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Abstract: The current polyvinyl chloride (PVC) gel flexible actuators are facing challenges of high
input voltage and an insufficient elastic modulus. In this study, we conducted a detailed study on
the properties of PVC gel prepared by introducing the modifier polyvinyl chloride-vinyl acetate
(P(VC-VA)). We compared a modified PVC gel with the traditional one in terms of the relative
dielectric constant, mechanical modulus, and electromechanical actuation performance. Experimental
results demonstrated that the introduction of P(VC-VA) enhanced the dielectric constant and reduced
the driving electric field strength of PVC gels. The dielectric constant increased from 4.77 to 7.3. The
electromechanical actuation performance increased by 150%. We employed the Gent model to fit
the experimental results, and the actual experimental data aligned well with the expectations of the
Gent model. The research results show that this type of plasticizing method effectively balanced the
mechanical and electrical performance of PVC gels. This study summarizes the experimental results
and performance analysis of PVC gels prepared using innovative plasticization methods, revealing
the potential engineering applications of polymeric gels.

Keywords: PVC gel; relative dielectric constant; polyvinyl chloride-co-vinyl acetate

1. Introduction

In recent years, there has been a significant interest in exploring the application of
electroactive polymers (EAPs) in flexible actuators and devices [1–7]. EAPs offer numer-
ous advantages, including high driving strain and/or stress, high flexibility, low noise,
light weight, and ease of processing and manufacturing. The most common electroactive
materials can usually be divided into two types: ionic electroactive polymers (EAPs) and
non-ionic EAPs. Ionic EAPs, such as conductive polymers and ionic polymer-metal com-
posites (IPMCs), are driven by the migration and diffusion of ions and their conjugate
substances. On the other hand, non-ionic EAPs, such as dielectric elastomers (DEAs) [8–10]
and PVC gels [4], are driven by the Maxwell force generated by the electric field.

DEs offer several advantages, such as large deformation (up to >380%), high stress,
fast response speed, and high energy density [11]. However, achieving satisfactory perfor-
mance with DEs typically requires high voltages, generally higher than 1 kV, which raises
safety concerns in practical applications [12]. On the other hand, flexible actuators based on
PVC gel display strain, strength, and speed comparable to human muscles at a relatively
low actuation voltage (usually about 1 kV). The actuation effect of PVC gel actuators is
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shown in Figure 1. Their excellent stability and durability give them a high application
prospect [12,13]. PVC gels have been the subject of study for several decades [5,14,15],
initially being considered non-electroactive due to their low electrical conductivity, which
means they cannot deform under an electric field. However, in 1999, T. Hirai et al. discov-
ered their electroactive properties and successfully applied them to soft actuators [16]. Over
the past two decades, significant research efforts have been dedicated to the development
of PVC gel-based actuators and devices, generating substantial interest across interdis-
ciplinary fields worldwide, with the ability to change in size or shape when subjected
to an electrical stimulus. The square PVC gel membrane, depicted in Figure 1, serves
as the reference state. On both surfaces of the PVC film, flexible electrodes are applied,
resulting in a deformed state after the application of an electric field. As the understanding
of PVC gels has grown, several modification techniques, such as P(VC-VA) [17], cyanoethyl
cellulose(CEC) [18], ionic liquids [19], etc., have emerged. These modifications aim to
reduce actuation voltage and alter the shear modulus.
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Figure 1. (a) The reference state of the PVC gel actuator when not applied electric field, and (b) the
deformed state under an applied electric field.

