Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Feedstock Preparation and Flowability Analysis
2.3. Micro-Injection Moulding Process (Green Part Preparation)
2.4. Debinding Process (Brown Part Preparation)
2.5. Sintering Process
3. Results and Discussion
3.1. Material Characterisation
3.2. Preparation of Feedstocks
3.3. Rheology
3.4. Fabrication of Green Part
3.5. Elimination of Binders
3.6. Sintered 3YSZ/Bimodal SS 316L Micro-Parts
4. Conclusions
- The feedstocks demonstrated good homogeneity. The melting temperatures of the pure palm stearin and LDPE binders dropped after mixing separately with 3YSZ and bimodally configured SS 316L powders, inferring that the binder system was absorbed by the powders as well as evaporated during the mixing process. The rheological analysis of both feedstocks exhibited a pseudoplastic behaviour, with the lowest ranges of viscosity for 3YSZ and bimodal SS 316L at 230 °C being 455.6 Pa∙s–681.4 Pa∙s and 24.4 Pa∙s–114.5 Pa∙s, respectively, which was anticipated to be suitable for the 2C-µPIM process. According to a rheological evaluation, the green bi-material micro-parts of 3YSZ and bimodal SS 316L were fabricated at a mould temperature of 100 °C, as the use of a mould temperature lower than this would impede the flowability of the bimodal SS 316L feedstock into the mould cavity during injection moulding.
- While 66.8%–74.4% of the palm stearin binder was removed from green bi-materials during the solvent debinding process at temperatures ranging from 40 °C and 60 °C, the largest quantity (82.4%) was removed at 70 °C. The presence of the remaining 17.6% palm stearin in the 3YSZ portion and the LDPE binder in the 3YSZ and bimodal SS 316L portions of the bi-material solvent debound at 70 °C were revealed by a comparison between the TGA of the used feedstocks and the 3YSZ and bimodal SS 316L micro-components solvent debound at 70 °C. In this study, the thermal debinding procedure eliminated 99% of the binder system. Following thermal debinding, a TGA-based comparative study indicated that only a very little amount of LDPE persisted in the 3YSZ portion of the bi-material, whereas the bimodal SS 316L portion was totally free of LDPE.
- When sintered at 1350 °C, the solvent and thermal debound 3YSZ/bimodal SS 316L micro-parts showed a linear shrinkage of 14.8%; however, the shrinkage was substantially decreased at lower sintering temperatures. Increasing the sintering temperature from 1250 °C to 1350 °C resulted in an increase in the relative density from 88.6% to 95.3%. The microstructure of the bi-material sintered at 1350 °C demonstrated a reasonable bonding between 3YSZ and bimodal SS 316L. Finally, the hardness at the bonding region of the bi-materials increased drastically from 677.5 HV to 1017.4 HV when the sintering temperature was increased from 1300 °C to 1350 °C.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tafti, A.A.; Demers, V.; Vachon, G.; Brailovski, V. Influence of powder size on the moldability and sintered properties of irregular iron-based feedstock used in low-pressure powder injection molding. Powder Technol. 2023, 420, 118395. [Google Scholar] [CrossRef]
- Gal, C.W.; Oh, J.W.; Song, G.W.; Shin, D.S.; Park, S.J. Rheological and thermal debinding behaviors of silicon nitride in powder injection molding. Ceram. Int. 2019, 45, 16982–16991. [Google Scholar] [CrossRef]
- Meng, J.; Loh, N.H.; Tay, B.Y.; Tor, S.B.; Fu, G.; Khor, K.A.; Yu, L. Pressureless spark plasma sintering of alumina micro-channel part produced by micro powder injection molding. Scr. Mater. 2011, 64, 237–240. [Google Scholar] [CrossRef]
- Han, J.S.; Gal, C.W.; Kim, J.H.; Park, S.J. Fabrication of high-aspect-ratio micro piezoelectric array by powder injection molding. Ceram. Int. 2016, 42, 9475–9481. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.Y.; Qi, X.T.; Qi, M.X. Effects of wall slip on ZrO2 rheological behavior in micro powder injection molding. Ceram. Int. 2018, 44, 16282–16294. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Tian, W.; Li, Y.; Tang, L.; Pang, Q.; Chen, M. Micro powder injection molding of boron carbide components with SiC-Al2O3-Y2O3 sintering additives. Chin. J. Aeronaut. 2022, 35, 429–440. [Google Scholar] [CrossRef]
