
Citation: Cheng, X.; Tempeler, J.;

Danylyuk, S.; Böker, A.; Tsarkova, L.

Disclosing Topographical and

Chemical Patterns in Confined Films

of High-Molecular-Weight Block

Copolymers under Controlled

Solvothermal Annealing. Polymers

2024, 16, 1943. https://doi.org/

10.3390/polym16131943

Academic Editor: Bożena Jarząbek
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Abstract: The microphase separation of high-molecular-weight block copolymers into nanostructured
films is strongly dependent on the surface fields. Both, the chain mobility and the effective interaction
parameters can lead to deviations from the bulk morphologies in the structures adjacent to the
substrate. Resolving frustrated morphologies with domain period L0 above 100 nm is an experimental
challenge. Here, solvothermal annealing was used to assess the contribution of elevated temperatures
of the vapor Tv and of the substrate Ts on the evolution of the microphase-separated structures
in thin films symmetric of polystyrene-b-poly(2vinylpyridine) block copolymer (PS-PVP) with L0

about 120 nm. Pronounced topographic mesh-like and stripe patterns develop on a time scale of min
and are attributed to the perforated lamella (PL) and up-standing lamella phases. By setting Tv/Ts

combinations it is possible to tune the sizes of the resulting PL patterns by almost 10%. Resolving
chemical periodicity using selective metallization of the structures revealed multiplication of the
topographic stripes, i.e., complex segregation of the component within the topographic pattern,
presumably as a result of morphological phase transition from initial non-equilibrium spherical
morphology. Reported results reveal approaches to tune the topographical and chemical periodicity
of microphase separation of high-molecular-weight block copolymers under strong confinement,
which is essential for exploiting these structures as functional templates.

Keywords: block copolymer films; solvothermal annealing; high molecular weight; confined
self-assembly

1. Introduction

Among the variety of nanofabrication bottom-up methods, directed assembly of
microphase-separated structures of block copolymers is recognized for its effectiveness,
low cost and flexibility in producing large-area films with well-defined and well-ordered
nanostructures [1–4]. Fabrication of patterns with periodic features above 100 nm has drawn
growing attention, driven by potential applications, e.g., in photonics, reflective coatings,
and interconnect patterning [5–14]. Such large feature sizes are achieved by employing high-
molecular-weight block copolymers, in the range around or above 500 kg/mol. Accordingly,
new synthetic approaches to achieve ultralong linear chains [15–17] or more complex
architectures [14,18–21] have been reported. The processing of such long chains into
functional materials or films raises a number of fundamental and technological issues
that have been analyzed in detail earlier [1,22]. High-molecular-weight block copolymers
exhibit high viscosity, even in a swollen state, as a result of chain entanglements, leading to
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long processing times and uncompleted microphase separation [15,22]. Chain mobility is
also strongly dampened by multiple contacts of long chains with the substrate, leading to
a strong pinning to the substrate and therefore promoting the formation of “asymmetric”
structures at the substrate and at the free surface of the film [23,24]. The resolution of the
frustrated morphologies, caused by the strong surface fields, is an experimental challenge.

To overcome the processing difficulties, researchers employ various strategies, such
as different solvent vapor annealing methods [25–35], including swelling to high ratios
by using appropriate solvents/mixtures of solvents [36,37], or overpressure [38], adding
non-volatile solvent during film casting [39], using homopolymers as smart solvents and
compatibilizers [26,40,41], employing swelling network supports [42] or non-solvent immer-
sion treatments [43]. Despite these efforts, it is clear that achieving long-range orientational
order and defectless structures is not feasible for high-molecular-weight block copoly-
mers [44]. Therefore, the potential is seen in applications that rely on nanostructures with
dimensions in the optical range, such as hierarchical optical metasurfaces [45], mesoporous
materials [46,47], including hybrid inorganic materials based on selective infiltration of
block copolymer templates [48,49]. Taking into account the high sensitivity of the mi-
crophase separation to the small variations in the film thickness, solvent selectivity, and
interactions with the substrate, modern machine learning design approaches can be applied
to relate the processing conditions to the defectivity of the resulting patterns [50].