In this article, we explore the effects on PVC gel performance from introducing P(VC-VA)
as a modifier for PVC. P(VC-VA) is a versatile synthetic resin widely employed in in-
dustries spanning coatings, adhesives, fibers, pharmaceuticals, and more [20]. Notable
characteristics of P(VC-VA) include its high glass transition temperature (Tg), weather
resistance, oil resistance, acid-base resistance, solvent resistance, and compatibility with
various resins [21]. The molecular structure of P(VC-VA) includes chlorine atoms and ester
groups, the introduction of these functional groups thus endows the traditional PVC gel
with new properties. Previous research has explored the use of P(VC-VA) as a modifier for
PVC gel to manufacture a lens, where the study only investigated the relative dielectric
constant of the modified PVC gel and the performance of the lens [17]; this present study
offers a more detailed investigation. Several factors can affect the deformation of PVC gel
actuators. Consequently, Li conducted a study to investigate the impact of various factors,
such as actuation voltage, Young’s modulus, and constitutive models on the deformation of
the PVC gel [5]. To modify the characteristics of the PVC gel actuator for different scenarios,
we introduced P(VC-VA). For instance, certain scenarios may necessitate a greater actuation
force, improved shear modulus, or larger displacement. By testing the relative dielectric
constant, shear modulus, and actuation performance of the modified polyvinyl chloride
(PVC) gel, this paper introduces a method for measuring the electrical properties, shear
modulus, and displacement of PVC gel. The Gent model is used to fit the experimental
results and to theoretically predict the actuation performance of the PVC gel. The theoret-
ical results are in good agreement with the experimental results. Through various tests,
the optimal addition ratio of P(VC-VA) is determined, providing valuable insights for the
future engineering applications of PVC gel.
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2. Material and Methods
2.1. Preparation of PVC Gels

PVC powder (Scientific Polymer Products, Inc., New York, NY, USA, Mw 275,000,
CAS: 9002-86-2), P(VC-VA) powder (Scientific Polymer Products, Inc., New York, USA,
Mw 115,000, CAS: 9003-22-9), tetrahydrofuran (THF) (Macklin Inc., Shanghai, China, CAS:
109-99-9, purity ≥ 99.9%), and dibutyl adipate (DBA) (Macklin Inc., Shanghai, China, CAS:
105-99-7, purity ≥ 99%) were used to fabricate the synergistic PVC gel. Different gels
were produced based on the various weight ratios of PVC powder, P(VC-VA), and DBA.
The PVC powder and P(VC-VA) were dissolved in THF. The PVC/P(VC-VA) blend film
indicated only one glass transition temperature (Tg) of 72 ◦C, which indicated complete
miscibility between the P(VC-VA) and PVC chains [17]. After obtaining a uniform solution,
DBA was added and the mixture was stirred at 1000 rpm for 6 h at 50 ◦C. Then, using a
doctor blade casting machine, the solution was cast onto release paper at a temperature set
to 40 ◦C. After casting, the mixture was left to stand for 30 min, removed from the release
paper, and finally, after standing at room temperature for 72 h, there was no THF residue
remaining in the gel.

The experimental group PVCG (PVC/DBA) kept the PVC content constant (10 g),
while the DBA content gradually increased (30 g, 40 g, 60 g, and 80 g). The purpose of this
group was to observe the impact of increasing DBA content on the properties of PVC gel,
as shown in Table 1.

Table 1. The detailed ratios of the first experimental group ensured that the PVC content remained
constant while gradually increasing the DBA content at 30 g, 40 g, 60 g, and 80 g, respectively.

PVCG#1 PVCG#2 PVCG#3 PVCG#4

PVC 10 g 10 g 10 g 10 g
DBA 30 g 40 g 60 g 80 g

The experimental group PVAG (PVC/P(VC-VA)/DBA) maintained the contents of
PVC and P(VC-VA) constant (5 g each), with the ratio of PVC to P(VC-VA) maintained
at 1:1. Similar to the first group, the DBA content gradually increased (30 g, 40 g, 60 g,
and 80 g). The aim of this group was to compare the performance differences between
traditional PVC gel and PVC gel modified with P(VC-VA) at the same DBA content levels,
as shown in Table 2.

Table 2. The detailed ratios of the second experimental group ensured that the content of PVC and
P(VC-VA) remained constant, and the ratio of PVC to P(VC-VA) was maintained at 1:1. The content
of DBA gradually increased at increments of 30 g, 40 g, 60 g, and 80 g.

PVAG#1 PVAG#2 PVAG#3 PVAG#4

PVC 5 g 5 g 5 g 5 g
P(VC-VA) 5 g 5 g 5 g 5 g

DBA 30 g 40 g 60 g 80 g

The experimental group PPG (PVC/P(VC-VA)/DBA) kept the DBA content constant
(80 g), while PVC was gradually replaced entirely by P(VC-VA) (the PVC content decreased
from 20 g to 0 g and the P(VC-VA) content increased from 0 g to 20 g). The purpose of this
group was to study the performance changes in the gel as PVC is replaced by P(VC-VA), as
shown in Table 3.
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Table 3. The detailed ratio of the third group of experiments ensured that the content of DBA was
80 g, and PVC was gradually replaced completely by P (VC-VA) with an increment of 5 g per group.

