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Abstract: Poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) are extensively studied biodegradable
polymers. However, the degradation behavior of their copolymer, poly(lactic-co-glycolic acid)
(PLGA), in marine environments has not yet been confirmed. In this study, the changes in macroscopic
and microscopic morphology, thermal properties, aggregation, and chemical structure of PLA, PGA,
PLGA-85, and PLGA-75 (with 85% and 75% LA content) in simulated marine environments were
investigated. Results revealed that degradation occurred through hydrolysis of ester bonds, and the
degradation rate of PGA was faster than that of PLA. The amorphous region degraded preferentially
over the crystalline region, leading to cleavage-induced crystallization and decreased thermal stability
of PLA, PLGA-85, and PLGA-75. The crystal structures of PLGAs were similar to those of PLA,
and the higher GA content, the faster was the degradation rate. This study provides a deeper
understanding of the seawater degradation behaviors of PLA, PGA, and their copolymers, and
provides guidance for the preparation of materials with controllable degradation performance.

Keywords: PLA; PGA; PLGA; seawater environment; degradation

1. Introduction

Over the past thirty years, there has been a significant increase in the production
and usage of synthetic polymers [1–3]. These polymers have a profound impact on engi-
neering and commercial applications due to their stability towards chemicals, hydrolysis,
temperature, light, microorganisms, and other factors [4]. However, this inherent char-
acteristic of polymers poses a challenge to society in managing plastic waste that enters
the environment [5,6]. According to statistics, currently, humans produce approximately
430 million tons of plastic annually, two-thirds of which quickly become waste. Each year,
19 to 23 million tons of plastic waste flow into aquatic ecosystems, particularly marine
environments, causing significant harm to aquatic ecosystems [7,8]. Therefore, it is impera-
tive to find reliable methods to address marine plastic pollution. To achieve sustainable
long-term development, starting from the material itself and researching plastic materials
that can rapidly self-degrade in seawater is the most fundamental and effective approach
to solving this problem [9–11].

Biodegradable polymer materials are an important type of synthetic biomaterials that
are widely used in medical fields such as trauma repair and tissue regeneration [12–14].
Among the developed biodegradable polymers, aliphatic polyesters have attracted attention
due to their good melt processability, mechanical strength, and excellent degradability.
Poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and their copolymer poly(lactic-co-
glycolic acid) (PLGA) are typical representatives of aliphatic polyesters, which are widely
applied in bone tissue engineering scaffolds, drug release systems, surgical sutures, and
other fields due to their good biocompatibility and controllable degradation [15–19].
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PLA is renewable aliphatic polyester resultant from the lactic acid monomer unit (LA).
It is a semi-crystalline polymer with a glass transition temperature (Tg) of 55 ◦C and a
melting point (Tm) of 165 ◦C [20]. It possesses several excellent properties, such as strength,
stiffness, biocompatibility, thermoplasticity, monomer recyclability, and good processabil-
ity [21–24]. However, PLA exhibits weak nucleation ability and a low crystallization rate
under homogeneous conditions. Conventional processing methods produce products
with low crystallinity or even in an amorphous state, leading to a significant reduction in
mechanical and thermal resistance properties. Additionally, PLA has poor hydrophilicity
and long degradation cycles, which partially limit its applications [25–27]. PGA is another
semi-crystalline, biodegradable polyester with excellent mechanical strength and barrier
properties. The gas barrier property of PGA is 1000 times higher than PLA and 100 times
higher than PET. It can completely degrade within 1–3 months. However, it also has
disadvantages such as difficulties in processing and insufficient toughness [28–31].

