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Abstract: To explore a highly conductive flexible platform, this study develops PIDF-BT@SWCNT by
wrapping single-walled carbon nanotubes (SWCNTs) with a conjugated polymer, PIDF-BT, known
for its effective doping properties. By evaluating the doping behaviors of various dopants on
PIDF-BT, appropriate dopant combinations for cascade doping are selected to improve the doping
efficiency of PIDF-BT@SWCNT. Specifically, using F4TCNQ or F6TCNNQ as the first dopant, followed
by AuCl3 as the second dopant, demonstrates remarkable doping efficiency, surpassing that of
the individual dopants and yielding an exceptional electrical conductivity exceeding 6000 S/cm.
Characterization using X-ray photoelectron spectroscopy and Raman spectroscopy elucidates the
doping mechanism, revealing an increase in the proportion of electron-donating atoms and the
ratio of quinoid structures upon F4TCNQ/AuCl3 cascade doping. These findings offer insights into
optimizing dopant combinations for cascade doping, showcasing its advantages in enhancing doping
efficiency and resulting electrical conductivity compared with single dopant processes.

Keywords: conjugated polymer; polymer-SWCNT hybridization; cascade doping; doping
mechanism; flexible conductor

1. Introduction

Flexible conductive platforms have recently drawn significant attention due to their
potential applications in free-form optoelectronic devices, such as solar cells [1–3], field-
effect transistors (FET) [4–6], thermoelectric devices [7–9], and wearable electronics [10–12].
Conjugated polymers (CPs) have been extensively investigated as a representative ex-
ample of flexible conductive platforms because their electrical conductivity can be easily
enhanced through chemical doping [13–16]. Solution-processible CPs have demonstrated
high electrical conductivity exceeding 600 S/cm through efficient charge carrier generation
by molecular-level dopants without using strong acids [17,18]. However, despite noticeable
improvements, the conductivity of CP-based platforms remains unsatisfactory, significantly
lower than that of conventional conductive ceramics and metals. This indicates that al-
though ceramics and metals are less flexible compared to CPs, the electrical conductivity
of CP-based conductors needs further enhancement for the stable operation of flexible
electronic devices.

Carbon nanotubes (CNTs) have excellent electrical properties, such as high intrinsic
carrier mobility reaching up to 105 cm2/V·s [19]. Therefore, despite their limited solution
processability due to strong cohesive interactions, various studies are being conducted to
harness the high electrical properties and large surface area of CNTs [20–22]. In a previous
study, we introduced CP-wrapped CNTs that exhibit excellent electrical conductivity of
over 5000 S/cm with good dispersion characteristics [23]. The high conductivity of the
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CP-CNT core–shell material is attributed to the synergistic effects of the high mobility
of CNTs and the carrier generation of outer CP chains enhanced by additional doping
with small molecular dopants. Doping reduces the charge transfer barrier between CP
and CNT, facilitating the use of high-mobility CNTs as the principal carrier transport
channel. Indeed, a 4-probe FET fabricated with CP-wrapped single-walled CNTs (SWCNTs)
revealed that charge carrier mobility is sensitively affected by the doping level. The mobility
reached up to 138.0 cm2/V·s after AuCl3 doping, significantly higher than that of common
CPs. Therefore, further increases in electrical conductivity can be expected through the
application of a doping process that maximizes the doping efficiency of the polymer, as
additional charge carriers created in the CPs by the doping process directly contribute to
increasing the conductivity of CP-wrapped CNTs.

Various studies have been conducted on doping processes that can improve the doping
efficiency of CPs. For example, Kiefer et al. achieved higher doping efficiency by sequen-
tially applying two different dopants with shallow and relatively deep lowest unoccupied
molecular orbital (LUMO) levels compared to using each single dopant individually [24].
Additionally, Yamashita et al. found that the doping efficiency of CPs can be further
improved after initial doping with a kinetically favorable dopant, followed by efficient
anion exchange with a second dopant [15]. Recently, we demonstrated that during cascade
doping, the initially doped CPs release their primary dopant through anion exchange with
a dopant possessing a deeper LUMO level [25]. This anion exchange process occurs via a
transition state that requires relatively lower activation energy compared to doping with
individual dopants. Consequently, higher doping efficiency can be achieved through anion
exchange due to the additional participation of the released dopant and consecutive anion
exchange. To maximize the efficiency of the sequential cascade doping, the first dopant
should exhibit kinetically favorable doping characteristics, while the second dopant should
possess an energetically favorable deeper LUMO level than the first dopant to facilitate
spontaneous anion exchange.

