Advancements in Stone Object Restoration Using Polymer-Inorganic Phosphate Composites for Cultural Heritage Preservation
Abstract
:1. Introduction
2. Currently Used Materials
3. Application of Polymer-Inorganic Phosphate Composites in Conservation Procedures
4. Case Studies
4.1. Ex-Situ Composite Development
4.1.1. Composite Development and Application Methods
4.1.2. Hydroxyapatite/Polyelectrolytes Composites
4.1.3. Sodium Tri-Polyphosphate/Chitosan Composites
4.2. In-Situ Composite Development
4.2.1. Major Differences between the In-Situ and Ex-Situ Approaches
4.2.2. The Use of Diammonium Hydrogen Phosphate as HAP In-Situ Precursor
5. Lessons Learned and Implications of the Present Study
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Özlem, A. Importance of cultural heritage and conservation concept in the “architectural education”. J. Human Sci. 2018, 15, 1700–1710. [Google Scholar]
- Safiullin, L.N.; Gafurov, I.R.; Shaidullin, R.N.; Safiullin, N.Z. Socio-economic development of the region and its historical and cultural heritage. Life Sci. J. 2014, 11, 400–404. [Google Scholar]
- Koutsi, D.; Stratigea, A. Shipwrecks’ Underwater Mysteries—Identifying Commonalities Out of Globally-Distributed Knowledge. Heritage 2021, 4, 3949–3969. [Google Scholar] [CrossRef]
- Remoaldo, P.; Serra, J.; Marujo, N.; Alves, J.; Gonçalves, A.; Cabeça, S.; Duxbury, N. Profiling the participants in creative tourism activities: Case studies from small and medium sized cities and rural areas from Continental Portugal. Tour. Manag. Perspect. 2020, 36, 100746. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, T.; Otero, J. Preventing the Undesired Surface Veiling after Nanolime Treatments on Wall Paintings: Preliminary Investigations. Coatings 2021, 11, 1083. [Google Scholar] [CrossRef]
- Sierra-Fernandez, A.; Gomez-Villalba, L.S.; Rabanal, M.E.; Fort, R. New nanomaterials for applications in conservation and restoration of stony materials: A review. Mater. Constr. 2017, 67, e107. [Google Scholar] [CrossRef]
- Sena da Fonseca, B. Current Trends in Stone Consolidation Research: An Overview and Discussion. Buildings 2023, 13, 403. [Google Scholar] [CrossRef]
- Teutonico, J.M.; Charola, A.E.; Witte, E.; Grassegger, G.; Koestler, R.; Tabasso, M.; Sasse, H.R.; Snethlage, R. Group Report: How Can We Ensure the Responsible and Effective Use of Treatments (Cleaning, Consolidation, Protection)? In Saving Our Architectural Heritage: The Conservation of Historic Stone Structures. Dahlem Workshop Report ES20; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Liu, X.; Koestler, R.J.; Warscheid, T.; Katayama, Y.; Gu, J.-D. Microbial deterioration and sustainable conservation of stone monuments and buildings. Nat. Sustain. 2020, 3, 991–1004. [Google Scholar] [CrossRef]
- Sbardella, F.; Bracciale, M.P.; Santarelli, M.L.; Asua, J.M. Waterborne modified-silica/acrylates hybrid nanocomposites as surface protective coatings for stone monuments. Prog. Org. Coat. 2020, 149, 105897. [Google Scholar] [CrossRef]
- Silva, N.C.; Castro, D.; Neto, C.; Madureira, A.R.; Pintado, M.; Moreira, P.R. Antimicrobial chitosan/TPP-based coatings for the prevention of biodeterioration of outdoor stone sculptures. Progr. Org. Coat. 2024, 189, 108246. [Google Scholar] [CrossRef]