PLGA, synthesized through direct condensation of lactic acid and glycolic acid or
ring-opening polymerization of lactide and glycolide, can fully utilize the advantages
of PLA and PGA, such as good biodegradability, biocompatibility, outstanding mechan-
ical properties, thermal resistance, and controllable degradation [32]. Shuai et al. [33]
incorporated PGA into hydroxyapatite/poly l-lactic acid (HAP/PLLA) scaffolds, which
accelerated the degradation rate of the HAP/PLLA scaffolds, improved the hydrophilicity
of the scaffolds, and fully demonstrated the bioactivity and osteoconductivity of HAP.
Miller et al. [34] studied the difference in degradation rates between pure PLA, PGA, and
their copolymers with different monomer ratios. A comparison was made between PLGAs
with LA/GA ratios of 75:25, 50:50, and 25:75, as well as pure PGA. Samples were extracted
from implanted bones and soft tissues of rats at 1, 2, 3, 5, 7, 9, and 11 months for testing.
The results indicated that the addition of PLA slowed down the degradation rate of PGA,
and the higher the proportion of PLA, the lower was the degradation rate of the copolymer.
However, most studies on the degradation behavior of PLGA have been conducted in the
human body fluid environment, with limited research on its degradation behavior in the
marine environment.

This study investigated the degradation behavior of PLA, PGA, and PLGA with
different monomer ratios in marine environments. Considering that most plastic waste in
marine environments is located in coastal areas and biodegradable polymers have a higher
density than seawater, they sink into the seabed after being immersed and penetrated
with seawater. Therefore, the biodegradation of materials in coastal marine areas can be
simulated as aerobic biodegradation at the seawater/sediment interface (intertidal zone or
coastal zone) [35]. Based on this, a simulated marine environment degradation model was
constructed to examine the variations in macro and micro-morphology, thermal properties,
aggregation state, and chemical structure, as well as degradation rate.

2. Experimental
2.1. Materials

The thin film samples of PLA, PGA, and their copolymers used in this experiment
were prepared using Shenhua Corporation’s (Beijing, China) raw materials through a
solvent casting process with a thickness of 0.25 ± 0.05 mm and were placed in a 40 ◦C
vacuum oven for 24 h to remove organic solvents. PLA (Mn = 76,344) and PGA represent
the pure samples of PLA and PGA. PLGA-x (x = 85 or 75) (PLGA-85: Mn = 98,994; PLGA-75:
Mn = 42,022) represents the PLGA copolymers, where x is the mass fraction of LA in the
copolymer.

The collected sediment below the low-water line from Ningbo–Zhoushan Port, Zhe-
jiang was stored at 4 ◦C and used within 4 weeks after sampling. The total organic carbon
(TOC), pH value, and nitrogen content of the sediment were 0.77 mg/g, 8.0, and 0.16 mg/L,
respectively. Artificial seawater with a salinity of 34.0 PSU was used, and marine organisms,
sea anemones, and clownfish were introduced into the simulated environment. Meanwhile,
algae were not removed.
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2.2. Biodegradation in Simulated Marine Environment

The biodegradation experiments with different thin films were conducted in a simu-
lated marine environment at 25 ◦C. The film samples were cut into 5 cm × 5 cm sizes and
placed at the interface between seawater and sediment. Samples were collected periodically
for testing.

2.3. Characterization
2.3.1. SEM

The surface microstructure of the samples during degradation was observed using
a scanning electron microscope (SEM, Quanta FEG, FEI, Eindhoven, The Netherlands)
under an acceleration voltage of 10 kV. Before the measurement, a gold layer was uniformly
sputtered on the surface of the samples.

2.3.2. TGA

Thermogravimetric analysis (TGA) (TA Universal V4.5A, TA Instruments, New Castle,
DE, USA) was used to characterize the thermal decomposition mass loss of the samples.
Samples of approximately 5–10 mg were assayed in an aluminum crucible and tested at
temperatures ranging from 40 ◦C to 500 ◦C under a nitrogen atmosphere, with a heating
rate of 20 ◦C/min.

2.3.3. DSC

The thermal properties of the degraded sample were obtained using a Q100 instrument
(TA Instruments, New Castle, DE, USA) through differential scanning calorimetry (DSC).
Samples of about 5–8 mg were sealed in an aluminum crucible and were then heated from
room temperature to 250 ◦C at a rate of 10 ◦C/min and held at a constant temperature for
5 min to eliminate thermal history. Then, they were cooled to 0 ◦C at a rate of 10 ◦C/min
under a nitrogen atmosphere and re-heated to 250 ◦C at a heating rate of 10 ◦C/min.