In this study, using an indoloindole-based CP (PIDF-BT) and various dopants with
verified doping characteristics [26–31], we specified the doping kinetics of each dopant
by comparing the doping time required for the electrical conductivity to reach satura-
tion. Based on preliminary screening of dopants for PIDF-BT, 2,3,5,6-tetrafluoro-7,7,8,8-
tetracyanoquinodimethane (F4TCNQ) and AuCl3 were selected as principal dopants
for their kinetically and energetically favorable doping properties, respectively. PIDF-
BT@SWCNT was then prepared by wrapping PIDF-BT around commercially available SWC-
NTs, and the doping efficiency and resulting electrical conductivity were compared between
individual dopant treatments and cascade doping. Additionally, the increased doping effi-
ciency of the cascade doping process was verified through changes in UV–Vis absorbance,
X-ray photoelectron spectroscopy (XPS), and electron spin resonance (ESR) measurements.

2. Results and Discussion

PIDF-BT and its analogues containing indoloindole moieties have demonstrated excel-
lent doping abilities through efficient intermolecular charge transfer to dopants [8,13,32].
Additionally, F4TCNQ and 2,2′-(perfluoronaphthalene-2,6-diylidene) dimalononitrile
(F6TCNNQ) exhibit excellent doping properties for CPs [26,27]. As the doping mechanism
of F4TCNQ and F6TCNNQ is based on electron donor–acceptor interactions with electron-
donating CPs, they are considered representative examples of molecular dopants [32].
Moreover, Lewis acids have been intensively investigated as alternatives to molecular
dopants because they can create hole-type charge carriers in CPs through Lewis acid–base
interactions [33,34]. Representative examples of efficient Lewis acids include nitroso-
nium tetrafluoroborate (NOBF4), AuCl3, FeCl3, and tris(4-bromophenyl)ammoniumyl
hexachloroantimonate (Magic Blue), which have been adopted for CP doping [26–31].
Therefore, the doping behavior of PIDF-BT with each individual dopant was evaluated
to identify suitable dopant combinations for sequential cascade doping in this study. The
chemical structures of the materials used to confirm the doping characteristics of PIDF-BT
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are summarized in Figure 1a. The doping kinetics for each dopant were estimated through
changes in electrical conductivity and UV–Vis absorbance over time. As displayed in
Figure 1b, when comparing the time required for the saturation of electrical conductivity by
each dopant in PIDF-BT doping, molecular dopants (F4TCNQ and F6TCNNQ) completed
doping within 10 s, while Lewis acid dopants took longer than 100 s. This result indicates
that molecular dopants are advantageous for CP doping compared to Lewis acid dopants,
in terms of doping kinetics.
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The doping characteristics of PIDF-BT over time can be clearly observed through
changes in the UV–Vis absorption spectrum. When PIDF-BT was exposed to molecular
dopants such as F4TCNQ (Figure S1a) and F6TCNNQ (Figure S1b), the original absorp-
tion of PIDF-BT almost disappeared, and polaron absorption formed by doping became
prominent around 700 nm within 10 s of doping time. However, for Lewis acid dopants,
although the changes in the absorption spectrum due to doping were similar to those of
molecular dopants, the required doping time was more than 10 times longer to develop an
absorption spectrum similar to that of PIDF-BT doped with molecular dopants. This result
further implies that molecular dopants are more favorable for doping kinetics than Lewis
acid dopants. In addition, the electrical conductivity of doped PIDF-BT varied significantly
depending on the type of dopant applied (Figure 1c). Notably, high electrical conductivities
exceeding 260 S/cm were achieved through doping with molecular dopants (F4TCNQ
and F6TCNNQ), while AuCl3 and FeCl3 were the only effective dopants among the Lewis
acids, resulting in similarly high electrical conductivities. Particularly, PIDF-BT doped
with AuCl3 exhibited the highest electrical conductivity, exceeding 320 S/cm. Theoretical
considerations suggest that the doping tendency is influenced by the energy offset between
the highest occupied molecular orbital (HOMO) of the CP and the lowest unoccupied
molecular orbital (LUMO) of the dopant [35,36]. To investigate this, the energy levels of
each dopant were summarized [26–31], and the energy offset with PIDF-BT for each dopant
was calculated by subtracting the LUMO of each dopant from the HOMO of PIDF-BT.
However, no significant correlation was found between the energy offset and the electrical
conductivity of doped PIDF-BT (Figures 1c and S2b), suggesting that while energy offset is
a necessary factor for doping, it is not the sole determinant of doping efficiency [32].

