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Lagrangian Split-Step Method for

Viscoelastic Flows. Polymers 2024, 16,

2068. https://doi.org/10.3390/

polym16142068

Academic Editors: Juan J. Freire

and Costas H. Vlahos

Received: 19 June 2024

Revised: 16 July 2024

Accepted: 17 July 2024

Published: 19 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Lagrangian Split-Step Method for Viscoelastic Flows
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Abstract: This research addresses and resolves current challenges in meshless Lagrangian methods
for simulating viscoelastic materials. A split-step scheme, or pressure Poisson reformulation of the
Navier–Stokes equations, is introduced for incompressible viscoelastic flows in a Lagrangian context.
The Lagrangian differencing dynamics (LDD) method, which is a thoroughly validated Lagrangian
method for Newtonian and non-Newtonian incompressible flows, is extended to solve the introduced
split-step scheme to simulate viscoelastic flows based on the Oldroyd-B constitutive model. To validate
and evaluate the new method’s capabilities, the following benchmarks were used: lid-driven cavity
flow, droplet impact response, 4:1 planar sudden contraction, and die swelling. These findings high-
light the LDD method’s effectiveness in accurately simulating viscoelastic flows and capturing large
deformations and memory effects. Even though the extra stress was directly modeled without any
regularization approach, the method produced stable simulations for high Weissenberg numbers. The
stability and performance of the the Lagrangian numerics for complex temporal evolution of material
properties and stress responses encourage its use for industrial problems dealing with polymers.

Keywords: viscoelasticity; polymers; Oldroyd-B; meshless; LDD; sudden contraction; die swell

1. Introduction

Many synthetic and natural fluids exhibit complex rheological behavior, with vis-
coelasticity being an important fluid property. The accurate prediction of viscoelastic flows
is critical for a broad range of industrial and biological applications, such as fluid dynamics
and materials science. Complex behaviors of fluid with elastic properties are encountered
in processes from polymer manufacturing to physiological systems. This research will
use a meshless and Lagrangian method to simulate viscoelastic flows, incorporating the
Oldroyd-B constitutive model that is well-known for its ability to capture complex vis-
coelastic behavior. As industries increasingly rely on numerical simulations to optimize
processes and predict material behavior, the development of robust computational tools
becomes critical. The Lagrangian meshless methods offer a promising approach for ac-
curately and efficiently capturing the dynamics of viscoelastic flows. This study aims to
address the current knowledge gaps in numerics of Lagrangian meshless methods, with
the goal of providing insights that contribute not only to the fundamental understanding of
viscoelastic phenomena but also to the optimization and innovation of processes in fields
as diverse as materials engineering and biomedical sciences.

Continuum mechanics is the most frequently employed approach for modeling macro-
scopic flows. In order to obtain continuum constitutive equations from kinetics theories,
closure approximations are necessary. Still, in practical numerical simulations, the constitu-
tive model and material characteristics are typically derived from rheological measurements.
Nevertheless, it is important to approach the utilization of constitutive models derived
from curve-fitting of rheometric flows (such as simple shear or uniaxial extensional) to
more complex flows with careful consideration [1]. Because of their complex behavior, vis-
coelastic flows, which are characterized by the interaction of viscous and elastic effects [2],
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pose challenges in numerical modeling. Viscoelastic flows, which involve the interaction of
viscous and elastic effects, present difficulties in numerical modeling due to their intricate
behavior. Because of the stiff hyperbolic form of the differential constitutive equations,
computational modeling of viscoelastic flows is susceptible to both numerical instabili-
ties and physical flow fluctuations, as well as nonphysical constitutive instabilities [1,3].
The numerical challenge of solving these constitutive equations, referred to as the high
Weissenberg number problem (HWNP), has been a significant barrier in computational
rheology for over twenty years.

The research field focusing on simulating viscoelastic flows has now reached a critical
juncture marked by a convergence of advances and challenges. Researchers have made
significant progress in developing numerical methods, with a significant focus on meshless
techniques for modeling the sophisticated dynamics exhibited by viscoelastic materials. The
current state of the field is marked by a growing recognition of the importance of accurate
simulations for applications ranging from industrial processes like polymer manufacturing
to biological systems like blood flow. The initial mathematical models that appeared in the
domain of continuum mechanics were defined by Oldroyd [4], yet the Oldroyd-B model
continues to be a central focus in research efforts in terms of constitutive models. Upper-
convected Maxwell (UCM), Oldroyd-B, and corotational Maxwell models are examples of
early constitutive equations that are differential-type equations for the extra stress tensor.
Castillo Sánchez et al. [5] critically examined the extensive use of the Oldroyd-B model in
predicting instabilities across diverse shearing flows of viscoelastic fluids, emphasizing
its qualitative success despite limitations and discussing potential improvements using
more realistic constitutive models and open questions in viscoelastic stability. Researchers
are eager to investigate its implementation and integration into numerical simulations,
recognizing its ability to accurately capture the viscoelastic properties of materials. The
exploration and refinement of meshless methods, such as Lagrangian differencing dynam-
ics (LDD) [6], as viable alternatives to traditional mesh-based approaches (see Figure 1),
is one notable trend in the current literature. Meshless methods have gained popularity
due to their improved ability to handle complex geometries and dynamic fluid interfaces,
providing a promising avenue for simulating viscoelastic flows. Despite these advances,
obstacles remain. Computational efficiency, stability, and the ability to deal with highly
nonlinear viscoelastic behaviors are still being researched. Furthermore, the field is increas-
ingly recognizing the importance of benchmark problems and standardized validation
protocols for evaluating the accuracy and reliability of various numerical methods.

(a) (b) (c)

(d) (e)

Figure 1. Comparison of space discretizations schemes: (a) cell-centered volumes, (b) vertex-based
volumes, (c) boundary elements, (d) Cartesian-grid nodes, and (e) meshless discretization used in
LDD, where black circles depict inner computational nodes, while white circles depict boundary
computational nodes.

The HWNP expresses itself as a lack of simulation stability, resulting in a rapid surge
of the numerical solution [1]. Inhibition occurs when the Weissenberg number (or Deborah
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number) reaches a critical point, which varies due to features involving flow difficulty,
spatial discretization, and numerical methods. The degradation of positive definiteness
within the conformation tensor, which is an internal variable characterizing the configuration
of the polymer chains, is known to be a precursor to the HWNP [7]. In addition, Fattal and
Kupferman et al. [7,8] have shown that numerical instabilities occur due to insufficient
resolution of spatial stress profiles. This is a concern because viscoelastic flow solutions
typically involve stress boundary layers with substantial variations in stress gradients and
exponential stress profiles close to geometric singularities. Inadequate representation of
stress gradients, e.g., through the use of polynomial interpolations of exponential profiles,
results in an underestimation of convective stress fluxes. This error is then compensated for
by multiplying the rate of stress growth, ultimately leading to computational errors. The
log-conformation representation [9–11] not only maintains positive definiteness but also
improves the characterization of significant stress gradients by transforming the exponential
stress profiles into linear ones. Problems with a high Weissenberg number are crucial in
viscoelastic flow because they involve situations where elastic forces have a significant
impact on fluid behavior. This leads to the occurrence of complex phenomena like coil-
stretch transitions and elastic instabilities, which pose challenges for accurate simulation
and practical comprehension in various industrial and scientific applications.

Achieving numerical stability becomes paramount when simulating flows charac-
terized by high Weissenberg numbers, as these regimes are particularly susceptible to
error propagation and solution breakdown [5,12]. Verbeeten et al. [13] used the discrete
elastic viscous stress splitting technique in combination with the discontinuous Galerkin
(DEVSS/DG) method to simulate a polyethylene melt, highlighting the interplay between
physical and numerical aspects in achieving stable solutions for complex flows. In order
to try to simulate flows with high Weissenberg numbers, Fattal and Kupferman [7,12]
suggested the log-conformation formulation in the context of the FDM by utilizing the
matrix logarithm of the conformation tensor to improve stability at high Weissenberg
numbers. This suggests that logarithmic variables alleviate numerical instability issues,
with the remaining challenges focused on accuracy degradation at insufficient resolution.
Comminal et al. [1] combined log-conformation formulation with the stream function de-
scription for incompressible viscoelastic flows. Fernandes [11] introduced a block-coupled
algorithm for computing viscoelastic flows using the log-conformation tensor approach,
employing implicit discretization for various terms and validating the algorithm for non-
isothermal viscoelastic Oldroyd-B fluid flow. Meburger et al. [14] introduced an approach
utilizing the root conformation approach on unstructured meshes, demonstrating stability
and validation against experimental data for high Weissenberg numbers and different wall
temperatures. Fernandes et al. [15] introduced an improved both-sides diffusion scheme
in an FVM framework for simulating viscoelastic fluid flows, demonstrating accurate
predictions for benchmark cases and achieving steady-state solutions with refined meshes
and a convergence order close to the second order. The work of Pimenta and Alves [9] also
enhanced the stability of an FVM viscoelastic solver, demonstrating second-order accuracy
in time and space for low Deborah numbers while providing new insights into the vortex
dynamics and transient behavior in the 4:1 planar contraction experiment. Giorgi and
Morro [16] presented a scheme for modeling viscoelastic materials by introducing consti-
tutive functions based on measures of strain, stress, heat flux, and their time derivatives,
ensuring consistency with the second law of thermodynamics and allowing for a wide
range of models, including nonlinear thermo-viscoelastic materials with large deformations,
encompassing well-known models.