Solvent vapor annealing has the advantage of reducing interactions of polymers
with the substrate, thus eliminating the pinning effect and significantly reducing anneal-
ing time [35]. Solvent molecules affect polymer-polymer interaction parameters, which
in the case of block copolymer solutions is referred to as χeff [51]. Theoretically ϕeff
in block copolymer solutions has been elaborated by Fredrickson and Leibler [52] and
Olvera de la Cruz [53] and extended later by Lodge [51]. Furthermore, the effective
changes to the polymer volume fraction as a result of selective swelling [54] can induce
morphological changes [55]. A comprehensive analysis of solvent vapor processing of
high-molecular-weight block copolymers was recently given by Mokarian-Tabari and
co-workers [37]. The authors reported enhanced ordering on a timescale of 10 min of
perforated lamella structures with a domain period of about 190 nm by fast swelling of
polystyrene-b-poly(2vinylpyridine) films to very high levels of solvent concentration. Al-
though this work demonstrated the importance of processing parameters, such as the
swelling rate, hold times, and the polymer concentration in the swollen film (φp), the
influence of the absolute temperatures of the vapor and of the substrate in this processing
remains predominantly unexplored.

Solvothermal annealing is envisaged to offer additional advantages in processing
high-molecular-weight polymers, such as enhanced ordering dynamics, improved long-
range order and tunable morphologies by careful selection of solvents and annealing
conditions [28,54]. However, introducing additional variables in the process makes the
understanding of the self-assembly mechanisms under solvothermal annealing and iden-
tification of the microphase-separated patterns increasingly complicated, because both
temperature and solvent affect the segmental mobility, molecular interaction parameters,
solubility and solvent quality, as well as surface/interfacial tension in films. Since the
intrinsic domain spacings L0 of high-molecular-weight block copolymers are larger than
100 nm, all films with a swollen thickness below L0 belong to a category of highly frus-
trated microphase-separated structures, which deviate from bulk morphologies. Further
challenges are associated with the estimates of the interaction parameter χ under swollen
conditions. Using a classical equation for bulk χeff = χφp

b (where χeff and χ are Flory–
Huggins interaction parameters in swollen and dry films, respectively, b is an exponent
factor, which varies between 1 and 2) [51] is not straightforward as it does not take into
account polymer-substrate interactions. Furthermore, even a slight selectivity of the solvent
to the substrate or to the block copolymer components can cause significant changes in the
symmetry or dimensions of the resulting pattern.
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Although hot/warm solvent vapor annealing has been used in previous studies [54,56,57],
the competitive influence of the annealing temperatures on the variation in χ and other en-
thalpic parameters in the system, as well as on the solvent uptake and chain dynamics has
not systematically evaluated, both in terms of pattern tunability and in terms of enhancing
segmental dynamics.

Here we resolve mesoscale topographic and chemical patterns in sub 100 nm films of
high-molecular-weight polystyrene-b-poly(2vinylpyridine) (PS-PVP) diblock copolymer
subjected to temperature-controlled solvent vapor annealing in a specially designed an-
nealing cell [28]. We first analyze the resulting microphase-separated mesh-like and stripe
patterns as a function of the temperatures of the vapors (Tv) of the chloroform (a slightly
selective solvent, Figure S1, Supplemental Information) and the polymer film (substrate,
Ts). The dynamics of the structure evolution upon varying the annealing time from minutes
to hours is also discussed. Finally, we identify the match between the topographic and
chemical (PS and PVP domains) patterns, which was explored using the floating technique,
reactive ion etching (RIE) for pattern transfer, as well as by selective metallization of the
structures.