2.3.4. XRD

The crystalline structure before and after degradation was measured via X-ray diffrac-
tion (XRD, Rigaku Smart Lab SE, Tokyo, Japan) at a scanning speed of 5◦/min and a
scanning angle range of 10~50◦. The crystallinity was estimated using the following formula:

Xc =
Ac

Ac + Aa
(1)

where Ac and Aa are the areas of crystalline and amorphous regions, respectively. The
interplanar distance (dhkl) was calculated using Bragg’s law:

dhkl =
λ

2 sin θ
(2)

where λ represents the wavelength of X-rays and θ represents the diffraction angle.

2.3.5. FTIR

Fourier-transform infrared spectroscopy (FTIR) analysis was conducted using an ATR-
FTIR spectrometer (Thermos Fisher Scientific, Waltham, MA, USA) with a scanning range
from 4000 cm−1 to 400 cm−1 at room temperature. The resolution was set at 8 cm−1 and
each spectrum was scanned 32 times.

2.3.6. XPS

Chemical elements on the surface of the thin films were investigated using X-ray
photoelectron spectroscopy (XPS) on K-ALPHA+ with an Al Kα X-ray source (Thermos
Fisher Scientific, Waltham, MA, USA).
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2.3.7. GPC

Changes in molecular weight and polydispersity index during the degradation pro-
cess were tested using gel permeation chromatography (GPC-20A, Shimadzu Corporation,
Kyoto, Japan) with tetrahydrofuran as the mobile phase, and calibration was performed
using polystyrene standards. The sample concentration was 0.2 mg/mL, and the corre-
sponding injection volume was 10 µL. After the samples were completely dissolved, the
test was performed with the chromatographic column and detector running at 25 ◦C and
the flow rate set to 2 mL/min. The chain scission concentration in the amorphous phase
was calculated using the following equation [36]:

Samorphous =
1

1 − Xc
× (

1
Mn

− 1
Mn0

) (3)

where Mn and Mn0 represent the number-average molecular weight and initial number-
average molecular weight and Xc is the crystallinity of the specimen.

3. Results and Discussion
3.1. Apparent and Microscopic Morphology of Degraded Samples

The appearance changes of PLA, PLGA-85, PLGA-75, and PGA before and after degra-
dation in seawater for several days are shown in Figure 1a. With the increase of degradation
time, different samples degraded at different rates. Regarding pure PGA, its surface quickly
cracked and decomposed into small fragments as the degradation proceeded. After 15 days,
the PGA specimen broke completely and could not be collected, indicating it had the fastest
degradation rate. Meanwhile, pure PLA underwent significant changes in the marine envi-
ronment only after 120 days, turning brown with decreased transparency and toughness,
eventually fracturing into small pieces. PLGA samples displayed a combination of the
degradation behaviors of pure PLA and PGA. The higher the GA ratio in the blend, the
faster was the degradation rate and the earlier the decomposition into small fragments.
Therefore, both PLA and PGA are considered degradable in marine environment, with
PGA exhibiting a more prominent degradation rate. A controllable degradation rate can be
achieved by adjusting the copolymerization ratio of the two monomers.
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Figure 1. (a) Apparent morphology changes and (b) SEM images of PLA, PLGA-85, PLGA-75, and
PGA before and after degradation.

Further studies on the microstructural evolution of PLA, PLGA-85, PLGA-75, and
PGA samples before and after degradation were carried out through SEM. As shown in
Figure 1b, the surface of the PGA was rougher than that of the pure PLA, PLGA-85, and
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PLGA-75 samples. As the degradation time increased, various degrees of corrosive cavities
were observed on the sample surface, which were attributed to the water penetration and
polymer chain breakage. Considering that the degradation of polyester materials usually
occurred first in the amorphous region, followed by seawater gradually penetrating into the
interior of the crystal, cracks and dissolution cavities appeared on the surface of the sample
in the later stage of degradation. As the degradation progressed, the amorphous region
continuously decreased, leaving irregular protrusions and deepening grooves. Large parti-
cles fragmented into smaller ones, accompanied by changes in crystallinity and molecular
weight, as discussed in the following sections.