The doping efficiency of the applied dopants and the resulting difference in electrical
conductivity can be estimated from the UV–Vis absorption spectrum of doped PIDF-BT.
Upon doping, the original absorption of PIDF-BT around 550 nm diminished, and a
new absorption band emerged around 700 nm for all dopants (Figure S1), attributed to
the absorption of polarons formed by doping [13]. Comparing the absorption intensity
at 700 nm to that at 550 nm, AuCl3-doped PIDF-BT exhibited relatively high polaron
absorption, correlating with its highest electrical conductivity. The trend in polaron intensity
tended to decrease in the order of AuCl3, F4TCNQ (or F6TCNNQ), FeCl3, and NOBF4.
The trend in relative intensity of polaron absorption mirrored the electrical conductivity
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of doped PIDF-BT, except for Magic Blue. Although Magic Blue showed absorption at
approximately 700 nm comparable to AuCl3-doped PIDF-BT, its electrical conductivity was
notably lower. This discrepancy in polaron absorption of Magic Blue could be attributed to
its intrinsic absorption characteristics around 700 nm [37].

To enhance electrical conductivity further, PIDF-BT and CNT were dispersed in o-
dichlorobenzene (DCB). Given that the electrical properties of CNTs significantly depend
on their structural heterogeneity, we utilized a commercially available single-walled CNT
(SWCNT, “TUBALL” with a diameter of ≤2 nm) to ensure the reproducibility of preparing
PIDF-BT-wrapped SWCNT (PIDF-BT@SWCNT). As depicted in Figure 2a, when PIDF-
BT and SWCNT are dispersed in DCB via tip sonication at 25 ◦C, PIDF-BT@SWCNT
spontaneously forms in the DCB solution. Subsequently, massive SWCNT aggregates were
removed through centrifugation, and the remaining DCB solution underwent filtration
using a nylon membrane to eliminate excess PIDF-BT. This two-step purification process
ensures the acquisition of PIDF-BT@SWCNT with excellent dispersion characteristics
in DCB. Indeed, when a PIDF-BT@SWCNT buckypaper was redispersed in DCB after
mechanically separating the nylon membrane filter, it demonstrated good dispersibility in
DCB up to a concentration of 20 mg/mL, facilitating film formation through spin coating.
Scanning electron microscopy (SEM) analysis of the film morphology of PIDF-BT@SWCNT
revealed uniformly networked nanofibers, indicating successful wrapping of PIDF-BT
around the surface of the SWCNT (Figure 2b). The wrapping of PIDF-BT on the SWCNT
surface is evident from transmission electron microscopy (TEM) images. As shown in
Figure 2c, individual SWCNT strands appear to have a diameter of approximately 2.0 nm,
with PIDF-BT surrounding the outside of SWCNT, resulting in an overall diameter of the
PIDF-BT@SWCNT strand in the range of 4.0 to 5.0 nm. The diameter of PIDF-BT@SWCNT
observed in TEM is notably smaller than that of the nanofibers observed in SEM, likely
due to the aggregation of PIDF-BT@SWCNT single strands during film formation, forming
PIDF-BT@SWCNT bundles. Additionally, elemental analysis of the TEM image indicates
uniform distribution of S, F, and N atoms, which are present only in PIDF-BT, along the
SWCNT (Figure 2d,f). This result indirectly supports that PIDF-BT uniformly surrounds
the SWCNT surface.