PPG#1 PPG#2 PPG#3 PPG#4 PPG#5

PVC 20 g 15 g 10 g 5 g 0 g
P(VC-VA) 0 g 5 g 10 g 15 g 20 g

DBA 80 g 80 g 80 g 80 g 80 g

2.2. Relative Dielectric Constant Measurements

To measure the relative dielectric constant, the PVC gel samples were cut into a circular
shape with a diameter of 38 mm. The tests were conducted using the HIOKI LCR Meter
(IM3536, HIOKI E.E. Corporation, Nagano, Japan) with an Agilent dielectric test fixture
(16451B, Agilent Technologies Co., Ltd., Santa Clara, CA, USA) under a low electric field
condition of 1 V/mm, as shown in Figure 2a. We performed relative dielectric constant
measurements across a frequency range of 4–106 Hz. To minimize the effect of temperature
on deformation [22], all tests were carried out at the same temperature.
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Figure 2. (a) The relative dielectric constant of the gel was tested using an LCR meter and a di-
electric test fixture. (b) The stress–strain relationship of the gel was tested using a tensile testing
machine. (c) A sheet-type actuator was constructed to measure displacement, employing a laser
displacement sensor.

2.3. Mechanical Tension Measurements

The tensile stress–strain of samples was measured using an electronic universal
testing machine (Senstest Co., Ltd., Shenzhen, China). The samples, with dimensions
of 25 mm × 100 mm, were clamped and extended uniaxially at a rate of 5 mm/min
until failure occurred at the sample’s midpoint, as shown in Figure 2b. Each sample
was tested three times. The shear modulus was determined by the initial slope of the
stress–strain curve.

2.4. Electromechanical Displacement Measurements

To investigate the effect of P(VC-VA) on the actuation performance, we conducted an
electromechanical displacement measurement. We used absolute electric field strength to
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determine the required voltage. Due to problems with the molding process, the thickness
of our PVC gel samples was 200 µm ± 20 µm. Based on this, we calculated and applied
a voltage range of 0 V to 3000 V. Acrylic plates were utilized to clamp the upper and
lower sides of the PVC gel, while carbon grease electrodes were brushed to both sides
of the PVC gel. A 1 mm gap was left at the edges to prevent electrode short-circuiting.
The signal generator used DG4000 (RIGOL TECHNOLOGIES Co., Ltd., Suzhou, China)
and the voltage amplifier used ATA-2161 (Xi’an Antai Electronic Technology Co., Ltd.,
Xi’an, China). Experimental data were obtained using a laser displacement sensor Keyence
LK-G80 (KEYENCE CORPORATION., Shanghai, China) to measure the marker point on
the lower acrylic plate, as shown in Figure 2c.

3. Results and Discussion
3.1. Relative Dielectric Constant Measurements

The relative dielectric constant of the PVC gel is very high at low frequencies. As the
frequency increases, the relative dielectric constant decreases and finally stabilizes. This is
because the drastic change in the relative dielectric constant indicates a strong interaction
between PVC and DBA. Under the influence of an electric field, DBA molecules become
charged and polarized. These polarized molecules are able to track the changes in the
polarity of the electric field at low frequencies, thereby facilitating the dipole rotation of the
PVC chain segments. Moreover, the simultaneous polarization of the DBA and PVC chains
enhances the overall polarization, leading to a significant increase in the relative dielectric
constant of the gel. Notably, the relative dielectric constant of the PVC gel continuously
decreases with the increase in frequency until 100 Hz and remains constant between 100 and
1000 Hz [23].