3.2. Changes in Thermal Properties and Aggregation Structure

Evaluation of the thermal stability of the sample was performed using thermogravi-
metric analysis, via measuring the initial decomposition temperature at which a 5% mass
loss was observed. The weight loss curves of PLA, PLGA-85, PLGA-75, and PGA films with
different degradation times are shown in Figure 2a–d. For all samples, the onset decompo-
sition temperature (Td) at 5% mass loss shifted to lower temperatures after degradation,
which can be attributed to the decrease in molecular weight caused by chain scission. The
downward shift in the thermal decomposition temperature of PLA after degradation was
less significant compared with PGA, indicating the faster chain scission of PGA. For PLGA-
85 and PLGA-75, only one broad step was observed in the TG curves before degradation,
while there were two distinct steps after degradation. It is speculated that this was due to
the different thermal stability of different molecular chain segments in the copolymer. In
the later stage of degradation, as the GA units preferentially degraded, the molecular chain
segments tended to be homogeneous and the thermal stability became a broad step again.
Compared with PLGA-85, the higher GA content in PLGA-75 led to a faster degradation
rate and a more significant reduction in thermal stability.
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The aggregated structures of PLA, PLGA-85, PLGA-75, and PGA before and after
degradation were further studied through DSC analysis. Figure 3a–d shows the DSC
second-heating curves of the film samples before and after degradation. For pure PLA, the
melting temperature (Tm), cold crystallization temperature (Tcc), and Tg shifted towards
lower temperatures, this can also be observed from Table S1, which is believed to have
been due to the enhanced mobility resulting from the breakage of molecular chains during
degradation. For PGA, Tm and Tg also decreased after degradation; however, no cold
crystallization was observed. Due to the different crystal structures of PLA and PGA,
there were significant differences in their melting and crystallization behaviors. As for
PLGA-85 and PLGA-75, no obvious crystalline peaks and melting peaks were observed in
the DSC curves before degradation, indicating that neither of them were able to crystallize
during the DSC experiment. As degradation progressed, the breakage of molecular chains
led to cleavage-induced crystallization [37], resulting in the appearance of melting and
crystallization peaks. The observed melting and crystallization peaks were close to those of
PLA, indicating that the crystalline structure of the PLGA was closer to PLA when the LA
content was high.

Polymers 2024, 16, x FOR PEER REVIEW 6 of 13 
 

 

of PLA, indicating that the crystalline structure of the PLGA was closer to PLA when the 
LA content was high. 

 
Figure 2. TG curves of (a) PLA, (b) PLGA-85, (c) PLGA-75, and (d) PGA before and after degradation. 

 
Figure 3. DSC second heating curves of (a) PLA, (b) PLGA-85, (c) PLGA-75, (d) PGA. Figure 3. DSC second heating curves of (a) PLA, (b) PLGA-85, (c) PLGA-75, (d) PGA.

To further investigate the evolution of crystal structure during the degradation process,
XRD results are displayed in Figure 4a–f. For PLA, the diffraction peak at 2θ = 16.7◦

corresponded to the (110)/(200) crystal plane, while the peak at 2θ = 19.1◦ corresponded to
the (113)/(203) crystal plane. For PGA, the diffraction peaks at 2θ = 22.4◦ and 2θ = 29.1◦