Other studies have investigated turbulence, sediment transport, etc. Brandi et al. [17]
investigated laminar-turbulent transition in viscoelastic fluid flows using direct numerical
simulation (DNS) and linear stability theory (LST), demonstrating the influence of polymer
concentration and elastic forces on critical Reynolds numbers, revealing changes in flow
structures for specific parameters. Recent studies also include machine learning (ML)
algorithms. For example, the study of Faroughi et al. [18] introduced an ML framework
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employing random forest, deep neural network, and extreme gradient boosting models
to evaluate the coefficient of drag for spherical particles immersed in a viscoelastic fluid,
using datasets generated from DNSs.

Due to the memory effects of viscoelastic fluids, the Lagrangian perspective is natu-
ral [19]. The Lagrangian perspective is particularly effective in modeling complex flows,
where the path and interaction of individual fluid elements are of significant interest, such
as in turbulent flows or multi-phase systems. By focusing on the movement and inter-
action of individual parcels, Lagrangian CFD provides a detailed and dynamic picture
of fluid behavior, revealing insights into the underlying physical processes driving flow.
Consequently, researchers have investigated extending the most famous meshless method,
smoothed particle hydrodynamics (SPH), to viscoelastic flows. Ma et al. [20] presented a
two-phase smoothed particle hydrodynamics (SPH) model utilizing the Oldroyd-B consti-
tutive model to predict sediment transport and erosion in free-surface flow under various
scouring conditions. Bhattacharya et al. [21] addressed the tensile instability in SPH for
weakly compressible fluids by developing an adaptive algorithm using a B-spline function
as the SPH kernel, demonstrating effectiveness through dispersion analysis of an Oldroyd
B fluid material model and benchmark fluid dynamics simulations. Xu and Yu [22] also
addressed the issue of tensile instability in SPH for simulating transient viscoelastic free
surface flows, introducing an optimized particle shifting technique and demonstrating its
effectiveness through simulations of impacting drops, injection molding, and extrudate
swell with comparisons to other numerical methods and techniques. Castelo et al. [23]
introduced a moving least squares (MLS) Eulerian meshless interpolation technique, en-
abling complex mesh configurations while maintaining overall accuracy, demonstrated
through simulations of generalized Newtonian and viscoelastic fluid flows.

The following study addresses the need for precise and efficient numerics to cap-
ture the complex dynamics of viscoelastic materials in a wide range of applications, from
industrial processes to biological systems. The primary goal of this work is to extend
the meshless Lagrangian differencing dynamics (LDD) method [6,24–26] to simulate vis-
coelastic flows by incorporating the Oldroyd-B constitutive model to achieve accurate and
efficient modeling of complex viscoelastic fluid behaviors. LDD is a numerical method that
combines Lagrangian and mesh-free approaches to capture the dynamics of these fluids. In
the context of viscoelastic simulations, meshless Lagrangian discretization offers a distinct
advantage due to its inherent property tracking by particles, facilitating the incorporation
of memory effects. This study focuses on derivative-based viscoelastic models, although
integral formulations offer a viable alternative approach. The LDD method does not suffer
from tensile instability problems and can handle large negative pressures Bašić et al. [24],
as compared to SPH schemes, which require numerical remedies [21,22,27–29]. It will be
shown how the method proposed in this paper provides a distinct advantage by avoiding
the limitations of traditional mesh-based approaches. Its meshless Lagrangian nature
allows for a more accurate representation of complex geometries and dynamic fluid inter-
faces, with easier avoiding of the HWNP. The significance of this study lies in its potential
to improve simulation accuracy, thereby contributing to advancements in fields as diverse
as polymer processing, biomedical engineering, and materials science. The following
benchmarks are used to assess LDD’s efficacy in simulating such flows: a lid-driven cav-
ity, the three-dimensional impact of a droplet, sudden contraction in a 4:1 channel, and
extrusion die swelling. The applicability of the method to real polymer fluid response
is demonstrated through the successful simulation of benchmarks, which are relevant to
industrial polymer processing scenarios.

The rest of the paper is organized as follows. Section 2 presents the fundamental
governing equations that form the mathematical backbone of the study. In Section 3,
the numerical procedure employed to solve these equations is outlined, detailing the
computational methods and algorithms utilized. In Section 4, a comprehensive analysis of
the results is offered, coupled with a thorough discussion that interprets the findings and
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explores their implications. Finally, Section 5 concludes the paper, summarizing the key
outcomes of the research and suggesting potential directions for future work.

2. Governing Equations

Generalized Navier–Stokes equations (NSE) in strong vector form [25] are used to
describe the flow of an incompressible fluid that exhibits viscoelastic effects. The conserva-
tion of the momentum and mass and the Lagrangian advection can be written, respectively,
as follows:

Du
Dt

=
1
ρ

{
−∇p +∇ · τs +∇ · τp

}
+ aext, (1)

∇ · u = 0, (2)

Dx
Dt

= u, (3)

where ρ is the constant fluid density, u is the velocity vector, p is the pressure, x is the
position of the Lagrangian parcel, aext is the external acceleration vector field, τs is the
solvent diffusion stress tensor, and τp is the polymeric extra-stress tensor. The above
equations are dependent on the time, t ≥ 0, and space defined in the fluid domain Ω, even
though the equations do not specify it explicitly. In the Lagrangian context, the momentum
Equation (1) describes the acceleration of a fluid parcel. The fluid parcel is moving along its
streamline, i.e., according to the velocity field based on Equation (3), while the movement
remains incompressible due to the continuity constraint (2). The momentum Equation (1)
splits the stress tensor τ into the viscous-solvent contribution, τs, and the (viscoelastic)
polymer stress contribution, τp. Consequently, the total dynamic viscosity of the fluid is
also split into the solvent and polymeric contributions, i.e., µ = µs + µp. In the following
subsections, the solvent and polymeric terms introduced in Equation (1) are described and
explained.

2.1. Solvent Viscous Stress

The viscous stresses that stem from the solvent diffusion process are represented using
a symmetric tensor:

τs = 2µsE,

where E is the symmetric tensor denoting the rate of deformation:

E = 1/2
[
∇u + (∇u)⊤

]
.

The diffusion–acceleration term present in Equation (1) equals the divergence of the tensor,
∇ · τs/ρ. Therefore, for constant viscosity fluids, µ = const., the diffusion acceleration
depends on the Laplacian of the velocity:

∇ · τs = µs∇2u, (4)

while for variable-viscosity fluids, i.e., for µ = f (x, u, p, . . .), diffusion acceleration must
take the gradients of viscosity and velocity into account [30]:

∇ · τs = ∇ · (µs∇u) + (∇u)⊤∇µs. (5)

Flowing materials that are devoid of elasticity effects can be effectively modeled using
the diffusion term with variable viscosity without including τp because their nonlinear
viscosity characteristics primarily respond to shear rates without memory effects or elastic
recovery, i.e., it approximately holds µ = f (E). In the proposed numerical method, the
viscosity function can be described using any non-Newtonian model, some of which were
validated in the fully Lagrangian context using the LDD method [25,26].
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2.2. Polymeric Stress

Viscoelastic models exhibiting both viscous and elastic properties require the incor-
poration of an extra stress tensor τp into Equation (1), which is essential for capturing the
fluid’s memory effects and its ability to store and release elastic energy. The extra stress
tensor captures the exchange between the fluid’s viscous dissipation and elastic response
under varying flow conditions based on the current state of deformation and deformation
history. The evolution of the polymeric viscoelastic stress is defined by the upper-convected
derivative:

∇
τ p =

Dτp

Dt
− τp · ∇u − (∇u)T · τp, (6)

where the symmetric assumption of the extra stress tensor can be used to simplify the
following equation:

∇
τ p =

Dτp

Dt
− 2τp · E, (7)

where the dot-product between two tensors may be defined using the matrix product,
τp · E = Eτp. Within viscoelastic constitutive models, upper or lower convected time
derivatives are employed to guarantee frame invariance in the transport of tensorial at-
tributes [31]. In this study, the Oldroyd-B model is employed for the polymeric component
of the fluid to consider the fluid’s instantaneous elastic response and its rate-dependent
viscous behavior, as a demonstrative example to validate the proposed methodology. The
Oldroyd-B fluid presents one of the simplest constitutive models capable of describing
the viscoelastic behavior of dilute polymeric solutions under general flow conditions. It
provides linear viscoelastic modeling of dilute polymer solutions based on the microscopic
dumbbell with a linear entropic spring [32]. The viscoelastic stress is governed by the
Oldroyd-B constitutive equation:

τp + λ1
∇
τ p = 2µpE, (8)

where λ1 is the relaxation time over which the elastic stress relaxes when the strain is constant.
Some other models were also developed by Rivlin, Green, Tobolsky, Ericksen, Lodge, Phan-
Thien, Tanner, and Giesekus et al. (please see [31] for the references). In a truly Lagrangian
framework, which inherently tracks the history and evolution of stress in a specific material
element moving with the flow, Equation (8) is an ordinary differential equation (ODE).
Therefore, Equation (8) may be resolved in time by any numerical integration method.

