oC
0

20

40

60

80

25 30 35 40 45 50 55 60 65

(d)

-0.4

-0.3

-0.2

-0.1

0
0 10 20 30 40 50 60 70

── 30 oC
── 35 oC
── 40 oC
── 45 oC
── 50 oC
── 55 oC
── 60 oC

(c) 

Figure 5. (a) Cyclic voltammetry and (c) chronoamperometry of the cells measured at different
temperatures which are equal to the gelation temperatures. (b) Open−circuit voltages, short−circuit
current densities, and (d) discharge times of the cells are obtained from CV and CP measurements.

Electrochemical impedances and ion diffusion lengths. To evaluate the electro-
chemical impedance and ion diffusion length, PEIS were also performed. The equivalent
circuit was constructed using symmetric cells, in which the electrolyte was sandwiched
between the FTO and FTO electrodes. The equivalent circuit was determined as shown in
Figure S5a, where R1 is internal electrolyte resistance, R2 is charge transfer resistance at the
FTO/electrolyte interface, CPE1 is electric double layer at the FTO/electrolyte interface,
and Ws1 is Warburg element representative of ion diffusion. PEIS measurement of the
cells at 35 ◦C, 40 ◦C, and 45 ◦C are shown in Figure S5b. Based on the equivalent circuit,
the PEIS curves were fitted and the values of internal electrolyte resistance and Warburg
element representative of ion diffusion (W) were obtained (Table 1). The ion conductivities
(σ) of the cells were calculated through Equation (4) and are shown in Table 1, indicating
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that the σ values decreased with increasing temperatures from 35 ◦C to 45 ◦C because of
the gradual decrease in the content rate of NMP.

Table 1. Ionic conductivity (σ), diffusion coefficient (D), Warburg element (W), and ion diffusion
length (l) of the cell at 35 ◦C, 40 ◦C, and 45 ◦C.

Gelation
Temperature (◦C)

σ
(×10−2, cm−1 Ω−1)

D
(×10−12, m2 s−1)

W
(×10−2, s)

l
(µm)

35 1.73 7.61 1.80 0.37
40 1.72 5.31 0.49 0.16
45 1.68 7.82 0.24 0.14

Diffusion coefficients. The CV curves and oxidation and reduction peak currents
of the cells changing with scan rate are shown in Figure S6. The CV curves changing
with different scan rates were measured to calculate the diffusion coefficients (D) through
Equation (3). The measured D values were close to the previously reported diffusion
coefficient of PVDF-Type GPE [45]. The D value of Cu ions in the electrolyte gelled at 45 ◦C
showed a higher value than that at 35 and 40 ◦C (Table 1), indicating that a well-balanced
structure among the NMP molecules was formed to generate a high-efficiency diffusion
path of the Cu ions in the electrolyte gelled at 45 ◦C.

Ion diffusion lengths. Based on the values of D and W obtained from PEIS measure-
ment, the ion diffusion lengths (l) were calculated through Equation (5) and are shown in
Table 1, indicating that the l values decreased with increasing temperatures from 35 ◦C
to 45 ◦C. This difference in l might be caused by the content rates of NMP in the gelled
electrolytes; NMP as a medium plays a very important role in the diffusion of Cu ions.
Thus, the higher content rate of NMP in the electrolyte gelled at 35 ◦C results in the larger l
value of 0.37 µm. In contrast, the l value of Cu ions in the PEG600-based liquid electrolyte
was 70 µm at 80 ◦C [46].

Recovery behaviors. We found that the once-discharged cells could not discharge
again, even leaving it in an open-circuit (recovery) state for 5 h (Figure S7) or more than
two days. The reason was considered to be that the l values (0.14~0.37 µm) were too
small, and the distance between the electrodes (85 µm) is greater than two times the l
value for each cell. Thus, the diffusion layers approximately equal to l values existing on
the surface of both electrodes were not overlapped, so the ion diffusion between the two
electrodes was hindered. Furthermore, in order to evaluate the other reasons, the FT-IR
and UV–Vis absorption spectra of the cells before and after discharge at 45 ◦C are shown
in Figure S8a,b. As for the results of FT-IR spectra, compared to the electrolyte before
discharge, the C=O stretching vibration of NMP shifts to the lower wavenumber side for
the discharged electrolyte. This indicated that the chemical bonding between Cu ions and
C=O (NMP) became stronger in the discharged electrolyte. Moreover, the new absorption
band caused by d-d transition due to the Cu complex was also observed in the discharged
electrolyte according to the UV–Vis spectra [40–43]. The Cu complex was formed in the
electrolyte of the discharged cell so that the diffusion of the Cu ions is inhibited. Therefore,
these are the possible reasons why we observed that the once-discharged cells could not
discharge again, even leaving it in an open-circuit state for a long time. In the future, we will
continue to improve the electrochemical properties of this GPE so that it can successfully
recover power generation ability.

4. Conclusions

The PH-based GPEs were synthesized under different gelation temperatures. It was
found that the PH-based GPE gelled at 45 ◦C showed higher open-circuit voltage (−0.3 V),
short-circuit current density (59 µA cm−2), and diffusion coefficient (7.82 × 10−12 m2 s−1),
indicating that a well-balanced structure among the NMP molecules was formed to gen-
erate a high-efficiency conduction path of the Cu ions. The PH-based GPE gelled more
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than 45 ◦C had poor electrochemical performance and thermal stability. The reason was
considered to be that there was a large evaporation of NMP in the electrolyte gelled at
higher temperatures to form the Cu complex which caused larger internal resistance and
lower short-circuit current density and open-circuit voltage. Since the evaporation of NMP
at higher temperatures is inevitable, determining how to improve the high-temperature
stability of the PH-based GPE is a future research topic. On the other hand, Cu ion concen-
tration as another important factor needs to be considered. In the future, we will discuss
the Cu ion concentration as a variable in detail and plan to report it as a separate paper.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym16121732/s1, Figure S1: Digital camera images
of the electrolytes; Figure S2: UV–Vis absorption spectra of the electrolytes; Figure S3: Temperature
dependence of short-circuit current density (Arrhenius plot) to calculate activation energy; Figure S4:
Graphic images of the possible states for the electrolytes gelled at different gelation temperatures;
Figure S5: Equivalent circuit using symmetric FTO/FTO cells and PEIS measurement; Figure S6:
Cyclic voltammetry, oxidation and reduction peak current of the cell changing with scan rates;
Figure S7: Discharge (chronoamperometry) and recovery of the cells; Figure S8: FT-IR and UV–Vis
absorption spectra of the cells before and after discharge.
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