2. Materials and Methods
2.1. Materials

Polystyrene-b-poly(2-vinyl pyridine) (denoted here as PS-PVP) diblock copolymer
with a total molecular weight of Mn = 390 kg/mol and a volume fraction of PS block
φps = 0.48, as well as the homopolymer poly(2-vinyl pyridine) (PVP) (Mn = 105 kg/mol)
were synthesized by anionic polymerization [58]. A degree of polymerization of PS-PVP
of ~3609 and an interaction parameter χPS-PVP of ~ 0.178 at room temperature, resulting
in a high segregation strength of χN ≈ 640. Domain spacing L0 of ~117 nm was deter-
mined by small angle X-ray scattering (SAXS) at the European Synchrotron Radiation
Facility, Grenoble, France, by measuring solvent-cast µm-thick PS-PVP film (Figure S3,
Supplemental Information). Polystyrene (PS) (Mn = 180 kg/mol) was purchased from PSS
(Polymer Standards Service, Amherst, MA 01002, USA). Chloroform and toluene were
purchased from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany) and
used without further purification.

2.2. Film Preparation

P-type Si wafers (Crys Tec GmbH, Berlin, Germany) with ~2 nm thick SiOx layer
were cut in pieces and stored in toluene. Before usage, silicon substrates were additionally
cleaned by a CO2 snow-jet gun and then treated with air plasma at 60 W for 1 min. Films
with a targeted thickness of below 50 nm have been prepared by spin-coating polymers
from a toluene solution with a concentration of 1 wt%. Toluene is a selective solvent for the
PS block. After spin-coating, the films were dried at room temperature in a vacuum oven
for 12 h to remove the residual solvent.

2.3. Floating of the Films

First, a prepared film on the Si wafer was repeatedly touched on the surface of aqueous
NaOH solution (1 mM) with the sample edge at ~45◦ until the block copolymer film was
detached from the substrates and floated on the surface of the solution. To image the back
side of the film, it was then picked up with a clean silicon wafer upside down, resulting in
a strong adhesion of the picked-up film to the substrate [59]. The films were then rinsed in
deionized water and placed in a vacuum oven for 12 h at ambient temperature to remove
the residual moisture.

2.4. Annealing Experiments

Solvent annealing was performed in a custom-made setup (Figure 1). Nitrogen, as a
carrier gas, passes through two flow controllers (MKS 647C, MKS Instruments Deutsch-
land GmbH, München, Germany) connected to the channel with a flow of pure nitrogen
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(Channel 1) and to the channel that delivers solvent vapor (Channel 2) into the chamber.
Flow controllers define the total flow through a channel (a maximum value of 100 sccm,
unless otherwise specified), as well as the partial vapor pressure in the chamber p/p0. The
latter is adjusted by mixing the flows through Channel 1 and Channel 2. The temperature
of the vapor Tv was maintained by a bath thermostat with immersed vials with the solvent.
The temperature of the substrate Ts was adjusted by cycling water through the tubing at
the bottom of the chamber. Further details can be found in Ref [28].
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2.5. Characterization of the Films

Swelling behavior of polymer films was monitored by in situ spectroscopic ellipsom-
etry (Omt Imaging, mm30 series, Ulm, Germany). Optical data were collected within a
spectral range of 450–800 nm at an incidence angle of 70◦ using VisuEl 3.8 software (Omt-
optische messtechnik GmbH, Ulm, Germany). Film thicknesses were evaluated using the
Cauchy model and Scout Software 4.7 (Omt-optische messtechnik GmbH, Ulm, Germany).
The polymer fraction in a swollen film is presented as φp, calculated by hd/hsw where the
hd is the start film thickness and hsw is the swollen film thickness. The degree of swelling
D = 1/φp.

Scanning force microscopy (SFM) was conducted using Icon Dimension (Bruker Cor-
poration, Billerica, MA 01821, USA) in TappingMode using tips from OTESPA with spring
constant k = 42 N/m. The images were analyzed using Nanoscope Analysis 1.50 software
(Bruker Corporation, Billerica, MA 01821, USA).

2.6. Metallization of the Microphase Separated Structures

Pt2+ ions were loaded by immersion of the film into 1 wt% Na2PtCl4 solution in 5 mM
HCl. PVP blocks become protonated in an acidic environment so that the Pt2− anions
build complexes with the cationic groups of the PVP blocks. The following treatment with
oxygen plasma (under 0.2 mbar at 80 W for 90 s) removes the polymer, leaving on the
substrate the metalized pattern, which can be assigned to the PVP block.