3.1.1. Effects of DBA and P(VC-VA) on Relative Dielectric Constant

The relative dielectric constant test results for the PVCG and PVAG groups are shown
in Figure 3a, which demonstrates that the incorporation of P(VC-VA) leads to an increase
in the relative dielectric constant of the corresponding PVAG. Figure 3b provides a more
direct observation of the increase in all relative dielectric constants at a frequency of 1 kHz.
The experiments with PVCG and PVAG confirm that adding P(VC-VA) to PVC gels with
different PVC:DBA ratios can significantly enhance their relative dielectric constant, with
PVAG#1 showing a 53% increase over PVCG#1. M. Ali’s research indicates that mixing
DBA into PVC gels will reduce the relative dielectric constant when the proportion exceeds
a certain threshold [23]. This study also shows that continuously adding DBA to PVC gels
containing P(VC-VA) in an approximate ratio of 1:1:8 will similarly result in a decrease in
the relative dielectric constant.
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Figure 3. (a) The frequency range is 4–106 Hz, and the test results of the relative dielectric constant for
the experimental groups PVCG (PVC/DBA) and PVAG (PVC/P(VC-AC)/DBA) are shown. (b) The
relative dielectric constant for both experimental groups at the frequency of 1000 Hz.
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3.1.2. Effect of P(VC-VA) on Relative Dielectric Constant

The results of the PPG group are shown in Figure 4a. The incorporation of P(VC-VA)
from PPG#1 results in an increased relative dielectric constant for the PVC gel, reaching a
peak at PPG #3. As more P(VC-VA) replaces PVC, there is a gradual decline in the relative
dielectric constant. Figure 4b offers a more visual representation, indicating that PPG #3
possesses the highest relative dielectric constant at a frequency of 1 kHz, with a value of
7.53. The experiments conducted within the PPG group demonstrate that an excessive
introduction of P(VC-VA) leads to a decrease in the relative dielectric constant, particularly
when comparing PPG #4 and PPG #5, where a significant reduction is observed, with the
relative dielectric constant dropping from 6.05 to 3.29. This indicates that P(VC-VA) cannot
be used alone in the preparation of PVC gels. Although PPG#5 itself does not contain
PVC, we use the term “PVC gels” to maintain consistency in terminology across the entire
PPG series.
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3.2. Mechanical Tension Measurements

The mechanical deformation behavior of hyperelastic materials is commonly described
using strain energy density functions. In the mechanical research of DE, several commonly
used hyperelastic models exist to describe the relationship between deformation and energy,
including the Mooney–Rivlin model [24], the Yeoh model [25], the Ogden model [26], and
the Gent model [27].

The Gent model considers the stretching limit of molecular chains and can explain the
stress–stiffening phenomenon that occurs under large deformation. In this article, the Gent
model is used as the fitting model.

3.2.1. The Joint Effect of DBA and P(VC-VA) on the Mechanical Modulus

The experimental results of the stress–strain relationship are presented in Figure 5a,
which shows the results for both the PVCG and PVAG groups. The experimental data
reveal that the mechanical tension in the PVAG group is lower than that in the PVCG group,
indicating that the introduction of P(VC-VA) reduces the elastic modulus of the PVC gel,
making it softer. In the PVCG group, a decrease in the mass fraction of DBA corresponds to
an increase in the elastic modulus, in the order of PVCG#1 > PVCG#2 > PVCG#3 > PVCG#4.
Similarly, in the PVAG group, the smaller the mass fraction of DBA, the higher the elastic
modulus. PVAG#4 fractured at approximately 180% strain, indicating that it is not suitable
for applications that require a high output force. Like other hyperelastic models, an elastic



Polymers 2024, 16, 1904 7 of 12

strain energy function is used to describe the model. Specifically, the elastic strain energy
function associated with the Gent model is expressed as follows:

WGent = −µJm

2
ln
(

1 − I1 − 3
Jm

)
(1)
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Figure 5. A comparative analysis is presented for the PVCG (PVC/DBA) and PVAG (PVC/P(VC-
AC)/DBA) experimental groups, focusing on the following aspects: (a) the stress–strain relationship
of both the PVCG and PVAG groups, (b) the comparison between the experimental data and the
fitted data within the PVCG group, (c) the comparison between the experimental data and the fitted
data within the PVAG group, and (d) the variable relationship between µ and Jm pertaining to the
changes in DBA and P(VC-VA) after applying the Gent model for data fitting in both the PVCG and
PVAG groups.