The Oldroyd-B model represents the limiting scenario of linear viscoelasticity for the
majority of non-linear models. Due to dissipative constitutive instability, it is known to
produce unreliable projections in purely extensional deformation. Nevertheless, due to its
increased susceptibility to numerical instabilities compared to the more reliable non-linear
viscoelastic models, it serves as a valuable model for evaluating the performance of the
numerical solver. For real polymer materials, λ1 is associated with the time it takes for
polymer chains to relax or reconfigure after the application of stress.

The inclusion of nonlinearity in the constitutive models enhances the stability of the
flow and improves the convergence of the numerical solvers [33]. Another parameter
relevant to the Oldroyd-B model that is not evident in Equation (8) is the retardation time
λ2, which relates the decay of memory effects in the material to the solvent diffusion effects.
λ2 is related to the delay in the elastic response of the polymer solution. Through the
viscosity-ratio connection, β = µs/µ = λ2/λ1, the simulations pre-process polymer and
solvent viscosities. If the retardation time is negligible, λ2 = 0, then the formulation reduces
to the UCM model, which eliminates the contribution of the solvent viscosity.

3. Numerical Procedure
3.1. Lagrangian Splitting Scheme

Numerical methods that separate velocity and pressure lead to reduced systems
of equations with fewer interconnected variables and prevent saddle-point problems.
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Hence, such methodologies are attractive for certain large-scale problems. Therefore,
these methodologies are appealing when dealing with particular large-scale problems.
This paper presents a numerical method for solving the pressure Poisson equation (PPE)
(re)formulation of the Navier–Stokes equations for viscoelastic fluids. The approach is
specifically designed for fully Lagrangian scenarios. The split scheme that describes the
pressure–velocity–advection steps may be solved using any Lagrangian method that intro-
duces consistent spatial operators. In this work, LDD [6] is employed due to its validation
of viscoplastic non-Newtonian flows [25,26], its ability to reach second-order accuracy [34],
and its performance and extensibility [24]. The proposed numerical procedure does not
correct the HWNP using the log-conformation or any other numerical approach. This is
carried out to test the limits of the fundamentals of the proposed numerical scheme, while
stabilization approaches may be added in future work.

A key aspect of establishing a consistent numerical scheme, which decouples the
velocity and pressure, is the determination of the proper pressure equation [35,36]. The
pressure equation is employed as a substitute for the continuity constraint (2), i.e., the
requirement that the velocity field always remains solenoidal. The pressure field, p(x),
should yield the acceleration of fluid particles through the pressure gradient ∇p, such that
Equation (2) is satisfied at all discrete time instants.

The equation of the pressure field to be solved is a scalar Poisson equation, which
is derived by applying the divergence operator ∇· onto the momentum Equation (1) [6].
Furthermore, the boundary condition at solid walls is obtained by dotting the momentum
Equation (1) by the wall-normal n [37]. On the free surface, the atmospheric pressure is
imposed through the Dirichlet boundary condition. These operations yield the following
system of equations:

∇2 p = ∇ ·
{
−ρ

Du
Dt

+ ρ aext +∇ · τs +∇ · τp

}
, x ∈ Ω, (9)

∂p
∂n

= n ·
{
−ρ

DU
Dt

+ ρ aext + µ∇2u
}

, x ∈ Γwall , (10)

p = 0, x ∈ Γ f s, (11)

where all the introduced terms are described as follows. For the first term in Equation (9),
the divergence of the Lagrangian acceleration is numerically defined as follows:〈

∇ · Du
Dt

〉
= ∇ · u

|u|
∆

, (12)

where ⟨⟩ are the brackets denoting numerical approximation. Incorporating the numerically
accumulated divergence of the velocity field, ∇ · u, into Equation (9) is important to damp
the compressibility in time [36]. Therefore, it is often referred to as the ‘divergence damping
term’ [38]. While it is unclear how to use it and interpret it in the Eulerian context [35,38–40],
it has a physical meaning in the Lagrangian context. The right-hand side of Equation (12)
can be interpreted as ‘how fast the divergence propagates to neighboring Lagrangian
parcels’, which is damped within the time step.

In this study, the gravity vector field is taken as constant; therefore, the second term in
the right-hand sides of Equations (9) and (10) may be neglected, i.e., ∇ · aext = 0, while for
variable gravity fields, it should be taken into account.

The third term is the Laplacian term, which accounts for the viscous velocity–divergence
(please see Appendix A):

⟨∇ · (∇ · τs)⟩ = ∇ · [µs∇(∇ · u)]. (13)
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As the first term approximated by Equation (12) accounted for accumulated overall
divergence, the last term accounts for the current stress caused by elasticity (obtained by
solving Equation (8)): 〈

∇ ·
(
∇ · τp

)〉
= ∇2tr

(
τp
)
, (14)

where ‘the Laplacian of the polymeric tensor–trace’ is taken as the appropriate approx-
imation. The derivation of Equation (14) is explained in Appendix B and backed by
observations by Kumar et al. [41]. Note that, in Equation (10), for simplicity, we take
µ = const. at Γwall, even for variable-viscosity fluids. This is a sufficient approximation for
second-order methods since the viscosity is already extrapolated from fluid to wall (and
second extrapolation would not yield better physics).

The linear system is constructed based on Equations (9)–(11). The terms of the right-
hand side of the system were explained in the text above, while the left-hand side dis-
cretization of the spatial operators (Laplacian and directional derivative) are explained in
the next section. Detailed information on the solvability and convergence of the system of
Equations (9) and (10) is given in [6,24]. In this study, the linear system is solved using the
right-preconditioned BiCGStab.

After solving the PPE defined above, the pressure field may be included in the momen-
tum Equation (1) to solve it for the velocity. Furthermore, the obtained velocity field is used
to solve the extra stress Equation (8) and the advection Equation (3). The equivalence of the
so-called PPE reformulation of the NSE has been widely analyzed [35–38,42]. Compared
to [43], the PPE reformulation of the NSE in this paper is carried out in the Lagrangian
context by replacing the convective operator issues and time-step limitations with the
advantages of Lagrangian advection. The discretization and solution of the decoupled
pressure–velocity–extra-stress–advection system are explained in the following subsections.