2.7. Pattern Transfer

Selected structures have been subjected to reactive ion etching (RIE) to demonstrate
the applicability of the self-assembled block copolymer topographic structures for pattern
transfer into the silicon substrate. The samples were etched in a CHF3/O2/SF6 plasma at a
chamber pressure of 0.033 mbar and an RF power of 35 W with an average PVP etch rate of
28 nm/min and PS etch rate of 12 nm/min.

3. Results and Discussions
3.1. Swelling under Controlled Solvothermal Conditions

Swelling experiments under controlled flow and temperature conditions were carried
out in a custom-built chamber using in situ ellipsometry measurements of the swollen film
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thickness, as briefly described in the Materials and Methods Section and more fully in the
Supplemental Information. It is suggested, that maintaining the swollen block copolymer
film at a slightly elevated temperature may improve the annealing dynamics through a
combination of thermally enhanced segmental mobility and of solvent plasticizing effect.
We note that a qualitative assessment of this hypothesis is not feasible due to the uncer-
tainty in the interaction parameters, as mentioned in the introduction. In particular, the
reduced pinning of the segments to the substrate due to the weakening of the surface
interactions may be compromised by a reduced solvent uptake, when the temperature of
the substrate is increased (Figure S2b). Furthermore, the combination of strong surface
fields at the substrate and the solvent-induced shift in the interaction parameters can lead
to the deviation of bulk morphologies. Also, solubility parameters are not easy to estimate
because of the often-observed thickness-dependent swelling [60,61]. Another challenging
experimental factor is the potential condensation of the solvent on the film surface as a
result of the increased temperature of the vapor, i.e., of the solvent concentration in the
vapors. To explore the possibilities of our annealing setup to run solvothermal annealing in
a reproducible and controlled manner, we analyzed the response of the solvent uptake by
PS-PVP films to the changes in the temperature of the vapors (Tv) and of the polymer film
(substrate, Ts) (Figure S2, Supplemental information).

The choice of the film thickness in the swollen state below the characteristic lamella
spacing of PS-PVP in L0 of 117 nm (Figure S3, Supplemental Information), resulting in
frustrated morphologies, allowed a closer insight into the effect of the annealing parameters
on the strength of the surface fields. It was shown that the development of specific defects
or phase transitions as annihilation pathways toward equilibrium can be used to discuss the
surface fields in the system [62]. We note, that in this particular system, as the swollen film
thickness approaches L0 (by using thicker films or high degrees of swelling, as a result of
solvent condensation) the formation of in-plane oriented lamella, i.e., featureless patterns,
occurs (Figure S4, Supplemental Information) as a result of highly preferred interactions of
the polar PVP block with the substrate.