In Equation (1), I1 represents the first invariant of the strain tensor. µ is the shear
modulus of the superelastic material. Jm is the maximum deformation limit of the molecular
chain of the superelastic material. We consider polyvinyl chloride gel as an incompressible
material with a Poisson’s ratio of 0.5 under incompressible conditions [18]. By utilizing
Equation (1), we can acquire the desired outcome.

WGent = −µJm

2
ln

(
1 − λ1

2 + λ2
2 + λ3

2 − 3
Jm

)
(2)

Equation (2) defines I1 = λ1
2 + λ2

2+λ3
2 as the sum of squares of λi(i = 1, 2, 3), which

correspond to the stretching ratios of the thin film along its three principal directions.
The values of λi = Li/Li0 are not dependent on the material’s dimensions, where Li and
Li0 represent the stretched length and initial length, respectively, of the thin film in the
i-direction. Considering the incompressibility of DE materials, λ1λ2λ3 = 1, it is required
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that the stretching ratios along the three directions of the thin film adhere to the following
relationship during uniaxial stretching:

λ2 = λ3 =
1√
λ1

(3)

Based on the Gent model, we can determine the Cauchy stress (true stress) magnitude
of in the direction of stretching 1:

σ =
∂WGent

∂λ1
= −µ

2
ln

 λ1
2 − 2λ1

−2

1 − (2λ1
−1+λ1

2−3)
Jm

 (4)

By using Formula (4) to fit the experimental results, we can obtain the values of µ and
Jm under different contents of PVC, P(VC-VA), and DBA. The comparison between the
fitting results and the experimental results of the PVCG group is shown in Figure 5b, and
the comparison for the PVAG group is also shown in Figure 5c. It can be observed that the
Gent model fits the PVC gel well. The relationship between µ and Jm and the experimental
groups of PVCG and PVAG is shown in Figure 5d. It can be seen that with the introduction
of P (VC-VA), µ and Jm both decrease, which shows that the shear modulus of PVC gel
and the maximum deformation limit of the molecular chain decrease. This is caused by the
VA grafted on PVC destroying the strong secondary bonds between PVC chains, thereby
reducing the intermolecular force between PVC chains [17].

3.2.2. Effect of P(VC-VA) on Mechanical Modulus

Figure 6a shows the comparison between the PPG group model and the fitting results.
It can be observed that as the mass fraction of P(VC-VA) increases, the elastic modulus
of the PVC gel gradually decreases, indicating that the PVC gel becomes softer. This
result suggests that the combination of PVC gel with P(VC-VA) may not be suitable for
applications requiring high output force. Notably, PPG#4 did not achieve a strain of 200%,
and PPG#5 could not undergo the tensile test. As we motioned earlier in Section 3.1.2,
these observations further confirm that P(VC-VA) cannot completely replace PVC in the
preparation of PVC gels. Figure 6b delineates the relationship between µ and Jm in relation
to the PPG groups.

Polymers 2024, 16, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 6. A comparative analysis is performed on the experimental data and fitted data from the 
PPG(PVC/P(VC-AC)/DBA) groups, focusing on the following aspects: (a) the correlation between 
the experimental and fitted data within the third group, and (b) the variable relationship between 𝜇 and 𝐽 pertaining to the changes in DBA and P(VC-VA) after applying the Gent model for data 
fitting in the third group. 

3.3. Voltage-Induced Actuation Performance Measurements 
The actuation experiments of PVC gel are primarily conducted to verify the relation-

ship between displacement and electric field strength and to detect the electric field 
strength at which PVC gel fails due to dielectric breakdown. These parameters are of sig-
nificant importance for various future applications. Initial experiments tested the relative 
permittivity of PVC gel, and it was observed that an increase in permittivity directly leads 
to a reduction in the actuation voltage. Therefore, these tests indicate that the introduction 
of P(VC-VA) could potentially lower the actuation voltage. 