3.2. Spatial Discretization

In the LDD method, the computational domain is discretized as a point cloud, thus
eliminating the need for topological information. In discrete equations, a Lagrangian
particle i defines the central node, while j ∈ N defines its neighbor node from the set
neighboring nodes, N . For simplicity of presenting the following equations, the subscript
ij shall define the difference between values of two neighboring nodes, □ij = □j −□i.
Particle i’s neighbors, j ∈ N , are searched around the location xi to be within the compact
radius h, i.e., 0 <

∣∣xij
∣∣ ≤ h, ∀j ∈ N . For the incompressible flow, the closest neighbors

around xi are organized to be distanced close to some initial particle spacing, ∆, and
the first ring of neighbors around the particle i is taken for the discretization of spatial
operators [6]. Therefore, the recommended values of the compact radius lie within the
interval 1.3∆ < h < 2.5∆. In this work, h = 1.7∆ is taken, which is on the safe side to
capture the full ring of closest neighbors. The weighting function describes how much a
neighbor contributes to the interaction between nodes based on the distance xij between
the two neighbors [34]. In this work, the Wendland kernel is used as the weighting function,
W
(∣∣xij

∣∣).
The term Lagrangian differencing was introduced to emphasize that the numerical

method is built upon finite differences in the Lagrangian context. Consequently, the Navier–
Stokes equations are solved in strong form, i.e., the equations are directly discretized
by substituting the discrete LDD spatial operators. The discrete approximations of the
continuous spatial derivatives are based on the renormalization tensor and the offset vector:

Bi =

(
∑

j∈N
Wij xij x⊤ij

)−1

, (15)

oi = ∑
j∈N

Wij xij, (16)



Polymers 2024, 16, 2068 9 of 24

which are calculated at each time-step for each point’s neighborhood. The first-order
derivatives discretized in the LDD context are defined as follows:

⟨∇ f ⟩i = ∑
j∈N

Wij Bixij fij, (17)

⟨∇ f ⟩i = ∑
j∈N

Wij Bixij f⊤ij , (18)

⟨∇ · f ⟩i = ∑
j∈N

Wij Bixij · f ij, (19)

⟨∇ · F⟩i = ∑
j∈N

Fij
(
WijBixij

)
, (20)

where f is a scalar field, f is a vector field, and F is a tensor field. It is noticeable that the
term WijBixij may be understood as a component of the Hamilton derivative operator [6].
The term ’component’ is used because the final outcome is achieved by adding together
individual neighboring weights, ∀ j ∈ N . The only second-order derivative needed to solve
the NSE using the proposed numerical scheme is the Laplacian, which is approximated in
the LDD context:

⟨∇ · (ϕ∇ f )⟩i = d
∑j∈N Lij

(
ϕi + ϕj

)
fij

∑j∈N Lij
∣∣xij
∣∣2 , (21)

where Lij ≡ Wij
(
1 − xij · Bioi

)
, and ϕ are scalar fields. Equation (21) also has the same

formulation for a vector function, f . Thorough analysis of the LDD spatial operators may
be found in [34].

Since the fundamentals of spatial discretization are introduced through LDD operators,
the splitting scheme may be possible.

3.3. Temporal Discretization

To solve the NSE in time using the proposed method, three subproblems that rely on
Lagrangian derivative, D/Dt, are approximated:

• Equation (1) is used to obtain the velocity field based on the discretization of Du/Dt;
• Equation (3) is used to advect Lagrangian nodes based on the discretization of Dx/Dt;
• Equation (8) is used to calculate the extra-stress tensor based on the discretization of

Dτp/Dt.

The variable time-step size during the numerical simulation is chosen based on the
Lagrangian CFL (LCFL) constraint [44], which is defined as follows:

LCFL = δt|∇u|∞. (22)

The condition restricts the time-step size based on the maximum strain in the flow, i.e.,
the L-infinity norm |∇u|∞, which is independent of the discretization size, as compared to
classical Eulerian CFL conditions. Therefore, the Lagrangian constraint for the time-step
size is usually more relaxed than its Eulerian counterpart, as the constraint LCFL < 1
guarantees that characteristic curves do not intersect during a time-step.

3.3.1. Momentum Equation

The backward differencing formula of the second order (BDF2) used in the context of
variable time-step sizes is employed to discretize the Lagrangian derivative for the velocity:〈

Du
Dt

〉
=

1
δt

[(
1 + 2rt

1 + rt

)
un+1 − (1 + rt)un +

(
r2

t
1 + rt

)
un−1

]
, (23)

where rt is the ratio of the current and previous time-step sizes, rt = tn/tn−1. Solving un+1
by substituting Equation (23) in the momentum Equation (1) is carried out by leaving the
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velocity un+1 and the diffusion terms on the left-hand side while putting everything else
(pressure gradient and viscoelasticity divergence) on the right-hand side. The momentum
Equation (1) incorporates the pressure field as an explicit term, which is obtained by solving
the system of Equations (9) and (10). It should be pointed out that the scheme handles
constant and variable viscosity fluids. For variable-viscosity fluids, the viscosity can
depend on many parameters, µ = f (x, u, p, . . .). During each time-step, before solving for
the pressure and velocity fields, the variable viscosity scalar field may be calculated [25,26].

3.3.2. Advection

In Lagrangian CFD methods, the fluid dynamics are analyzed from a particle-centric
perspective. This approach involves tracking discrete fluid parcels as they advect and carry
their properties. The trajectory of each parcel is computed by integrating its velocity over
time, allowing the simulation to capture the evolving flow patterns and interactions within
the fluid. The Lagrangian particle movement is defined by Equation (3), while the first
order derivative in time describes the change in the particle location within the time-step:〈

Dx
Dt

〉
=

1
δt
(xn+1 − xn). (24)

Therefore, by substituting Equation (24) into Equation (3), the new location is solved as
follows:

xn+1 = xn + un+1δt. (25)

The numerical particle is explicitly moved in time (advected) using the newly obtained
velocity un+1. In the discrete context, advection always causes compressible results [45] due
to the order (truncation) of the method, imperfect convergence and floating point errors, or
simply because neighboring streamlines will collide or separate for a large discrete value of
δt. Due to these inherent properties of Lagrangian advection, all particles are reordered after
advection [6] using an iterative algorithm [46]. In summary, the semi-implicit scheme for
advection is established by combining the explicit movement and implicit reordering.

3.3.3. Extra-Stress Evolution

In the case of viscoelastic flows, the viscoelasticity tensor is evolved in time by integrat-
ing Equation (8). Since the particles are carrying tensorial properties along their trajectories,
the tensorial Lagrangian derivative Dτp/Dt is discretized using the first-order derivative:

Dτp

Dt
=

1
δt
(
τp,n+1 − τp,n

)
, (26)

and Equation (26) is substituted into Equation (8). By leaving only τp,n+1 on the LHS, the
viscoelastic tensor is explicitly evaluated at each time step.

3.4. Final Algorithm

A single time step contains the following sub-steps:

1. Advect particles and reorder their positions, as described in Section 3.3.2.
2. Generate boundary particles on walls by projecting closest fluid particles into walls,

as described in [6].
3. Prepare spatial operator information, i.e., (15) and (16).
4. Solve the pressure equation, as described in Section 3.1.
5. Solve for velocity, as described in Section 3.3.1.
6. Calculate the viscoelasticity tensor, as described in Section 3.3.3.
7. Calculate the next allowable time-step size according to (22).

In the discrete Lagrangian context, the split-step scheme is characterized by its de-
coupled pressure–velocity–advection steps, which are resolved once within each time
increment. This method, inherently non-iterative in nature, represents an optimal approach
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performance-wise for the resolution of NSE [6,35,40]. However, it should be acknowledged
that the scheme cannot mandate absolute convergence due to the absence of multiple
iterations per time-step (along with other errors, like truncation order, etc.). Consequently,
it is necessary to regulate time-stepping to ensure global convergence and maintain the
stability of the system in a discrete context. In conclusion, divergence in the velocity field is
always damped in time, while the time-step size controlled using Equation (22) controls
that there is no divergence amplification and numerical blow-up.

4. Results and Discussion
4.1. Lid-Driven Cavity

The lid-driven cavity benchmark is important for evaluating viscoelastic flows to exhibit
intricate flow behaviors such as non-linear velocity profiles, vortical structures, and the
formation of elastic instabilities [25,47–49]. The lid-driven cavity setup creates a confined space
in which these complex flow patterns can manifest, allowing for a thorough assessment of
how well a simulation method captures these behaviors. Viscoelastic fluids frequently exhibit
shear-thinning behavior, in which viscosity decreases as the shear rate increases. Variable
shear rates across the cavity in the lid-driven cavity allow evaluation of how accurately a
simulation method represents this non-Newtonian behavior. The benchmark calls for the
creation of recirculation zones in which the flow reverses direction. Because of their elasticity,
viscoelastic fluids can have altered or intensified recirculation. Accurately predicting the size,
shape, and behavior of these zones is critical in assessing the fidelity of a simulation method
in capturing viscoelastic effects. Despite its simple geometry, this problem is regarded as
exceptionally challenging to solve, particularly at large Weissenberg numbers, since the flow
exhibits specific characteristics that combine shear and extensional deformations.