- Ruh, A.; Piotter, V.; Plewa, K.; Ritzhaupt-Kleissl, H.-J.; Hausselt, J. Development of two-component micropowder injection molding (2C-MicroPIM)—Process development. Int. J. Appl. Ceram. Technol. 2011, 8, 610–616. [Google Scholar] [CrossRef]
- Imgrund, P.; Rota, A.; Wiegmann, M. Getting better bonding at tiny interfaces. Met. Powder Rep. 2007, 62, 31–34. [Google Scholar] [CrossRef]
- Rajabi, J.; Muhamad, N.; Sulong, A.B.; Fayyaz, A.; Raza, M.R. The effect of nanosized stainless steel powder addition on mechanical and physical properties of micropowder injection molded part. Mater. Des. 2014, 63, 223–232. [Google Scholar] [CrossRef]
- German, R.M. Sintering Theory and Practice; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Choi, J.-P.; Park, J.-S.; Song, J.-I.; Lee, W.-S.; Lee, J.-S. Design of trimodal Fe micro-nanopowder feedstock for micro powder injection molding. Powder Technol. 2017, 317, 1–5. [Google Scholar] [CrossRef]
- Trunec, M.; Maca, K.; Shen, Z. Warm pressing of zirconia nanoparticles by the spark plasma sintering technique. Scr. Mater. 2008, 59, 23–26. [Google Scholar] [CrossRef]
- Yu, P.C.; Li, Q.F.; Fuh, J.Y.H.; Li, T.; Ho, P.W. Micro injection molding of micro gear using nano-sized zirconia powder. Microsyst. Technol. 2009, 15, 401–406. [Google Scholar] [CrossRef]
- German, R.M.; Bose, A. Injection Molding of Metals and Ceramics; Metal Powder Industries Federation: Princeton, NJ, USA, 1997. [Google Scholar]
- Krinitcyn, W.; Toropkov, N.; Pervikov, A.; Glazkova, E.; Lerner, M. Characterization of nano/micro bimodal 316L SS powder obtained by electrical explosion of wire for feedstock application in powder injection molding. Powder Technol. 2021, 394, 225–233. [Google Scholar] [CrossRef]
- You, W.-K.; Choi, J.-P.; Yoon, S.-M.; Lee, J.-S. Low temperature powder injection molding of iron micro-nano powder mixture. Powder Technol. 2012, 228, 199–205. [Google Scholar] [CrossRef]
- Oh, J.W.; Seong, Y.; Park, S.J. Effect of nanoparticles in bimodal powder on physical and mechanical properties of powder injection molded parts. J. Mater. Process. Technol. 2018, 262, 503–510. [Google Scholar] [CrossRef]
- Oh, J.W.; Lee, W.S.; Park, S.J. Influence of nano powder on rheological behavior of bimodal feedstock in powder injection molding. Powder Technol. 2017, 311, 18–24. [Google Scholar] [CrossRef]
- Emeka, U.B.; Sulong, A.B.; Muhamad, N.; Sajuri, Z.; Salleh, F. Two component injection molding of bi-material of stainless steel and yttria stabilized zirconia–green part. J. Kejuruter. 2017, 29, 49–55. [Google Scholar] [CrossRef]
- Muñoz, M.C.; Gallego, S.; Beltrán, J.I.; Cerdá, J. Adhesion at metal–ZrO2 interfaces. Surf. Sci. Rep. 2006, 61, 303–344. [Google Scholar] [CrossRef]
- Kultamaa, M.; Gunell, M.; Mönkkönen, K.; Suvanto, M.; Saarinen, J.J. Antimicrobial activity of porous metal injection molded (MIM) 316L stainless steel by Zn, Cu and Ag electrodeposition. Surf. Interfaces 2023, 38, 102778. [Google Scholar] [CrossRef]
- Ammosova, L.; Mönkkönen, K.; Suvanto, M. Precise fabrication of microtextured stainless steel surfaces using metal injection moulding. Precis. Eng. 2020, 62, 89–94. [Google Scholar] [CrossRef]
- Simchi, A.; Rota, A.; Imgrund, P. An investigation on the sintering behavior of 316L and 17-4PH stainless steel powders for graded composites. Mater. Sci. Eng. A 2006, 424, 282–289. [Google Scholar] [CrossRef]
- Hanemann, T.; Heldele, R.; Mueller, T.; Hausselt, J. Influence of stearic acid concentration on the processing of ZrO2-containing feedstocks suitable for micropowder injection molding. Int. J. Appl. Ceram. Technol. 2011, 8, 865–872. [Google Scholar] [CrossRef]