corresponded to the (110) and (020) crystal planes, respectively [38]. The diffraction peaks
of PLGA-85 and PLGA-75 were similar to those of PLA, and the presence of bimodal
diffraction peaks can be attributed to the coexistence of less ordered α′ and ordered α
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crystal forms [39]. As shown in Figure 4e, the crystallinity of PLA, PLGA-85, and PLGA-75
gradually increased in the early stage of degradation, and then continuously decreased,
while the crystallinity of PGA continued to decrease with the extension of degradation
time. It can be considered that PGA has a linear structure and simple repeating unit, so
it directly undergoes the hydrolysis of the ester bond in seawater. In addition, due to the
high GA content, it has higher hydrophilicity, making it more susceptible to erosion by
water molecules, ultimately leading to faster decomposition of PGA molecular chains to
reduce crystallinity. As for PLA, PLGA-85, and PLGA-75, the amorphous region degraded
first in the initial stage of degradation. During this process, the fractured molecular chains
reorganized to form crystalline structures, commonly referred to as cleavage-induced
crystallization and typically resulting in the formation of smaller-sized defective crystalline
lamellae [12,40,41]. When the degradation of the amorphous region was complete, the
crystalline region began to degrade, leading to a decrease in crystallinity. In addition, there
was no significant change in the interplanar distance d110 before and after degradation,
indicating that degradation had little effect on the interlayer spacing of crystals.
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3.3. Changes in Chemical Structure of Degraded Specimens

Chemical structural changes caused by the degradation of PLA, PLGA-85, PLGA-75,
and PGA were analyzed through FTIR spectroscopy. As shown in Figure 5a–d, for pure
PGA, the peak at 1745 cm−1 and the shoulder peak at 1635 cm−1 were attributed to low
molecular weight esters and their free carbonyl groups, which gradually weakened and
broadened during the degradation process. The peak at 1416 cm−1 can be attributed to
the bending vibration of saturated C-H absorption in CH2; the peak intensity gradually
decreased after degradation. The peaks at 1296 cm−1 are attributed to the C-O bonds of
aliphatic groups, which gradually weakened during degradation and combined with C-O
stretching vibration to form broad peaks. This was a result of ester bond breakage and
hydrolysis forming hydroxyl radicals [42]. For PLA, the intensity of absorbance at both
1750 cm−1 and 1182 cm−1 corresponding to strong C=O stretching and C-O stretching
vibration from the ester group decreased as degradation time increased. The decreased
intensity reflected that the degradation of PLA occurred at the ester group in the long
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molecular chains [43]. For PLGA-85 and PLGA-75, the peaks at 1452 cm−1 and 1422 cm−1

represent the bending vibrations of CH3 and CH2 absorbed from LA units and GA units,
respectively. To measure the relative content changes of LA and GA units during the
degradation process, the absorbance intensity ratios of characteristic peaks at 1452 cm−1 and
1422 cm−1 are compared in Figure 5e. It can be seen that with the increase of degradation
time, the absorbance intensity ratios of both PLGA-85 and PLGA-75 showed an increasing
trend, indicating that the degradation occurred preferentially in the GA units; similar
results have also been reported in other studies [44].
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Figure 6a–c shows the C1s core level spectra of PLA, PLGA-85, and PLGA-75 before
and after degradation. The C1s core level spectra can be fitted into three peaks, with the
peak values at 284.6, 286.3, and 288.6 eV representing the C-C, C-O, and -COO- groups,
respectively. The peak of -COO- represents the ester bonds and carboxyl groups in the
hydrolysis products, while the peak of C-O is contributed by the ester bonds, hydrolysis
products, and terminal hydroxyl groups. To evaluate the degradation rates, the relative
peak area ratios of C-O to -COO- are compared in Figure 6d. The corresponding peak area
ratios of PLA and PLGA-85 increased from 1.3 to 2.22 and 1.0 to 2.48 after 300 days, while
the value of PLGA-75 increased from 1.15 to 2.31 after 120 days. Since a larger relative peak
area ratio indicates a higher degradation rate in the film samples, it can be concluded that
the degradation rate of PLGA-75 was the highest, whereas the degradation rate of PLA was
the lowest.
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3.4. Changes in Molecular Weight and Polydispersity Index of Degraded Specimens