The LDD was used to solve a benchmark test for lid-driven cavity flow. A square
geometry representing the cavity, with a unit length L = 1, is filled with fluid. The density
of the fluid is set to ρ = 1, and the maximum velocity of the lid is U = 1. A relatively high
Weissenberg number for the simulation [50] is chosen as Wi = λU/L = 3, while a constant
retardation ratio is applied β = 1/2. By setting the Reynolds number to a negligible value,
Re = ρUL/µ = 5 · 10−4, the flow is conceptualized as a creeping flow. Near the sliding
lid, the extensional rate reaches high values [51]. Because the cavity is a closed system
without inlets and outlets, recirculating material accumulates the extra stress quicker than
it relaxes [1]. The flow may not achieve a steady-state solution and, thus, show elastic
instabilities. Numerically, the modeling of the viscoelastic lid-driven cavity flow at high
Weissenberg numbers is as difficult as its Newtonian equivalent at high Reynolds numbers
[48,51]. The corner singularities may be treated by a controlled amount of leakage [48]
or by modifying the lid velocity profile [1]. Similar to [1], in this study, regularization is
applied to the tangential velocity profile of the lid to eliminate the stress singularity at the
corners. The profile of the lid’s tangential velocity is imposed as follows:

ux(x, t) = 16x2(1 − x)2[0.5 + tanh(8(t − 0.5))/2]U, x ϵ[0, 1],

where the hyperbolic tangent smooths the acceleration of the lid while the tangential
velocity is scaled exponentially away from corners. By doing so, the stagnation points
situated at the corners remain unaffected by any deformation rate, thereby deflecting the
formation of stress gradients that have the potential to increase exponentially.

To maintain similarity with discretizations of referenced results [1,12,50], the initial point
cloud was generated as a 100 × 100 grid, i.e., the initial point spacing was ∆ = 0.01. The results
provided in Figure 2 are compared to the works of [50] and [1], which introduced a stream
function based on log-conformation formulation [12] for incompressible viscoelastic flows
to ensure the positive definiteness of the conformation tensor, addressing high Weissenberg
number challenges. The simulation results successfully captured the upstream shift of the
primary re-circulation vortex, i.e., viscoelasticity, which has broken the symmetry that is
seen in experiments with the Newtonian creeping flow. The smaller corner eddies were also
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induced at the bottom of the cavity. In reality, at the bottom corners, there is an infinite series
of vortices, diminishing in size and strength as the corner approaches [48]. By comparing
the velocity magnitude results shown in Figure 2 to those from [50], it may be seen that
the non-symmetry of the velocity in the cavity is well predicted. A characteristic feature of
this benchmark is the upstream deformation of streamlines in the upper-right corner, i.e.,
curve-shaped streamlines due to the significant gradient of the extra stress shown on the right
image in Figure 2. This area becomes unstable quickly if the tangential velocity profile of the
lid is not regularized. Consequently, the velocity magnitude near the lid experiences larger
gradients near the downstream corner compared to the upstream area. The accuracy of the
vortex center and obtained velocity field may be seen in Figure 3, where the simulated velocity
profiles are given for a horizontal and vertical section and compared to those from [1,12]. The
results obtained by the LDD method show the bump in the vertical velocity profile near the
right wall, which was also obtained in [1] but not in [1]. This bump in velocity magnitude
may also be seen from the contours of the velocity magnitude due to the rise in the extra
stress, which is rendered in Figure 2. The peaks and overall shape of the graphs are well
aligned. The LDD solution exhibits slightly steeper gradients in the vertical velocity profile,
which will be investigated in the future.

Figure 2. Contour plot of the instantaneous velocity magnitude with streamlines (left image) and the
trace of the extra stress tensor (right image) for the lid–driven cavity flow simulation, Wi = 3 and
Re = 5 · 10−4.
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4.2. Droplet Impact

This section examines the effects of a three-dimensional viscoelastic fluid droplet
colliding with a rigid plate. Understanding droplet impact dynamics is important in many
fields, including inkjet printing, spray coating, and biomedical applications such as drug
delivery. Droplet impact involves intricate interactions between a viscoelastic fluid and a
solid surface. When hit, viscoelastic fluids exhibit deformation, stretching, and breakup,
making it difficult for simulation methods to model the fluid’s response to external forces
accurately. The simulation is initialized by a fluid droplet described as a sphere with
diameter of D0 = 20 mm, positioned 40 mm above the rigid plate. The droplet has initial
downward velocity V0 = 1 m/s and is allowed to fall under the Earth’s gravity conditions
g = 9.81 m/s2, resulting in the Froude number at impact Fn = 2.26. The density of the fluid
is ρ = 1000 kg/m3, and the Oldroyd-B parameters are chosen as µ = 4 Pa·s, λ1 = 0.02 s,
and λ2 = 0.002 s. This results in Re = 5, β = 0.1, and Wi = 1. The relaxation time dictates
the elastic response of the droplet during the impact, and the viscosity dictates diffusion of
advection and elasticity, as well as its final shape.

Two resolutions of the droplet were tested with initial point spacing of ∆ = 0.4 mm and
∆ = 0.25 mm, which led to 60,000 and 250,000 fluid Lagrangian points, respectively. The
evolution of the coarser droplet simulation is visualized in Figure 4, in which the impacting
droplet is sliced in half to analyze the viscoelastic effects. The magnitude of the velocity field
has the potential to explain the evolution of the droplet shape. Upon impact, the droplet
undergoes vertical compression and horizontal elongation (seen in the first three images
in Figure 4). In contrast to Newtonian flows, at the maximum compression and horizontal
expansion of the droplet, the volume is distributed around the edges of the droplet. The
transition of the energy from the center of the droplet can be seen in the fourth and fifth
images in Figure 4. Eventually, the elongated shape of the droplet compresses back to the final
oval shape. The evolution of the droplet diameter is thus characterized by rapid fluctuation,
alternating between the local maximum and minimum peak until it eventually settles on an
intermediate value. This is shown in Figure 5, and the results of two simulations conducted
using the proposed method are compared to numerical results obtained by Xu et al. [29]
and Figueiredo et al. [52]. The results obtained from this study align well with the existing
findings from [29,52], providing additional confirmation of the accuracy of the suggested
methodology. The slope and the peak of the diameter elongation are almost identical to
the results in [52]. Nevertheless, one inconsistency is that the local minimum peak in the
simulations is not as profound as the ones noticed in the references. The discrepancy is
likely attributed to the imposition of the no-slip boundary condition for sliding free-surface
points along the plate, hindering the droplet’s compression after elongation. Further
investigation is needed to confirm this hypothesis. Compared to Xu et al. [29] and other
SPH methods, no tensile instabilities and fracturing phenomenons were detected.

4.3. 4:1 Planar Contraction

The ’4:1 planar contraction’ problem is an essential benchmark test for viscoelastic flow
solvers in computational fluid dynamics, particularly when dealing with viscoelastic fluid
dynamics. This configuration show in Figure 6, which involves a sudden contraction of the
flow channel from wider to narrower, creates a complex flow situation useful in polymer
processing and inkjet printing [53]. This benchmark is important because it clarifies and
tests the solver’s ability to accurately capture viscoelastic fluids’ complex behavior under
sudden geometric changes. Extrusion is a common polymer manufacturing method for
elongated, consistent components. A die liquefies and shapes plastic to the desired cross-
sectional shape. Due to flow pattern reorganization, material forced out through the die
expands at exit. The flow transitions from parabolic profiles within the die, constrained by
the walls, to a uniform profile outside the die, where the free surfaces are in equilibrium,
which is termed ‘extrudate swelling’. Swelling can cause distortions in the extrudates,
leading to the development of non-axisymmetric profiles. Flow perturbations hinder
polymer extrusion efficiency when extrusion velocities are high. This benchmark test also
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tests the solver’s numerical stability and robustness since steep velocity gradients and high
strain rates in the contraction zone can cause convergence or numerical diffusion issues.

Figure 4. Evolution of droplet deformation during impact, rendered with the velocity magnitude.
The simulation with point spacing ∆ = 0.4 mm is rendered to show the solver capability to reproduce
viscoelasticity effects for coarser point-cloud resolutions.
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Figure 6. The geometry of the 4:1 planar contraction and the positions of the recirculation vortices are
shown. XR is the corner vortex’s reattachment length.