3.2. Effect of Solvothermal Conditions and Annealing Time on the Microphase Separation Behavior
of PS-PVP in Thin Films

Shown in Figure 2a–c are topographic SFM images of PS-PVP films with an initially
dry thickness of ~ 42 nm, well below the intrinsic domain spacing L0 = 117 nm, which
were annealed for 10 min at different temperature sets Tv/Ts with an intended ∆T = Ts
− Tv difference of 5–6 ◦C. The desired precision in the targeted degree of swelling Ds
was not feasible to achieve in different comparative experiments, since multiple dynamic
and thermodynamic parameters affect the solvent uptake. However, we believe that
the slight deviations in the annealing conditions can be tolerated for interpreting the
developed structures.
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indicated Tv/Ts and 100% p/p0 of chloroform vapor for 10 min. Ds = hsw/hdry represents a degree of
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The evolved structures are represented in each case by a disordered striped pattern,
which can be assigned to up-standing lamella, since even in the swollen state the film
thickness is still below L0. The differences in the degree of ordering, achieved within 10 min
of annealing, or in the shape of specific defects are too marginal to be discussed. However,
we elaborate on the origin of the pronounced topography of the pattern, which is likely due
to the high selectivity of chloroform to the PVP block. The lower channels with a depth of
8 ± 1 nm can be assigned to de-swollen PVP domains, which in a swollen state accumulate
about 15% more solvent than PS domains (Figure S1, Supplemental Information). This
assumption is supported by the measurement in PeakForce Tapping mode, which provides
space-resolved information about the adhesion force between the tip and the material, as
well as the local modulus. Therefore, the brighter-color area implies a higher adhesion
force to the tip (Figure 3b) and a higher modulus of the material (Figure 3c). The surface of
the employed silicon nitride tip has a polar nature and therefore the tip adheres stronger
to PVP domains than to PS domains. Also, in reported earlier phase images of PS-PVP
block copolymers, the PVP domains appear brighter as a result of their slightly higher Tg as
compared to PS [38]. Otherwise, we note that resolving the phase contrast in phase imaging
often results in scanning artifacts (Figure S5, Supplemental Information), and resolving the
chemical patterns is a separate challenge, which will be addressed later.
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Figure 3. SFM height (a), adhesion (b) and modulus (c) images taken by PeakForce Tapping of PS-PVP
film with a dry thickness of ~40 nm annealed in 100% p/p0 chloroform vapors at Tv/Ts 25/26 ◦C. The
white scale bar in each image corresponds to 1 µm.

Since 10 min-long annealing did not indicate the effect of the annealing conditions
on the microphase separation of PS-PVP domains, below we consider the morphologi-
cal evolution on a longer annealing time scale. SFM images in Figure 4 and Figure S6
(Supplemental Information) show representative surface structures in films of PS-PVP with
hdry ~42 ± 2 nm, which have been processed under indicated solvothermal conditions for
200 min. The swelling conditions were chosen so that a comparable degree of swelling
could be maintained under different temperature sets Tv/Ts.

The microphase-separated structure, which was developed in the swollen state, ap-
pears in the quenched state as a dot-like topographic pattern and can be attributed to
the perforated lamella (PL) phase. The formation of this morphology is enabled both by
the film thickness below L0 and by the selectivity of the solvent, which effectively shifts
the initially symmetric volume composition of the block copolymer towards PVP being
a majority block. PL is represented by two layers of swollen PVP block, which face both
interfaces of the film and perforate the middle PS block. During rapid evaporation of the
solvent, the film undergoes one-dimensional compression and the PVP perforations appear
as holes (5–6 nm deep).

In all cases, the structures have a poor long-range order, confirming the well-established
difficulties in processing high-molecular-weight block copolymers [22,27].

Table 1. Dimensions of the patterns shown in Figure 4.

Ds = hsw/hdry 1.66 1.73 2.47 2.45

Tv/Ts
◦C 14/20 24/30 19/20 29/30

CCD, nm 125 ± 29 115 ± 22 120 ± 32 111 ± 42
Depth, nm 6.2 ± 1.5 5.0 ± 1.0 4.7 ± 0.6 6.8 ± 0.5
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conditions. 

Quantitative evaluation of the dimensions of the patterns in Figure 4 was performed 
using PSD analysis (Figure S7, Supplemental Information). The depth of the patterns has 
been averaged over at least 10 cross-sectional profiles of the SFM scans. The center-to-
center distances (CCD) of the periodic structures are summarized in Table 1. We believe 
that the scatter in the measured values is due to the intrinsically low mobility of high-
molecular-weight block copolymers, and even more due to the confined geometry when 
the surface field dominates the microphase separation over the other thermodynamic 
parameters in the system (such as volume fraction, χeff interaction parameter, 
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Table 1. Dimensions of the patterns shown in Figure 4. 