Polymers 2024, 16, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 2. (a) Schematic of PIDF-BT@SWCNT preparation, including optical transparency, (b) SEM 
image of the PIDF-BT@SWCNT film, TEM image of (c) a single strand and (d) bundled PIDF-
BT@SWCNT, and (e) atomic distribution on the bundled PIDF-BT@SWCNT. 

 
Figure 3. 4-probe electrical conductivity of doped PIDF-BT@SWCNT through (a) sequential doping 
with single dopants and (b) sequential cascade doping with combined dopants. 

To further enhance the electrical conductivity of PIDF-BT@SWCNT, we conducted 
sequential cascade doping by combining different dopants. For cascade doping to be ef-
fective, the first dopant should have a shallower LUMO level than the second dopant [26]. 
Therefore, F4TCNQ, F6TCNNQ, and FeCl3 were chosen as the first dopants, while AuCl3, 
NOBF4, and Magic Blue were selected as the second dopants (Figure S2). In the dopant 
combinations of F4TCNQ/AuCl3 and F6TCNNQ/AuCl3, we achieved high electrical con-
ductivity exceeding 6000 S/cm through cascade doping. The electrical conductivity of 
PIDF-BT@SWCNT doped using the F4TCNQ/AuCl3 combination was much higher than 
that of organic-based conductors, including CP, and was comparable to that of highly 
conductive ceramics such as MXene [41,42]. 

However, the increase in conductivity was negligible in the combination of other do-
pants compared to that of PIDF-BT@SWCNT doped with each single dopant (Figure 3b). 
To ensure high doping efficiency in cascade doping, it is crucial that the first dopant re-
placed by the second dopant should additionally dope peripheral CP chains and is swiftly 
replaced by the second dopant repeatedly [25]. From the doping kinetics of PIDF-BT, mo-
lecular dopants (F4TCNQ and F6TCNNQ) showed significantly faster doping kinetics 

Figure 2. (a) Schematic of PIDF-BT@SWCNT preparation, including optical transparency, (b) SEM
image of the PIDF-BT@SWCNT film, TEM image of (c) a single strand and (d) bundled PIDF-
BT@SWCNT, and (e) atomic distribution on the bundled PIDF-BT@SWCNT.



Polymers 2024, 16, 1884 5 of 11

Based on the insights gained from the doping behavior of PIDF-BT, we evaluated
the electrical conductivity of the prepared PIDF-BT@SWCNT by doping with molecular
dopants (F4TCNQ and F6TCNNQ) for 10 s and Lewis acid dopants for 120 s, respectively.
As depicted in Figure 3a, the initial electrical conductivity of pristine PIDF-BT@SWCNT was
approximately 550 S/cm, but it dramatically increased upon doping, exceeding 2000 S/cm
for all dopants. For example, PIDF-BT@SWCNT doped with AuCl3 achieved an electrical
conductivity exceeding 4680 S/cm, with the electrical conductivities decreasing in the order
of F4TCNQ (3230 S/cm), NOBF4 (2550 S/cm), FeCl3 (2460 S/cm), F6TCNNQ (2270 S/cm),
and Magic Blue (2230 S/cm) dopants. Although AuCl3 doping resulted in the highest
conductivity among the applied dopants, the electrical conductivity trend of doped PIDF-
BT@SWCNT differed slightly from that of PIDF-BT doping, with the difference being
particularly notable for Lewis dopants. This divergence in doping tendency between
PIDF-BT and PIDF-BT@SWCNT with Lewis acid dopants is likely due to the potential
doping ability of SWCNT with Lewis acid dopants [38–40], which can generate additional
charge carriers in PIDF-BT@SWCNT in addition to those formed by doping of PIDF-BT
surrounding SWCNT.
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To further enhance the electrical conductivity of PIDF-BT@SWCNT, we conducted
sequential cascade doping by combining different dopants. For cascade doping to be
effective, the first dopant should have a shallower LUMO level than the second dopant [26].
Therefore, F4TCNQ, F6TCNNQ, and FeCl3 were chosen as the first dopants, while AuCl3,
NOBF4, and Magic Blue were selected as the second dopants (Figure S2). In the dopant
combinations of F4TCNQ/AuCl3 and F6TCNNQ/AuCl3, we achieved high electrical
conductivity exceeding 6000 S/cm through cascade doping. The electrical conductivity
of PIDF-BT@SWCNT doped using the F4TCNQ/AuCl3 combination was much higher
than that of organic-based conductors, including CP, and was comparable to that of highly
conductive ceramics such as MXene [41,42].