Under the influence of the electric field, the Maxwell stress relates as follows: 𝜎ெ௫௪ = 𝜀𝜀𝐸ଶ (5)

Thus, the deformation of the PVC gel is equivalent to biaxial deformation. 𝜆ଵ = 𝜆ଶ = 1ඥ𝜆ଷ (6)

Upon incorporating Equation (5) into the Gent model, the resultant electromechani-
cal coupling relationships within the material can be ascertained as follows: 

𝜎 = 𝜆ଵ 𝜕𝑊ீ௧𝜕𝜆ଵ = 𝜇 ൮ 𝜆ଵଶ − 𝜆ଵି ସ1 − ሺ2𝜆ଵଶ + 𝜆ଵି ସ − 3ሻ𝐽
൲ − 𝜀𝜀𝐸ଶ (7)

During the actuation tests, where an external force load is absent (σ = 0) and only an 
electrical load is present, the correlation between the electric field and deformation can be 
determined as follows: 𝜀𝜀𝐸ଶ = 𝜆ଵ 𝜕𝑊ீ௧𝜕𝜆ଵ  (8)

The detailed expression is as follows: 

𝐸 = ⎷⃓⃓⃓⃓
⃓⃓⃓⃓⃓ለ൮ 𝜇ሺ𝜆ଶ − 𝜆ିସሻ1 − ሺ2𝜆ଶ + 𝜆ିସ − 3ሻ𝐽 ൲

𝜀𝜀  

(9)

  

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

St
re

ss
 (M

pa
)

Stretch ratio

 PPG#1 Experimental Data
 PPG#1 Fitting Curves
 PPG#2 Experimental Data
 PPG#2 Fitting Curves
 PPG#3 Experimental Data
 PPG#3 Fitting Curves
 PPG#4 Experimental Data
 PPG#4 Fitting Curves

(a)

PPG#1 PPG#2 PPG#3 PPG#4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 μ
 Jm

PPG

μ 
(M

pa
)

(b)

0

50

100

150

200

250

300

 J
m

Figure 6. A comparative analysis is performed on the experimental data and fitted data from the
PPG(PVC/P(VC-AC)/DBA) groups, focusing on the following aspects: (a) the correlation between
the experimental and fitted data within the third group, and (b) the variable relationship between
µ and Jm pertaining to the changes in DBA and P(VC-VA) after applying the Gent model for data
fitting in the third group.

3.3. Voltage-Induced Actuation Performance Measurements

The actuation experiments of PVC gel are primarily conducted to verify the relation-
ship between displacement and electric field strength and to detect the electric field strength
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at which PVC gel fails due to dielectric breakdown. These parameters are of significant
importance for various future applications. Initial experiments tested the relative permit-
tivity of PVC gel, and it was observed that an increase in permittivity directly leads to a
reduction in the actuation voltage. Therefore, these tests indicate that the introduction of
P(VC-VA) could potentially lower the actuation voltage.

Under the influence of the electric field, the Maxwell stress relates as follows:

σMaxwell = ε0εrE2 (5)

Thus, the deformation of the PVC gel is equivalent to biaxial deformation.

λ1 = λ2 =
1√
λ3

(6)

Upon incorporating Equation (5) into the Gent model, the resultant electromechanical
coupling relationships within the material can be ascertained as follows:

σ = λ1
∂WGent

∂λ1
= µ

 λ2
1 − λ−4

1

1 − (2λ2
1+λ−4

1 −3)
Jm

− ε0εrE2 (7)

During the actuation tests, where an external force load is absent (σ = 0) and only an
electrical load is present, the correlation between the electric field and deformation can be
determined as follows:

ε0εrE2 = λ1
∂WGent

∂λ1
(8)

The detailed expression is as follows:

E =

√√√√√√√
 µ(λ2−λ−4)

1− (2λ2+λ−4−3)
Jm


ε0εr

(9)