Ds = hsw/hdry 1.66 1.73 2.47 2.45 
Tv/Ts°C 14/20 24/30 19/20 29/30 

CCD, nm 125 ± 29 115 ± 22 120 ± 32 111 ± 42 
Depth, nm 6.2 ± 1.5 5.0 ± 1.0 4.7 ± 0.6 6.8 ± 0.5 

Figure 4. SFM topography images of PS-PVP films with hdry= 42 ± 2 nm annealed under Tv/Ts of
(a) 14/20 ◦C, (b)24/30 ◦C, (c) 19/20 ◦C, and (d) 29/30 ◦C with 100% p/p0 of chloroform vapor for
200 min. The corresponding Ds are located at the top of each image. hsw are ~70 nm and ~102 nm for
Ds ~1.7 and ~2.5, respectively. The white scale bar in each image corresponds to 1 µm. Evaluated
domain spacings are shown in Table 1 (Figures S4 and S5, Supplemental Information).

The structure in Figure 4d can be characterized as a coexistence of the PL and stripes of
the vertically oriented lamella phase. This can be explained as an adjustment of the PL phase
to a slight excess of the film thickness [63]. Further characteristic defects of the patterns
in Figure 4 can be explained along the lines of the thickness-dependent morphological
behavior, which will be reported in detail elsewhere (Figure S6, Supplemental Information).

The formation of the PL phase in ultrathin solvent-annealed confined films of high-
molecular-weight PS-PVP is in agreement with an earlier study by Selkirk et al. [37], despite
the fact that they employed a mixture of solvents, aiming at non-selective solvent conditions.

Quantitative evaluation of the dimensions of the patterns in Figure 4 was performed
using PSD analysis (Figure S7, Supplemental Information). The depth of the patterns has
been averaged over at least 10 cross-sectional profiles of the SFM scans. The center-to-center
distances (CCD) of the periodic structures are summarized in Table 1. We believe that the
scatter in the measured values is due to the intrinsically low mobility of high-molecular-
weight block copolymers, and even more due to the confined geometry when the surface
field dominates the microphase separation over the other thermodynamic parameters in
the system (such as volume fraction, χeff interaction parameter, temperature). Despite
significant deviations in the evaluated dimensions, it can be concluded that the size of
the resulting patterns depends on the particular Tv/Ts combination. The effect is less
pronounced at higher degrees of swelling.

Because of prolonged annealing, we believe that the developed structures are in a
(quasi)equilibrium state, i.e., the reasons behind the tunable structure dimensions are rather
thermodynamic, than kinetic ones. Generally, the smaller the characteristic period of the
domains, the larger the interface between the block copolymer components PS and PVP.
The formation of a more extended PS/PVP interface at Ds~1.7 at a higher temperature set
of 24/30 ◦C (Table 1) is presumably due to effectively smaller χ interaction parameters
under these conditions. Additional arguments in terms of the decreased surface/interfacial
tensions with increasing temperature can also be considered. Likely, in the particular
narrow parameter window that we have tested the enhanced chain mobility due to the
elevated temperature of the substrate is not sufficient to overcome the pinning of the
chains to the substrate. Rather, the microphase-separated structures undergo unit cell
distortion because the surface fields still overcome the energy required to distort the
structure. Furthermore, the selectivity of solvent can be affected by the specific temperature
set, leading to changes in the preferential swelling of the blocks, and hence to effective
shifting of the volume fraction.

The present paper suggests that by choosing a particular Tv/Ts combination, it is
possible to tune the sizes of the resulting PL patterns by almost 10%. In the following, we
attempt to characterize the microphase-separated structures in confined PS-PVP films in
more detail. In particular, we focus on establishing the correlation between the pronounced
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topographic pattern of the microstructures and the distribution of the blocks within the
topographic features, taking advantage of the differences in the chemistry of the blocks.