However, the increase in conductivity was negligible in the combination of other
dopants compared to that of PIDF-BT@SWCNT doped with each single dopant (Figure 3b).
To ensure high doping efficiency in cascade doping, it is crucial that the first dopant replaced
by the second dopant should additionally dope peripheral CP chains and is swiftly replaced
by the second dopant repeatedly [25]. From the doping kinetics of PIDF-BT, molecular
dopants (F4TCNQ and F6TCNNQ) showed significantly faster doping kinetics than Lewis
acid dopants, indicating that molecular dopants have an advantage as the first dopant in
cascade doping. Hence, when a molecular dopant is used as the first dopant, higher doping
efficiency can be expected than when FeCl3, a Lewis acid dopant, is used for cascade doping.
Indeed, the FeCl3/AuCl3 dopant combination resulted in lower electrical conductivity
than AuCl3 doping alone (Figure 3a). This can be attributed to the slow doping kinetics
of FeCl3, which reduces the efficiency of dopant exchange and reintercalation into CP
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chains during cascade doping with the second dopant (AuCl3) [25]. Moreover, among the
second dopants used with molecular dopants, only AuCl3 exhibited characteristically high
electrical conductivity, likely due to its highest doping efficiency as a single dopant for
PIDF-BT@SWCNT.

To understand the additional increase in electrical conductivity of PIDF-BT@SWCNT
through sequential cascade doping, we compared the doping characteristics of F4TCNQ,
AuCl3, and F4TCNQ/AuCl3 doping using UV–Vis absorption and ESR spectroscopy. As
shown in Figure 4a, pristine PIDF-BT@SWCNT exhibited clear absorption between 400
and 600 nm, corresponding to the absorption of PIDF-BT, supporting successful SWCNT
encapsulation. The absorption peak corresponding to PIDF-BT decreased with F4TCNQ
doping and completely disappeared after AuCl3 doping, indicating the superior effective-
ness of AuCl3. Upon F4TCNQ/AuCl3 cascade doping, the PIDF-BT-related absorption
further diminished, and the polaron absorption at 700 nm slightly intensified compared
to AuCl3 doping. The ESR spectrum also reflected these changes (Figure 4b). Pristine
PIDF-BT@SWCNT showed a distinct ESR signal due to generated radicals during PIDF-BT
wrapping of SWCNT [23]. F4TCNQ doping resulted in a characteristic ESR signal at a
2.003 g-factor, attributed to the F4TCNQ anion formed after PIDF-BT doping. However,
this signal vanished in F4TCNQ/AuCl3 cascade doping, indicating efficient replacement of
F4TCNQ by AuCl3. Moreover, the ESR intensity of F4TCNQ/AuCl3 cascade doping was
slightly higher than that of AuCl3 alone, suggesting the generation of additional charge
carriers and improved electrical conductivity. In summary, the results from UV–Vis absorp-
tion and ESR spectroscopy support the superior effectiveness of F4TCNQ/AuCl3 cascade
doping compared to individual doping processes with F4TNCQ or AuCl3.
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Figure 4. (a) Change in UV–Vis spectra of PIDF-BT@SWCNT before and after doping, and (b) ESR
spectra of doped PIDF-BT@SWCNT.