3.3.1. The Joint Effect of DBA and P(VC-VA) on Actuation Performance

Figure 7a shows the relationship between the experimental data and theoretical data
for the PVCG group’s actuation experiment. Figure 7b shows the relationship between the
experimental data and theoretical data for the PVAG group’s actuation experiment. As the
mass fraction of DBA increases, the displacement increases under the same electric field
strength, but the breakdown field strength decreases, and the breakdown field strengths
of PVCG #1, PVCG #2, PVCG #3, and PVCG #4 are 11.5 V/µm, 11.5 V/µm, 9.5 V/µm,
and 7.5 V/µm, respectively. The breakdown field strengths of PVAG #1, PVAG #2, and
PVAG #3 are 12.5 V/µm, 9.5 V/µm, and 5.5 V/µm, respectively. This is because when
the displacement of the PVC gel increases, the thickness decreases, and the actual electric
field strength becomes greater than the absolute electric field strength. The comparison
between Figure 7a,b clearly shows that the introduction of P(VC-VA) increased the relative
dielectric constant and reduced the actuation electric field strength of the PVC gel. For
the comparison groups PVCG#1 and PVAG#1 at an electric field strength of 10 V/µm,
the displacement of PVAG#1 increased by 150% compared to PVCG#1, and there were
relative increases for the other comparison groups as well. These findings are consistent
with our observations of the increase in the relative dielectric constant, which reduced
the actuation electric field strength of the PVC gel. PVAG#4 deserves special mention
because the material has a relatively low elastic modulus and is softer, which results in a
certain degree of initial stretching during the experiment due to gravity. This stretching
caused by gravity affects the calculation of the field strength, so no actuation performance
experiments were conducted for PVAG#4 and PVCG#5.
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Figure 7. The experimental results and theoretical calculation data of the actuation performance of
the (a) PVCG (PVC/DBA) and (b) PVAG (PVC/P(VC-AC)/DBA) groups under the electric field.

3.3.2. Effect of P(VC-VA) on Actuation Performance

The experimental results and theoretical calculations of the PPG group’s actuation
performance test are shown in Figure 8. It can be seen from the figure that when the
displacement is 0.3 mm, the electric field strengths of PPG#1, PPG #2, and PPG #3 are
11.5 V/µm, 7.5 V/µm, and 4.5 V/µm, respectively. At this same displacement, the PVC
gel with added P(VC-VA) shows a lower actuation electric field strength. This aligns with
our relative dielectric constant test results, confirming that as long as the mass fraction
of P(VC-VA) does not exceed 50%, the larger the mass fraction, the lower the actuation
electric field strength of the PVC Gel. However, P(VC-VA) should not be added excessively,
nor should it be used alone to prepare the gel. Furthermore, the introduction of P(VC-VA)
also causes a decrease in the breakdown field strength of the PVC gel, with the breakdown
field strengths of PPG #1, PPG #2, and PPG #3 being 11.5 V/µm, 10.5 V/µm, and 8 V/µm,
respectively. Among them, PPG#1 has the worst actuation effect, while PPG#3 has the best.
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Figure 8. The experimental results and theoretical calculation data of the displacement actuation
performance of the PPG(PVC/P(VC-AC)/DBA) test group under the electric field.
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4. Conclusions

This study investigates the use of P(VC-VA) as a synergistic plasticizer in the study
of PVC gels. The purpose is to address the issues of high input voltage requirements and
a low elastic modulus in existing PVC gel flexible actuators. In addition, the evaluation
technology of the electrical properties, the elastic modulus, and the displacement of PVC gel
is also introduced, and the Gent model is used to theoretically estimate the elastic modulus
and driving performance of PVC gel, from which we reached the following conclusions:

1. Conclusions can be drawn from the comparison between the PVCG (PVC/DBA)
experimental group and the PVAG (PVC/P(VC-AC)/DBA) experimental group. After
the introduction of P(VC-VA), the dielectric constant of the synergistically plasticized
PVC gel is improved. The dielectric constant of PVCG#1 is increased from 4.77 to 7.3 of
PVAG#1. This improvement is beneficial to improving the electric drive performance
of PVC gel.

2. After the introduction of P(VC-VA), the elastic modulus of synergistically plasticized
PVC gel has a certain change. The electromechanical actuation performance increases
by 150%. We used the Gent model to fit the experimental results, and the experimental
results are in good agreement with the theoretical data.

3. The driving electric field intensity of the synergistically plasticized PVC gel is reduced
after the introduction of P(VC-VA). We also found that P(VC-VA) cannot completely
replace PVC in PVC gel synthesis, the mass fraction of P(VCVA) does not exceed 75%,
and PVC gel with a P(VC-VA) content of 75% can be prepared, but it is too soft and is
difficult to prepare the actuator, as evidenced by the inability to construct an actuator
with PPG#5.

There are many ways to modify PVC gel besides introducing P (VC-VA), but this
method is relatively simple to prepare, and can effectively increase the dielectric constant
and reduce the driving electric field intensity, which is very important for the future
use of PVC gel. P (VC-VA) is of great significance in preparing different actuators and
improving performance.
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