Since PGA is insoluble in conventional organic solvents, only the number-average
molecular weight (Mn) and polydispersity index (PDI) of PLA, PLGA-85, and PLGA-75
during degradation were measured via GPC. As shown in Figure 7a, the Mn values of these
three samples all decreased after degradation, and PLGA-75 decreased the fastest, followed
by PLGA-85, and then PLA. In a marine environment, the LA/GA ratio determines the
extent of Mn changes. A higher proportion of LA units in the polymer main chain slows
down hydrolysis, while GA units can promote hydration and the diffusion of water, thereby
accelerating the hydrolysis process [45–47]. Regarding the PDI values shown in Figure 7b,
those of PLA and PLGA-85 increased first and then decreased during degradation, while
the values of PLGA-75 continuously decreased, the molecular weight distribution curve of
Figure S1 also demonstrates this point. These results indicate that the higher GA content
of PLGA-75 can cause a more uniform breakage of molecular chains. In addition, the
concentration of chain scission in the amorphous phase (Samorphous) is further compared
in Figure 7c. When hydrolysis occurred, chain breakage first took place in the amorphous
phase due to the looser molecular chains facilitating the entry of water. For all these three
samples, the values of Samorphous during degradation all showed a trend of initially increas-
ing and then maintaining a constant. Among them, at the same degradation time, PLGA-75
possessed the largest value, followed by PLGA-85, and PLA displayed the smallest value,
which further confirmed that higher GA content led to a faster degradation rate.
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3.5. Structural Evolution Discussion

Summarizing the above TG, DSC, XRD, FTIR, XPS, and GPC results, the structural
evolution of PLA, PLGA, and PGA films during hydrolysis were analyzed. The schematic
diagram shown in Figure 8 describes the structural changes during degradation. The
degradation of PLA, PGA, and PLGA in the simulated marine environments mainly in-
volved the hydrolysis of ester bonds. For PLA, the chain scission caused by hydrolysis first
occurred in the amorphous region, and due to the enhanced mobility of fractured molecular
chains, cleavage-induced crystallization was generated. As the degradation time extended,
the crystalline region gradually underwent degradation, generating fragments with low
molecular weight. Therefore, during the degradation process, the molecular weight of the
PLA gradually decreased, while the crystallinity first increased and then decreased. The
PGA, due to its linear structure and simple repeating units, directly underwent hydrolysis
of the ester bond in seawater. In addition, due to its higher hydrophilicity than PLA,
the PGA molecular chains decomposed faster, thereby reducing the crystallinity. As for
the copolymers, due to the superior hydrophilicity of GA units compared with LA units,
the hydrolysis of GA units took place preferentially, and cleavage-induced crystallization
also appeared, making the crystallinity first increase and then decrease. Regarding the
PLGA-85 and PLGA-75 with high LA content, their crystal structures were similar to PLA
and contained less ordered α′ and ordered α crystal forms. In addition, the higher the GA
content, the faster was the degradation rate of PLGA.
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4. Conclusions

In this work, the degradation behaviors of PLA, PGA, and their copolymers PLGA-85
and PLGA-75 in simulated marine environments were investigated. Polyester materials
underwent degradation in marine environments primarily through the hydrolysis of ester
bonds, with PGA degrading faster than PLA. During the degradation process, the molecular
chains broke, leading to a decrease in molecular weight and a reduction in the thermal
stability of the materials. The crystal structures of PLGA-85 and PLGA-75 were similar to
that of PLA, and the higher the GA unit content, the faster was the degradation rate, which
could be attributed to the superior hydrophilicity of GA units compared with LA units.
Meanwhile, PGA, due to its linear structure and simple repeating units, directly underwent
hydrolysis of the ester bond in seawater and the molecular chains broke down to reduce
the crystallinity. This study provides a deeper understanding of the seawater degradation
behaviors of PLA, PGA, and their copolymers, and provides guidance for the preparation
of materials with controllable degradation performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16131765/s1, Figure S1: Signal strength versus retention
time change curves (a) PLA, (b) PLGA-85, (c) PLGA-75; Table S1: Changes of Tg, Tcc, and Tm during
different degradation times.
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