3.3. Characterization of the Patterns

Presented in Figure 5a–d are topography images of the dot-like and striped patterns
in thin films of PS-PVP, which have been produced by scanning the free (top) surface of
the films, as well as the surface next to the substrate. This was possible after floating the
samples as described in the experimental section. As can be seen, generally, the topographic
patterns are preserved after the floating and redepositing of the film on a new substrate.
This result indicates a symmetry of the pattern. The schematic of the procedure, including
the selective swelling of the PVP block, formation of the topographic pattern after rapid
evaporation of the solvent and local deformations of the PVP domains to adhere to the
substrate during the deposition of the floated film is shown in Figure 5e.
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Figure 5. SFM topography images of the free surface (Top, a,c) of PS-PVP films after annealing and of
the backward side of the same sample after floating and deposition on a new substrate (Bottom, b,d).
The scale bar is 1 µm. (e) Schematic of the swollen and quenched film resulting in topographic pattern
(i,ii), of the film floating (iii) and re-deposition on a new substrate (iv). The arrows in (iii) indicate the
detachment of the film from the Si substrate to the surface of the NaOH solution, followed by the
pick-up of the film bottom-up with a fresh substrate and the adhesion of the film.
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Further, the mesh-like block copolymer template as shown in Figure 4c, was etched
into the underlying substrate via RIE, as described in the experimental section (Figure S8).
Figure 6 displays SFM topography images of random areas of the initial template, of the
sample after etching and after rinsing the etched sample in chloroform to remove residual
polymer. The cross-sections of respective topography images illustrate the quality of the
pattern transfer (Figure 6d). A quantitative analysis of the patterns by PSD Analysis and by
averaging cross-sectional profiles of the topography scans is presented in Table 2. As can be
seen from the data, the initial depth of the holes was successfully transformed. This is due
to the high differences in the etching rates of the blocks (13 nm/min for PS and 29 nm/min
for PVP) as well as due to the presumed segregation of the PVP to the bottom of the holes
(schematic iv in Figure 5e). The critical dimensions (CD) of the transferred features are
larger than those of the template. This result may indicate a gradient distribution of the
PVP block within the walls of the meshes.
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Table 2. Dimensions of the template and transferred pattern shown and evaluated in Figure 6.

Mask from Figure 6a Transferred Pattern from Figure 6c

CCD 116 ± 22 nm 116 ± 23 nm
CD 65 ± 5 nm 74 ± 6 nm

Depth of holes 7 ± 1 nm 7 ± 1 nm

Further insights on the compatibility of the topographic and chemical patterns have
been provided by selective metallization of the patterns. Immersion of the film into
aqueous sodium tetrachloroplatinate solution leads to selective loading of PVP domains
with [PtCl4]2 ions, which are converted into metalized structures upon treatment with
oxygen plasma.

Shown in Figure 7a,b are SFM images of the striped template (with feature dimensions
~110 nm) and of the respective metalized pattern, exhibiting wires with ~50 widths. As
visualized in the cross-section profile in Figure 7d, the striped pattern is multiplicated,
revealing that the PVP block was likely covering the walls of the stripes, while the PS block
was segregated to the middle of the initial stripes. This kind of segregation and of the
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topographic pattern is supported by SEM images in Figure 7e, where the light-gray stripes
indicate the higher metal fraction. The bright contour lines, which highlight the light-gray
stripes, are typically attributed to artifacts, caused by the surface topography [40]. However,
in this case, the SEM image can be considered as a confirmation of a non-homogeneous dis-
tribution of the PVP component within the geometrical pattern, demonstrating a mismatch
between the topographic and chemical pattern. A plausible explanation of the development
of such complex microphase separation was derived from resolving the morphological
development on a shorter timescale.
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metalized pattern (c). (d) Comparison of cross-section profiles of the structures. (e) SEM image of the
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3.4. Morphological Phase Transition on a Short Time Scale

PS-PVP films used in this study were prepared by spin-coating from 1 wt% toluene
solution. In toluene, which is a strongly selective solvent to PS block, PS-PVP chains form
micelles with a poorly swollen PVP core and a highly swollen PS shell. The morphology
of as-spin-coated films is represented by spherical structures with lateral dimensions
of 70 ± 5 nm in a quenched state (Figure 8bA). Time-resolved swelling experiments
have been conducted in the following way. Several samples have been prepared under
identical conditions. The setup has been pre-equilibrated with the selected set of parameters
Tv/Ts = 14/20 ◦C, as described in the experimental section. The swelling of a 43 nm thick
PS-PVP film was monitored for 10 min before the flow of the solvent vapor was stopped
and the sample (designed as D, in Figure 8) was quenched. Then, similar procedures were
performed with the other two samples for 1 min (sample B) and for 5 min (sample C) before
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quenching. Surface structures of the spin-coated film (sample A) and of the processed
samples are presented in Figure 8b.
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Figure 8. (a) Swelling kinetics of PS-PVP film annealed in 100% p/p0 chloroform vapors at
Tv/Ts = 14/20 ◦C. A, B, C and D correspond to the topography imagies of the PS-PVP film in (b).
Arrows indicate the indicated annealing duration. (b) SFM topography images A, B, C, D of the
surface structures of spin-coated film and of the samples after 1 min, 5 min and 10 min of exposure to
the solvent vapors. The white scale bar in each image corresponds to 1 µm.