- Foudzi, F.M.; Muhamad, N.; Sulong, A.B.; Zakaria, H. Yttria stabilized zirconia formed by micro ceramic injection molding: Rheological properties and debinding effects on the sintered part. Ceram. Int. 2013, 39, 2665–2674. [Google Scholar] [CrossRef]
- Liu, L.; Ni, X.L.; Yin, H.Q.; Qu, X.H. Mouldability of various zirconia micro gears in micro powder injection moulding. J. Eur. Ceram. Soc. 2015, 35, 171–177. [Google Scholar] [CrossRef]
- Arifin, A.; Sulong, A.B.; Muhamad, N.; Syarif, J.; Ramli, M.I. Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material. Mater. Des. 2015, 65, 1028–1034. [Google Scholar] [CrossRef]
- Park, J.M.; Han, J.S.; Gal, C.W.; Oh, J.W.; Kim, J.H.; Kate, K.H.; Atre, S.V.; Kim, Y.; Park, S.J. Fabrication of micro-sized piezoelectric structure using powder injection molding with separated mold system. Ceram. Int. 2018, 44, 12709–12716. [Google Scholar] [CrossRef]
- Loh, N.H.; Tor, S.B.; Khor, K.A. Production of metal matrix composite part by powder injection molding. J. Mater. Res. Technol. 2001, 108, 398–407. [Google Scholar] [CrossRef]
- Samanta, S.K.; Chattopadhyay, H.; Godkhindi, M.M. Thermo-physical characterization of binder and feedstock for single and multiphase flow of PIM 316L feedstock. J. Mater. Process. Technol. 2011, 211, 2114–2122. [Google Scholar] [CrossRef]
- Reddy, J.J.; Vijayakumar, M.; Tallapragada, R.M.R.; Ramakrishnan, P. Loading of solids in a liquid medium: Determination of CBVC by torque rheometry. J. Eur.Ceram.Soc. 1996, 16, 567–574. [Google Scholar] [CrossRef]
- Mulser, M.; Veltl, G.; Petzoldt, F. Development of magnetic/non-magnetic stainless steel parts produced by two-component metal injection molding. Int. J. Precis. Eng. Manuf. 2016, 17, 347–353. [Google Scholar] [CrossRef]
- Meng, J.; Loh, N.H.; Tay, B.Y.; Fu, G.; Tor, S.B. Tribological behavior of 316L stainless steel fabricated by micro powder injection molding. Wear 2010, 268, 1013–1019. [Google Scholar] [CrossRef]
- Song, J.H.; Evans, J.R.G. The injection moulding of fine and ultra-fine zirconia powders. Ceram. Int. 1995, 21, 325–333. [Google Scholar] [CrossRef]
- Meng, J.; Loh, N.H.; Fu, G.; Tor, S.B.; Tay, B.Y. Replication and characterization of 316L stainless steel micro-mixer by micro powder injection molding. J. Alloys Compd. 2010, 496, 293–299. [Google Scholar] [CrossRef]
- Basir, A.; Sulong, A.B.; Jamadon, N.H.; Muhamad, N.; Emeka, U.B. Process parameters used in macro/micro powder injection molding: An overview. Met. Mater. Int. 2021, 27, 2023–2045. [Google Scholar] [CrossRef]
- Asmawi, R.; Ibrahim, M.H.I.; Amin, A.M. Mixing and characterisation of stainless steel 316L feedstock for waste polystyrene binder system in metal injection molding (MIM). Appl. Mech. Mater. 2014, 607, 83–86. [Google Scholar] [CrossRef]
- Luo, J.-S.; Yi, Z.-Z.; Xiao, B.; Gao, Y.; Xie, Z.-P.; Li, J.-B.; Huang, Y. Injection molding of ultra-fine zirconia (Y-TZP) powders. J. Ceram. Process. Res. 2006, 7, 14–19. [Google Scholar]
- Wen, J.; Liu, W.; Xie, Z.; Lou, C.; Yang, X. Effects of the binder compositions on the homogeneity of ceramic injection molded compacts. Ceram. Int. 2018, 44, 3218–3225. [Google Scholar] [CrossRef]
- Sotomayor, M.E.; Levenfeld, B.; Várez, A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Mater. Sci. Eng. A 2011, 528, 3480–3488. [Google Scholar] [CrossRef]
- Choi, J.-P.; Park, J.-S.; Hong, E.-J.; Lee, W.-S.; Lee, J.-S. Analysis of the rheological behavior of Fe trimodal micro-nano powder feedstock in micro powder injection molding. Powder Technol. 2017, 319, 253–260. [Google Scholar] [CrossRef]
- Fayyaz, A.; Muhamad, N.; Sulong, A.B.; Rajabi, J.; Wong, Y.N. Fabrication of cemented tungsten carbide components by micro-powder injection moulding. J. Mater. Process. Technol. 2014, 214, 1436–1444. [Google Scholar] [CrossRef]
- Jabir, S.M.; Noorsyakirah, A.; Afian, O.M.; Nurazilah, M.Z.; Aswad, M.A.; Afiq, N.H.M.; Mazlan, M. Analysis of the Rheological Behavior of Copper Metal Injection Molding (MIM) Feedstock. Procedia Chem. 2016, 19, 148–152. [Google Scholar] [CrossRef]