The results of the velocity field for two simulations, Wi = 5 and Wi = 10, are shown
in Figure 7. For the simulated case, Wi = 5, a complex pattern that consists of two merged
recirculation zones is visible. The smaller vortex recirculates near the contraction corner,
while the larger vortex stretches from the smaller vortex to the adjacent wall. The post-
processing artifacts that are visible around the recirculation corner in Figure 7 are due
to the Lagrangian nature of the flow, i.e., it is hard to capture streamlines of mesh-free
points that are advecting with near-zero velocity. The corner-vortex length for the steady
solution for Wi = 5 is measured to be around XR = 1.2h, while for Wi = 5, the length is
measured as XR = 2.3h. The corner-vortex lengths correspond to the values reported by
Moreno et al. [54] and Afonso et al. [55]. Wittschieber et al. [56] and Niethammer et al. [57]
present simulations in which the size of the lip vortex continuously increases as the Weis-
senberg number increases while the corner vortex decreases in size. They also note that
the results are highly dependent on the mesh resolution. In the case of LDD, we have
not found that the shapes of lip and corner vortices significantly change due to different
point-cloud resolutions. They decrease in size for increasing Weissenberg numbers up to
Wi ≈ 3. Afterwards, the vortex increases as the Weissenberg number increases. The change
between the two regimes is located at smaller Weissenberg numbers when a coarser mesh
is used [57]. For example, in [57], the corner vortex starts to abruptly spread for Wi > 10,
while in [54,55], the corner vortex starts to abruptly spread for Wi > 4. All references agree
that the stress cannot be perfectly resolved in the small region near the re-entrant corner,
which is not surprising because the corner singularity exists regardless of the computational
grid resolution. Since the current implementation of the LDD method does not include
adaptive refinement of the Lagrangian point cloud that is important in the boundary layer
region, in this study, the lip vortex for small Weissenberg numbers Wi < 3 could not be
analyzed. Therefore, Figure 7 presents the case of Wi = 5, in which the lip vortex has a
significant size compared to the point-cloud resolution, i.e., spacing between neighboring
points. From the figure, it is also evident that the simulation with a larger Weissenberg
number produced larger corner vortices.

Figure 8 renders the principal stress difference (PSD) around the contraction for
Wi = 5, which is calculated based on the components of the extra stress tensor as follows:

PSD =
√(

τxx − τyy
)2

+ 4τ2
xy.

The contour plot with the logarithm scale of the PSD is discretized in 24 levels so that
relevant transition of values may be analyzed and compared to experimental data by Wang
and Wang [53] and Verbeeten et al. [13]. The numerical results show that the predicted PSD
pattern agrees well with the experimental data measured by the flow-induced birefringence
(FIB) device. The most important details, i.e., the pattern inside the vortex and the “butterfly
pattern” of PSD [53], are well-predicted. In other words, the contours in the vortex are
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correctly stretching, while the pattern around the sharp corner symmetrically spreads
upstream and contracts downstream.

Figure 7. Contour plot of the velocity magnitude and streamlines for the 4:1 planar contraction for
Wi = 5 (left image) and Wi = 10 (right image).

Figure 8. Contours of the principal stress difference (PSD) around the 4:1 planar contraction, simulated
for Wi = 5.

Since the standard Oldroyd-B formulation is used in this work, instead of log-conformation
methods that are usually classified as numerically more stable [11,54], a simulation
with parameters Wi = 14 and Re = 0.01 was conducted in order to test the stability of
the numerical scheme for large Weissenberg numbers. The results of the simulation
are presented in Figure 9, which renders the magnitudes of the velocity field and extra
stress tensor components. The streamlines that are computed using the LIC technique
are overlayed onto the contour plots to validate the accurately converged solution of
the velocity field and vortex shape. Afonso et al. [55], along with other similar studies
such as Fernandes [11], Moreno et al. [54], Wittschieber et al. [56], report that high
Weissenberg-number calculations can only be performed with the log-conformation
technique, whereas standard stress formulation is systematically diverged. Since this
study is based on the standard approach for the extra-stress tensor and has a goal
to propose a Lagrangian reformulation for viscoelastic flows, it is not yet clear why
the simulations of various point-cloud resolutions and high Wi numbers stay stable.
What may be observed is that the Lagrangian CFL condition (22), which controls the
adaptive time stepping, provides an adequate stability criterion that the PPE may yield
the pressure field to keep simulations incompressible and stable.

The components of the extra stress tensor τp show that the viscoelastic stresses are
extremely high in the horizontal direction, amplifying the narrow channel downstream.
Around the sharp corner, all components of the tensor have a similar order of magnitude,
while the gradients of the component values around the contraction are evident. This
complex situation causes large viscoelastic accelerations in the fluid (through the term
∇ · τp) to flow around the corner. Consequently, the pressure gradient is extremely high at
the corner to keep the flow incompressible. A slight upstream bending of streamlines may
be seen at the corner lip, which is the result of these gradients. For smaller Weissenberg
numbers, complete lip vortices are formed, as shown in Figure 7. We did not observe
instabilities that were reported by some other numerical methods. Future work should also
investigate the influence of shear bands on the vortices [58].
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Figure 9. Contours of the velocity magnitude (upper left image) and extra stress tensor components
for the 4:1 planar contraction simulation for Wi = 14 and Re = 0.01.

4.4. Die Swelling

The phenomenon of the die swell, or the post-extrusion expansion of a polymer melt,
has significance in the domain of polymer processing and serves as a critical benchmark
for evaluating the proficiency of viscoelastic flow solvers. Due to its high sensitivity to
constitutive modeling of viscoelastic properties, the die-swell problem is a good evaluator
of solver accuracy. To represent the material’s response after exiting the die, the solver
must incorporate the complexities of the stress–strain relationship, handling discontinuities
in geometry and stress fields. The die-swell experiment is transient, but the swell ratio
evolves until a steady state is reached [47,59]. Figure 10 depicts a schematic illustration of
the numerical setup for the die-swell experiment in two dimensions. The whole domain is
simulated considering a channel with a height of 2h and a length of 10h. The expansion
zone is 12h long, with a total domain length of 22h. The dimensions of the swell domain
are dimensioned in a way that boundary conditions for the inlet do not impact the flow
near the channel exit.

The main dimension was taken as h = 0.01 m, and two initial point-spacing values
were tested: ∆ = 0.0005 and ∆ = 0.0002. The evolution of the free surface, captured
during the first 16 seconds of the simulation for Wi = 0.5, is shown in Figure 11. The
simulated swell corresponds to the numerically obtained results by Ingelsten et al. [47]. The
simulations’ results are compared to Tanner’s theory and data from [59] and [47], and the
comparison is presented in Figure 12. The swell ratio is calculated for the simulation results
as Sr = hmax/h, i.e., the ratio of the swell width measured away from the channel and
the channel width. To obtain a comprehensive understanding of the cases and numerical
methods, please refer to the corresponding studies. The study by Comminal et al. [59]
utilized an alternative definition of the Weissenberg number and swell ratio, which is
acknowledged by Ingelsten et al. [47] and thus also included in Figure 12. Comminal et
al. obtained disparate results when employing three subtly distinct numerical methods to
simulate the identical flow. Nevertheless, the results of LDD simulations are in very good
agreement with the referent data while slightly overpredicting compared to numerical
methods for Wi > 0.5. A contour plot of an instantaneous trace of the extra stress tensor is
given in Figure 13, where it can be seen that the concentration of the extra stress is building
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up near the corners of the channel exit and in the center after the channel exit, while it
diminishes after reaching a steady state.

Figure 10. The computational domain for the die-swell experiment.

Figure 11. Snapshots of the free surface for the die-swell simulation, Wi = 0.5 and Re = 0.5. The
evolution of the free surface (one contour per simulated second) is compared to the swell ratio in [47].
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Figure 13. Contour plot of the instantaneous trace of the extra stress tensor for the die-swell simulation,
Wi = 0.5 and Re = 0.5. Mesh-free points are also plotted to show the incompressible state of the fluid.

5. Conclusions

This research addressed and resolved the current challenges of meshless Lagrangian
methods for simulating viscoelastic materials, which opens up avenues for the optimization
of industrial processes, the design of innovative materials, and the exploration of biological
fluid dynamics.

Lagrangian differencing dynamics (LDD) is a Lagrangian method for incompressible
flows, which has been thoroughly validated on complex Newtonian and non-Newtonian
flows in complex domains. For this reason, it was taken as the baseline method to address
the challenges of simulating viscoelastic materials in the Lagrangian context. A split-step
scheme, or pressure Poisson reformulation of the Navier–Stokes equations, was introduced
for incompressible viscoelastic flows in the Lagrangian context. The numerics based on
LDD were introduced to solve the proposed scheme.

The main findings of this study highlight the LDD method’s effectiveness in accurately
simulating viscoelastic flows, especially when combined with the Oldroyd-B model. The
relaxation time and retardation time parameters in the Oldroyd-B model provide insights
into the dynamic behavior of polymer solutions. The LDD method proves well-suited to
simulating the behavior of viscoelastic materials, i.e., the meshless Lagrangian framework
inherently captures large deformations and configurational memory effects that are hall-
marks of viscoelasticity. The method’s applicability to real polymer fluid response has
been demonstrated by successfully simulating benchmarks that are relevant to industrial
polymer-processing scenarios. The lid-driven cavity test assessed LDD’s accuracy in cap-
turing recirculation and shear-thinning in confined spaces. Droplet impact simulations
evaluated its ability to handle complex fluid interfaces and behaviors during impact. The
4:1 sudden-contraction tests examined the performance in modeling flow separation, stress
relaxation, and flow reformation in challenging geometries. The die-swell simulation tested
LDD’s ability to replicate elongational viscosity and elastic effects during fluid extrusion.
These benchmarks collectively confirm the new method’s effectiveness in predicting flow
patterns and viscoelastic effects, aligning with experimental or theoretical expectations.
Additionally, the method’s ability to handle complex geometries and free surfaces aligns
well with the often intricate flow patterns observed in these materials.