Taking into account the film thickness of ~40 nm, the initial structures in the spin-
coated films can be assigned to hemispheres with the PVP core next to the substrate. Few
larger objects seen in Figure 8 bA correspond to micelles with a larger aggregation number,
which evolves in the solution upon aging. These larger micelles can be redispersed by
heating and stirring the solution.

Upon rapid exposure to solvent vapor, the structure evolves into a mesh-like pattern.
The transition occurs within 1 min, even if the maximum swelling is not reached. The
characteristic dimensions of the mesh-like structures are comparable to the size of the initial
spherical structures (Figure 8bB and Figure S9b). Remarkably, after 5 min of exposure to the
vapors, a phase transition to a mesh-like pattern with doubled dimensions (about 133 nm,
Figure S9g–i). The driving force of these transitions is presumably the coarsening of the
interface between PS and PVP blocks, which is facilitated by the enhanced chain dynamics
upon selective swelling of the PVP block. The observed two types of morphological
transitions (A–B and B–C), as well as their dynamics are reproducible at other temperature
sets, as shown in Figures S9 and S10 (Supplemental Information). We believe that the
multiplication of the chemical pattern selective by metallization of the structures replicates
the morphological transition (B–C).
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4. Conclusions

Achieving high precision, reproducibility as well as high throughput processing of
high-molecular-weight block copolymer templates in thin film is a challenging task. In this
study, solvothermal annealing, including variation in the temperature of the substrate Ts
and of the vapor Tv, was employed to assess the relative contributions of the enhanced
chain dynamics due to increased temperature or due to selective swelling on the resulting
microphase-separated structures. The rearrangement of the initial morphology, frozen by
spin-coating, proceeds on a timescale below one minute upon swelling in the vapors of se-
lective solvent, independent of the applied annealing temperature. The (quasi)equilibrium
dimensions of the structures are achieved on a time scale of minutes when the steady-state
solvent uptake is reached. The long-range order of the microphase-separated patterns
cannot be improved even after hours of annealing in solvent vapors.

Tunable microphase separation of high-molecular-weight lamella-forming polystyrene-
b-poly(2vinylpyridine) block copolymer leading to mesh-like or striped topographic tem-
plates, suitable for the pattern transfer is achieved by setting Tv/Ts combinations. The
one-step formation of topographic patterns is presumably due to enhanced chloroform
selectivity to the PVP block under strong confinement. The quenched patterns demon-
strate a mismatch of the topographic and chemical patterns. This is manifested by the
multiplication of the striped pattern upon selective metalization of the template and is
attributed to the disclosed rapid morphological transition from initial non-equilibrium
spherical morphology to the vertically oriented lamella. Apart from quantification of
the solvothermal processing, the reported results disclose specific futures of microphase
separation of high-molecular-weight block copolymers under strong confinement.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16131943/s1, Figure S1: Kinetic curves of stepwise swelling
and deswelling of homopolymer and block copolymer films; Figure S2: Time-resolved swelling of
PS-PVP films upon stepwise variation in Ts and Tv. Figure S3: SAXS measurement of µm-thick PS-
PVP film. Figures S4–S6: thickness-dependent morphological behavior of processed films. Figure S7:
Power spectrum density analysis (PSDA) of the surface structures. Figure S8: Etching rates of the
homopolymers. Figures S9 and S10: Swelling kinetics and time-resolved phase transitions.
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