To elucidate the doping mechanism of PIDF-BT@SWCNT, we characterized the change
in binding energies of the C, N, and S atoms involved in doping using XPS (Figure 5a).
Compared to pristine PIDF-BT@SWCNT, the binding energies of C atoms remained un-
changed, while the peaks of S and N atoms shifted to higher binding energies, indicating
their electron-donating behavior upon doping. During F4TCNQ doping, we observed
a shift in the S signals to higher binding energies, indicating their intercalation with the
dopant. The N atom signal shifted both to higher and lower binding energies due to
electron donation to F4TCNQ, simultaneously. In contrast, AuCl3 doping exhibited a more
pronounced shift in the binding energies of N and S atoms towards higher energy regions
compared to F4TCNQ doping. This trend was further enhanced in F4TCNQ/AuCl3 cascade
doping, suggesting increased participation of N and S atoms in doping and charge carrier
generation in the order of F4TCNQ, AuCl3, and F4TCNQ/AuCl3 doping. To quantitatively
assess the amount of N and S atoms involved in doping at each step, we integrated the XPS
signal to extract the relative proportions of N and S atoms interacting with the dopants.
As shown in Figure 5b, initially, 18% of N and 11% of S atoms participated in F4TCNQ
doping. This proportion significantly increased to 61% (N) and 18% (S) in AuCl3 doping,
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and further to 73% (N) and 30% (S) in F4TCNQ/AuCl3 doping. These results not only
support the effectiveness of F4TCNQ/AuCl3 cascade doping but also suggest that N atoms
are more advantageous for electron-donating type doping compared to S atoms.
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To delve deeper into the doping characteristics of PIDF-BT@SWCNT, we compared
the changes in Raman spectra of PIDF-BT@SWCNT with those of PIDF-BT at various
doping stages (Figure 6a–c). Pristine PIDF-BT exhibited notable intensities at 1442 cm−1

and 1471 cm−1, corresponding to the C=C stretching from the thiophene and indoloindole
units [43,44]. These characteristic Raman scatterings were similarly observed in pristine
PIDF-BT@SWCNT, indicating successful encapsulation of SWCNT by PIDF-BT. Upon dop-
ing, the C=C stretching became broadened with a small redshift in both PIDF-BT and PIDF-
BT@SWCNT due to the formation of quinoid structures from the benzenoid conjugated
structures of PIDF-BT upon doping [38,45]. Quantification of the quinoid/benzenoid ratio
through Gaussian fitting of the Raman scattering spectra (Figure S3) revealed an increase
in the ratio in the order of F4TCNT, AuCl3, and F4TCNT/AuCl3 doping in both PIDF-BT
and PIDF-BT@SWCNT (Figure 6d). As the quinoid structure in CP is formed by p-type
doping [46,47], the increase in the quinoid structure ratio suggests that F4TCNT/AuCl3
cascade doping is more effective than using each dopant individually, leading to higher
doping efficiency and, consequently, higher electrical conductivity. Additionally, Raman
scattering bands not observed in PIDF-BT were detected at 1592 cm−1 (Figure 6b) and
2696 cm−1 (Figure 6c) in pristine PIDF-BT@SWCNT, corresponding to the G and G’ bands
of SWCNT [38,39]. These characteristic G and G’ bands of SWCNTs also exhibited shifts
upon doping. However, the G band shifted to higher wavenumbers (blueshift), contrary to
the G’ band showing a redshift with doping. The blueshift of the G band could be attributed
to increased vibration energy due to electron shielding effects from p-type doping [38,39].
Contrastingly, the redshifting tendency of the G’ band may result from increased shear
compression on the core SWCNT by PIDF-BT, which expands through dopant intercalation
after doping [23,48].
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3. Materials and Methods
3.1. Materials

All chemicals used in this study were purchased from commercial suppliers (Sigma-
Aldrich Korea and Tokyo Chemical Industry (SEJIN CI, Gangnam-Gu, Republic of Korea))
and used without further purification. SWCNTs (“TUBALL”, diameter ≤ 2 nm) and
F4TCNQ were obtained from OCSiAL and OSSILA, respectively, and used as received.
PIDF-BT was synthesized as previously reported [49,50].

3.2. PIDF-BT@SWCNT Preparation

PIDF-BT and SWCNT were suspended in o-dichlorobenzene (DCB, 1.5 mg/mL) at a
1:2 weight ratio. The solution was then tip-sonicated at 130 W for 30 min and subsequently
stirred for 12 h at 60 ◦C. Massive SWCNT aggregates were removed through centrifugation
(Hitachi (Tokyo, Japan), CR22GIII) at 18,000 rpm for 30 min. The resulting supernatant was
filtered through a nylon membrane filter (Whatman (Shrewsbury, MA, USA), pore size
0.2 µm) to remove excess PIDF-BT. To eliminate unwrapped PIDF-BT, the membrane filter
was rinsed with warm DCB until the filtrate became transparent. The membrane was then
dried in a vacuum oven for 12 h, and a PIDF-BT@SWCNT buckypaper was obtained by
mechanically separating the membrane.