The presented applications of the LDD method to viscoelastic materials pave the way
for further exploration of complex flow phenomena in this material class. To extend the
applicability of the presented findings, future work will explore alternative constitutive
models beyond Oldroyd-B formulation, including investigations of the log-conformation
approach to reach even higher Weissenberg numbers. Finally, while this study investigated
derivative-based viscoelastic models in Lagrangian motion, future work will investigate in-
tegral formulations. Lagrangian mechanics tracks material points within a deforming body;
therefore, it may benefit from the inherent memory effects captured by integral models.
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Appendix A. Divergence of the Diffusive Stress

The divergence of diffusion stress is scalar, presented in a fully expanded formulation:
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∂y2 +

∂2u
∂z2

)
+

∂2u
∂x2 +

∂2v
∂y∂x

+
∂2w
∂z∂x

}
+

∂µ

∂y

{(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
+

∂2u
∂y∂x

+
∂2v
∂y2 +

∂2w
∂z∂y

}
+

∂µ

∂z

{(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
+

∂2u
∂z∂x

+
∂2v

∂z∂y
+

∂2w
∂z2

}
+

∂2µ

∂y∂x

(
∂u
∂y

+
∂v
∂x

)
+

∂2µ

∂z∂x

(
∂u
∂z

+
∂w
∂x

)
+

∂2µ

∂z∂y

(
∂v
∂z

+
∂w
∂y

)
+

∂2µ

∂x2
∂u
∂x

+
∂2µ

∂y2
∂v
∂y

+
∂2µ

∂z2
∂w
∂z

.

The equation may be more cleanly written using vector and tensor notation:

∇ · [∇ · (µ∇ · u)] = µ∇ ·
(
∇2u

)
+∇µ ·

[
∇2u +∇ · (∇u)T

]
+
〈

H(µ)T , ∇u
〉

F
, (A1)
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where the last term is known as the Frobenius inner product (or Hilbert–Schmidt inner
product in more general contexts), defined as ⟨A, B⟩F = tr

{
AT B

}
. It is defined as “the

trace of the product of two tensors, where the first one is transposed”, or as “the sum of
element-wise multiplication of two tensors”. H(µ) denotes the Hessian of µ.

To analyze the first term of Equation (A1), the curl–curl identity is defined as follows:

∇2u = ∇(∇ · u)−∇× (∇× u),

and since the curl operator always gives a solenoidal vector field, taking the divergence of
the above equation leads to the equivalence:

∇ ·
(
∇2u

)
= ∇2(∇ · u).

The approximation of Equation (A1) is summarized as follows:

∇ · [∇ · (µ∇ · u)] = 2µ∇2(∇ · u) + 2∇µ · ∇2u + 2∇2µ (∇ · u), (A2)

where the first term is dominant to be included as the source term for the pressure,
to suppress compressibility in highly viscous fluid due to diffusive spreading of the
velocity divergence.

Appendix B. Divergence of the Divergence of the Extra Stress

An arbitrary symmetric second-rank tensor in three dimensions is defined as a
3 × 3 matrix:

T =

 T11 T12 T13
T12 T21 T23
T13 T23 T33

.

In the context of viscoelastic fluid flow, all elements of the matrix are dependent on position
in space and time, Tij = f (x, t). The “divergence of the tensor divergence”, ∇ · (∇ · T),
is scalar:

∇ · (∇ · T) =
∂2T11

∂x2 +
∂2T22

∂y2 +
∂2T33

∂z2 + 2
∂2T12

∂x∂y
+ 2

∂2T13

∂x∂z
+ 2

∂2T23

∂y∂z
. (A3)

Alternatively, the above expression (A3) may be written using the tensor operation:

∇ · (∇ · T) = ⟨H, T⟩F, (A4)

where the operation on the right-hand side of Equation (A4) is known as the Frobenius
inner product, ⟨A, B⟩F = tr

{
A⊤ B

}
. It is formally defined as “the trace of the product of

two tensors, where the first one is transposed”, whereas for understanding of the above, it
is more convenient to define it as “the sum of element-wise multiplication of two tensors”.
H is the Hessian operator, H = ∂2/

(
∂xi∂xj

)
.

Since the above equation is not easy to interpret numerically, a simplification in
numerical modeling is needed. The Hessian of a scalar is a symmetric tensor due to the
symmetry of second derivatives, and it is also defined as the “transpose of the Jacobian
matrix of the gradient of some function”, H( f ) = J(∇ f )⊤. Furthermore, if one takes that
the tensor T is based on a vector gradient, T = ∇v, where v = [u v w]⊤, then the tensor is
defined as follows:

T =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

.
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It follows that the divergence of the tensor divergence is as follows:

∇ · (∇ · T) =
(

∂3u
∂x3 +

∂3u
∂y2∂x

+
∂3u

∂z2∂x

)
+

+

(
∂3v
∂y3 +

∂3v
∂y∂x2 +

∂3v
∂z2∂y

)
+

+

(
∂3w
∂z3 +

∂3w
∂z∂x2 +

∂3w
∂z∂y2

)
= ∇2

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
= ∇2(∇ · v)

= ∇2[tr(T)].

(A5)

In other words, if the tensor arises as the gradient of some vector field, div–div operation
on the tensor boils down to the Laplacian of its trace. It is straightforward to show that the
expression also holds for T = (∇v)T and for tensors that are arising from symmetrized
vector gradients, e.g., T = 1/2

[
∇v + (∇v)T

]
. In the context of the extra stress tensor,

its trace tr
(
τp
)
, represents the isotropic part of the stress that contributes to volumetric

changes in the material. It is a measure of the normal stresses that implies a tendency for
volumetric expansion or contraction under the stress conditions. In summary, the pressure
equation is based on the Laplacian of the pressure; therefore, in a numerical context, it
makes sense to use Equation (A5) as the source term for the pressure due to the elasticity in
the fluid.
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26. Peng, C.; Bašić, M.; Blagojević, B.; Bašić, J.; Wu, W. A Lagrangian differencing dynamics method for granular flow modeling.

Comput. Geotech. 2021, 137, 104297. [CrossRef]
27. Fan, X.J.; Tanner, R.I.; Zheng, R. Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow. J. Non-Newton.

Fluid Mech. 2010, 165, 219–226. [CrossRef]
28. Fang, J.; Owens, R.G.; Tacher, L.; Parriaux, A. A numerical study of the SPH method for simulating transient viscoelastic free

surface flows. J. Non-Newton. Fluid Mech. 2006, 139, 68–84. [CrossRef]
29. Xu, X.; Ouyang, J.; Yang, B.; Liu, Z. SPH simulations of three-dimensional non-Newtonian free surface flows. Comput. Methods

Appl. Mech. Eng. 2013, 256, 101–116. [CrossRef]
30. Basic, J.; Basic, M.; Blagojevic, B. Strong formulations of the generalised Navier-Stokes momentum equation. arXiv 2022,

arXiv:2210.15724.
31. Chupin, L. Global Strong Solutions for Some Differential Viscoelastic Models. SIAM J. Appl. Math. 2018, 78, 2919–2949. [CrossRef]
32. Coussot, P.; Rogers, S.A. Oldroyd’s model and the foundation of modern rheology of yield stress fluids. J. Non-Newton. Fluid

Mech. 2021, 295, 104604. [CrossRef]
33. Paulo, J.; Oliveira, F.T.P. Numerical procedure for the computation of fluid flow with arbitrary stress-strain relationships. Numer.

Heat Transf. Part B Fundam. 1999, 35, 295–315. [CrossRef]
34. Basic, J.; Degiuli, N.; Ban, D. A class of renormalised meshless Laplacians for boundary value problems. J. Comput. Phys. 2018,

354, 269–287. [CrossRef]
35. Henshaw, W.D.; Petersson, N.A. A Split-Step Scheme for the Incompressible Navier-Stokes Equations. In Numerical Simulations of

Incompressible Flows; World Scientific: Half Moon Bay, CA, USA, 2003; pp. 108–125. [CrossRef]
36. Johnston, H.; Liu, J.G. Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term.

J. Comput. Phys. 2004, 199, 221–259. [CrossRef]
37. Vreman, A. The projection method for the incompressible Navier-Stokes equations: The pressure near a no-slip wall. J. Comput.