- Loebbecke, B.; Knitter, R.; Haußelt, J. Rheological properties of alumina feedstocks for the low-pressure injection moulding process. J. Eur. Ceram. Soc. 2009, 29, 1595–1602. [Google Scholar] [CrossRef]
- Yang, W.-W.; Yang, K.-Y.; Hon, M.-H. Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater. Chem. Phys. 2003, 78, 416–424. [Google Scholar] [CrossRef]
- Hidalgo, J.; Jiménez-Morales, A.; Barriere, T.; Gelin, J.C.; Torralba, J.M. Capillary rheology studies of INVAR 36 feedstocks for powder injection moulding. Powder Technol. 2015, 273, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Huang, B.; Qu, X. Viscosity and melt rheology of metal injection molding feedstock. Powder Metall. 1999, 42, 86–90. [Google Scholar] [CrossRef]
- Huang, B.; Liang, S.; Qu, X. The rheology of metal injection molding. J. Mater. Process. Technol. 2003, 137, 132–137. [Google Scholar] [CrossRef]
- Sharmin, K.; Schoegl, I. Optimization of binder removal for ceramic microfabrication via polymer co-extrusion. Ceram. Int. 2014, 40, 3939–3946. [Google Scholar] [CrossRef]
- Lin, S.T.; German, R.M. Extraction debinding of injection-molded parts by condensed solvent. Int. J. Powder Metall. 1989, 21, 19–24. [Google Scholar]
- Yang, W.-W.; Yang, K.-Y.; Wang, M.-C.; Hon, M.-H. Solvent debinding mechanism for alumina injection molded compacts with water-soluble binders. Ceram. Int. 2003, 29, 745–756. [Google Scholar] [CrossRef]
- Omar, M.A.; Ibrahim, R.; Sidik, M.I.; Mustapha, M.; Mohamad, M. Rapid debinding of 316L stainless steel injection moulded component. J. Mater. Process. Technol. 2003, 140, 397–400. [Google Scholar] [CrossRef]
- Chen, G.; Cao, P.; Wen, G.; Edmonds, N. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding. Mater. Chem. Phys. 2013, 139, 557–565. [Google Scholar] [CrossRef]
- Aslam, M.; Ahmad, F.; Yusoff, P.S.M.B.M.; Altaf, K.; Omar, M.A.; German, R.M. Powder injection molding of biocompatible stainless steel biodevices. Powder Technol. 2016, 295, 84–95. [Google Scholar] [CrossRef]
- Cheng, J.; Wan, L.; Cai, Y.; Zhu, J.; Song, P.; Dong, J. Fabrication of W–20 wt.% Cu alloys by powder injection molding. J. Mater. Process. Technol. 2010, 210, 137–142. [Google Scholar] [CrossRef]
- Zhang, J.X.; Chandel, R.S.; Seow, H.P. Effects of chromium on the interface and bond strength of metal–ceramic joints. Mater. Chem. Phys. 2002, 75, 256–259. [Google Scholar] [CrossRef]
- Simchi, A.; Petzoldt, F. Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures. Metall. Mater. Trans. A 2010, 41, 233–241. [Google Scholar] [CrossRef]
Melt Temperature (°C) | Mould Temperature (°C) | Injection Pressure (bar) | Injection Time (s) |
---|---|---|---|
230 | 100 | 12 | 6 |
Feedstocks | Temperature (°C) | ) |
---|---|---|
3YSZ | 130 | 0.642 |
180 | 0.603 | |
230 | 0.364 | |
Bimodal SS 316L | 130 | 0.616 |
180 | 0.538 | |
230 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basir, A.; Sulong, A.B.; Muhamad, N.; Juri, A.Z.; Jamadon, N.H.; Foudzi, F.M.; Radzuan, N.A.M. Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding. Polymers 2024, 16, 1831. https://doi.org/10.3390/polym16131831
Basir A, Sulong AB, Muhamad N, Juri AZ, Jamadon NH, Foudzi FM, Radzuan NAM. Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding. Polymers. 2024; 16(13):1831. https://doi.org/10.3390/polym16131831
Chicago/Turabian StyleBasir, Al, Abu Bakar Sulong, Norhamidi Muhamad, Afifah Z. Juri, Nashrah Hani Jamadon, Farhana Mohd Foudzi, and Nabilah Afiqah Mohd Radzuan. 2024. "Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding" Polymers 16, no. 13: 1831. https://doi.org/10.3390/polym16131831
APA StyleBasir, A., Sulong, A. B., Muhamad, N., Juri, A. Z., Jamadon, N. H., Foudzi, F. M., & Radzuan, N. A. M. (2024). Debinding of Yttria-Stabilised Zirconia/Bimodal Stainless Steel 316L Bi-Materials Produced through Two-Component Micro-Powder Injection Moulding. Polymers, 16(13), 1831. https://doi.org/10.3390/polym16131831