3.3. Sequential Doping and Conductivity Measurement

PIDF-BT was dissolved in DCB (5 mg/mL), and thin films (approximately 100 µm)
were prepared on glass substrates through spin coating at 1000 rpm. The films were
immersed in a doping solution (0.5 wt%) at 60 ◦C, and the immersion time was adjusted
to estimate the doping kinetics of each dopant. For F4TCNQ and F6TCNNQ, the dopants
were dissolved in acetone, while other dopants were dissolved in acetonitrile. The doped
PIDF-BT films were gently dried under nitrogen, and electrical conductivity was calculated
from the sheet resistance measured using a 4-point probe resist meter (Nittoseiko Analytech
(Kanagawa, Japan), Loresta-GX MCP-T700). The electrical conductivity of the doped PIDF-
BT@SWCNT was measured following the same procedure as for PIDF-BT after preparing
the PIDF-BT@SWCNT film. The PIDF-BT@SWCNT buckypaper was dispersed at 25 ◦C for
20 min in a DCB: chloroform mixture (1:2, 3.0 mg/mL) using bath sonication (HWASHIN
Tech (Daegu, Republic of Korea), Power Sonic 410) and subsequently stirred at 60 ◦C for
1 h. A PIDF-BT@SWCNT thin film (approximately 100 µm) was prepared through spin
coating of the dispersion at 1000 rpm.

3.4. Characterization

The absorption spectra of PIDF-BT and PIDF-BT@SWCNT were analyzed before and
after doping using a UV–Vis spectrometer (JASCO (Tokyo, Japan), V-670). The ESR spectra
were acquired using an EMXplus-9.5/12/P/L system (Bruker, Pangyo-ro, Republic of
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Korea). Alterations in atomic binding energy for representative atoms (C, S, and N) at
each doping step were investigated via XPS using a Thermo Fisher Scientific K-Alpha
instrument. Shifts in Raman spectra upon doping were assessed using a spectrophotometer
(inVia Reflex, Renishaw, Gyeonggi-do, Republic of Korea) with a 514 nm laser source.

4. Conclusions

To create a highly conductive and flexible platform, we prepared PIDF-BT@SWCNT by
encapsulating SWCNT with PIDF-BT, known for its effective doping properties. Through
a systematic evaluation of the doping behavior of PIDF-BT with various dopants, we
identified suitable dopant combinations for cascade doping to enhance the doping efficiency
of PIDF-BT@SWCNT. Utilizing F4TCNQ and F6TCNNQ, known for their rapid doping
kinetics, as the first dopants, and AuCl3, recognized for its high doping efficiency as a
single dopant, as the second dopant in cascade doping significantly improved the doping
efficiency of PIDF-BT@SWCNT. Therefore, the cascade doping with F4TCNQ followed
by AuCl3 resulted in significantly higher electrical conductivity, exceeding 6000 S/cm,
compared to conductivity levels achieved with F4TCNQ (3200 S/cm) or AuCl3 (4600 S/cm)
alone. The doping mechanism of PIDF-BT@SWCNT in the F4TCNQ/AuCl3 cascade doping
configuration was comprehensively characterized using XPS and Raman spectroscopy. Our
findings revealed that the proportion of electron-donating atoms involved in doping and
the ratio of quinoid structures generated by doping increased sequentially with F4TCNQ,
AuCl3, and F4TCNQ/AuCl3 doping. These results underscore the efficacy of cascade
doping and provide valuable insights into optimizing dopant combinations to achieve high
doping efficiency. Furthermore, our study highlights the advantages of cascade doping in
terms of doping efficiency and resulting electrical conductivity, compared to single-dopant
processes, when dopant combinations are carefully controlled. These findings offer valuable
strategies for enhancing the performance of flexible and highly conductive platforms like
PIDF-BT@SWCNT through cascade doping.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16131884/s1, Figure S1: change in UV–Vis absorption
spectra of doped PIDF-BT according to doping time; Figure S2: Summary of the energy levels of
PIDF-BT and each dopant, and their energy level offset; Figure S3: Gaussian fitting of Raman spectra
for doped PIDF-BT and PIDF-BT@SWCNT.
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