Phys. 2014, 263, 353–374. [CrossRef]
38. Shirokoff, D.; Rosales, R. An efficient method for the incompressible Navier-Stokes equations on irregular domains with

no-slip boundary conditions, high order up to the boundary. J. Comput. Phys. 2011, 230, 8619–8646. [CrossRef]
39. Henshaw, W.D. A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids.

J. Comput. Phys. 1994, 113, 13–25 [CrossRef]
40. Pacheco, D.R.; Schussnig, R.; Fries, T.P. An efficient split-step framework for non-Newtonian incompressible flow problems with

consistent pressure boundary conditions. Comput. Methods Appl. Mech. Eng. 2021, 382, 113888. [CrossRef]
41. Kumar, M.; Guasto, J.S.; Ardekani, A.M. Lagrangian stretching reveals stress topology in viscoelastic flows. Proc. Natl. Acad. Sci.

USA 2023, 120, e2211347120. [CrossRef]
42. Johnston, H.; Liu, J.G. Finite Difference Schemes for Incompressible Flow Based on Local Pressure Boundary Conditions.

J. Comput. Phys. 2002, 180, 120–154. [CrossRef]
43. Pacheco, D.R.Q.; Castillo, E. Consistent splitting schemes for incompressible viscoelastic flow problems. Int. J. Numer. Methods

Eng. 2023, 124, 1908–1927. [CrossRef]
44. Cottet, G.H. Semi-Lagrangian particle methods for high-dimensional Vlasov–Poisson systems. J. Comput. Phys. 2018, 365, 362–375.

[CrossRef]

http://dx.doi.org/10.1016/j.jnnfm.2017.09.008
http://dx.doi.org/10.3390/ma14247617
http://www.ncbi.nlm.nih.gov/pubmed/34947208
http://dx.doi.org/10.1016/j.jnnfm.2019.03.003
http://dx.doi.org/10.3390/polym14030430
http://dx.doi.org/10.1016/S0377-0257(99)00065-8
http://dx.doi.org/10.1007/s10236-022-01497-w
http://dx.doi.org/10.1007/s00466-018-1542-4
http://dx.doi.org/10.3390/polym13183168
http://www.ncbi.nlm.nih.gov/pubmed/34578066
http://dx.doi.org/10.1016/j.oceaneng.2020.107533
http://dx.doi.org/10.3390/ma14206210
http://www.ncbi.nlm.nih.gov/pubmed/34683803
http://dx.doi.org/10.1016/j.compgeo.2021.104297
http://dx.doi.org/10.1016/j.jnnfm.2009.12.004
http://dx.doi.org/10.1016/j.jnnfm.2006.07.004
http://dx.doi.org/10.1016/j.cma.2012.12.017
http://dx.doi.org/10.1137/18M1186873
http://dx.doi.org/10.1016/j.jnnfm.2021.104604
http://dx.doi.org/10.1080/104077999275884
http://dx.doi.org/10.1016/j.jcp.2017.11.003
http://dx.doi.org/10.1142/9789812796837_0007
http://dx.doi.org/10.1016/j.jcp.2004.02.009
http://dx.doi.org/10.1016/j.jcp.2014.01.035
http://dx.doi.org/10.1016/j.jcp.2011.08.011
http://dx.doi.org/10.1006/jcph.1994.1114
http://dx.doi.org/10.1016/j.cma.2021.113888
http://dx.doi.org/10.1073/pnas.2211347120
http://dx.doi.org/10.1006/jcph.2002.7079
http://dx.doi.org/10.1002/nme.7192
http://dx.doi.org/10.1016/j.jcp.2018.03.042


Polymers 2024, 16, 2068 24 of 24

45. Suchde, P.; Kuhnert, J. Point Cloud Movement For Fully Lagrangian Meshfree Methods. J. Comput. Appl. Math. 2017, 340, 89–100.
[CrossRef]

46. Macklin, M.; Müller, M. Position based fluids. ACM Trans. Graph. 2013, 32, 104. [CrossRef]
47. Ingelsten, S.; Mark, A.; Kádár, R.; Edelvik, F. A Backwards-Tracking Lagrangian-Eulerian Method for Viscoelastic Two-Fluid

Flows. Appl. Sci. 2021, 11, 439. [CrossRef]
48. Sousa, R.G.; Poole, R.J.; Afonso, A.M.; Pinho, F.T.; Oliveira, P.J.; Morozov, A.; Alves, M.A. Lid-driven cavity flow of viscoelastic

liquids. J. Non-Newton. Fluid Mech. 2016, 234, 129–138. [CrossRef]
49. Bui, C.M.; Ho, A.N.T.; Nguyen, X.B. Flow Behaviors of Polymer Solution in a Lid-Driven Cavity. Polymers 2022, 14, 2330.

[CrossRef] [PubMed]
50. Mokhtari, O.; Davit, Y.; Latché, J.C.; Quintard, M. A staggered projection scheme for viscoelastic flows. ESAIM Math. Model.

Numer. Anal. 2023, 57, 1747–1793. [CrossRef]
51. Renardy, M. A comment on smoothness of viscoelastic stresses. J. Non-Newton. Fluid Mech. 2006, 138, 204–205. [CrossRef]
52. Figueiredo, R.A.; Oishi, C.M.; Afonso, A.M.; Tasso, I.V.M.; Cuminato, J.A. A two-phase solver for complex fluids: Studies of the

Weissenberg effect. Int. J. Multiph. Flow 2016, 84, 98–115. [CrossRef]
53. Wang, W.; Wang, L. An Experimental Investigation of Viscoelastic Flow in a Contraction Channel. Polymers 2021, 13, 1876.

[CrossRef] [PubMed]
54. Moreno, L.; Codina, R.; Baiges, J.; Castillo, E. Logarithmic conformation reformulation in viscoelastic flow problems approximated

by a VMS-type stabilized finite element formulation. Comput. Methods Appl. Mech. Eng. 2019, 354, 706–731. [CrossRef]
55. Afonso, A.M.; Oliveira, P.J.; Pinho, F.T.; Alves, M.A. Dynamics of high-Deborah-number entry flows: A numerical study.

J. Fluid Mech. 2011, 677, 272–304. [CrossRef]
56. Wittschieber, S.; Demkowicz, L.; Behr, M. Stabilized finite element methods for a fully-implicit logarithmic reformulation of the

Oldroyd-B constitutive law. J. Non-Newton. Fluid Mech. 2022, 306, 104838. [CrossRef]
57. Niethammer, M.; Marschall, H.; Kunkelmann, C.; Bothe, D. A numerical stabilization framework for viscoelastic fluid flow using

the finite volume method on general unstructured meshes. Int. J. Numer. Methods Fluids 2018, 86, 131–166. [CrossRef]
58. Hooshyar, S.; Germann, N. Shear Banding in 4:1 Planar Contraction. Polymers 2019, 11, 417. [CrossRef]
59. Comminal, R.; Pimenta, F.; Hattel, J.H.; Alves, M.A.; Spangenberg, J. Numerical simulation of the planar extrudate swell of

pseudoplastic and viscoelastic fluids with the streamfunction and the VOF methods. J. Non-Newton. Fluid Mech. 2018, 252, 1–18.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cam.2018.02.020
http://dx.doi.org/10.1145/2461912.2461984
http://dx.doi.org/10.3390/app11010439
http://dx.doi.org/10.1016/j.jnnfm.2016.03.001
http://dx.doi.org/10.3390/polym14122330
http://www.ncbi.nlm.nih.gov/pubmed/35745906
http://dx.doi.org/10.1051/m2an/2023020
http://dx.doi.org/10.1016/j.jnnfm.2006.05.006
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.04.014
http://dx.doi.org/10.3390/polym13111876
http://www.ncbi.nlm.nih.gov/pubmed/34200069
http://dx.doi.org/10.1016/j.cma.2019.06.001
http://dx.doi.org/10.1017/jfm.2011.84
http://dx.doi.org/10.1016/j.jnnfm.2022.104838
http://dx.doi.org/10.1002/fld.4411
http://dx.doi.org/10.3390/polym11030417
http://dx.doi.org/10.1016/j.jnnfm.2017.12.005

	Introduction
	Governing Equations
	Solvent Viscous Stress
	Polymeric Stress

	Numerical Procedure
	Lagrangian Splitting Scheme
	Spatial Discretization
	Temporal Discretization
	Momentum Equation
	Advection
	Extra-Stress Evolution

	Final Algorithm

	Results and Discussion 
	Lid-Driven Cavity
	Droplet Impact
	4:1 Planar Contraction
	Die Swelling

	Conclusions
	Divergence of the Diffusive Stress
	Divergence of the Divergence of the Extra Stress
	References