- David, M.E.; Ion, R.-M.; Grigorescu, R.M.; Iancu, L.; Andrei, E.R. Nanomaterials Used in Conservation and Restoration of Cultural Heritage: An Up-to-Date Overview. Materials 2020, 13, 2064. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, P.; Ding, J.; Dong, Y.; Cao, Y.; Dong, W.; Zhao, X.; Li, X.; Camaiti, M. Nano Ca(OH)2: A review on synthesis, properties and applications. J. Cult. Herit. 2021, 50, 25–42. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M.; Frigione, M. Durability to simulated bird guano of nano-filled oleo/hydrophobic coatings for the protection of stone materials. Prog. Org. Coat. 2020, 148, 105900. [Google Scholar] [CrossRef]
- Weththimuni, M.L.; Chobba, M.B.; Sacchi, D.; Messaoud, M.; Licchelli, M. Durable Polymer Coatings: A Comparative Study of PDMS-Based Nanocomposites as Protective Coatings for Stone Materials. Chemistry 2022, 4, 60–76. [Google Scholar] [CrossRef]
- Gemelli, G.M.C.; Zarzuela, R.; Alarcón-Castellano, F.; Mosquera, M.J.; Gil, M.L. A Alkoxysilane-based consolidation treatments: Laboratory and 3-years In-Situ assessment tests on biocalcarenite stone from Roman Theatre (Cádiz). Constr. Build. Mat. 2021, 312, 125398. [Google Scholar] [CrossRef]
- Ugur, I. Surface characterization of some porous natural stones modified with a waterborne fluorinated polysiloxane agent under physical weathering conditions. J. Coat. Technol. Res. 2014, 11, 639–649. [Google Scholar] [CrossRef]
- Liu, Z.D.; Zhu, L.G.; Zhang, B.J. In-situ formation of an aluminum phosphate coating with high calcite-lattice matching for the surface consolidation of limestone relics. Constr. Build. Mater. 2023, 392, 131836. [Google Scholar] [CrossRef]
- Aslanidou, D.; Karapanagiotis, I.; Lampakis, D. Waterborne Superhydrophobic and Superoleophobic Coatings for the Protection of Marble and Sandstone. Materials 2018, 11, 585. [Google Scholar] [CrossRef]
- Zarzuela, R.; Carbú, M.; Almoraima Gil, M.L.; Cantoral, J.M.; Mosquera, M.J. Ormosils loaded with SiO2 nanoparticles functionalized with Ag as multifunctional superhydrophobic/biocidal/consolidant treatments for buildings conservation. Nanotechnology 2019, 30, 345701. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Chughtai, Z.; Tsiridis, V.; Evgenidis, S.P.; Spathis, P.K.; Karapantsios, T.D.; Karapanagiotis, I. Tuning the Wettability of a Commercial Silane Product to Induce Superamphiphobicity for Stone Protection. Coatings 2023, 13, 700. [Google Scholar] [CrossRef]
- Roveri, M.; Gherardi, F.; Brambilla, L.; Castiglioni, C.; Toniolo, L. Stone/Coating Interaction and Durability of Si-Based Photocatalytic Nanocomposites Applied to Porous Lithotypes. Materials 2018, 11, 2289. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, F.; Roveri, M.; Goidanich, S.; Toniolo, L. Photocatalytic Nanocomposites for the Protection of European Architectural Heritage. Materials 2018, 11, 65. [Google Scholar] [CrossRef]
- Hefni, Y.K. Hydrophobic Zinc Oxide Nanocomposites for Consolidation and Protection of Quartzite Sculptures: A Case Study. J. Nano Res. 2020, 63, 64–75. [Google Scholar] [CrossRef]
- Xie, Z.; Duan, Z.; Zhao, Z.; Li, R.; Zhou, B.; Yang, D.; Hu, Y. Nano-materials enhanced protectants for natural stone surfaces. Herit. Sci. 2021, 9, 122. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. Superhydrophobic composite films produced on various substrates. Langmuir 2008, 24, 11225–11232. [Google Scholar] [CrossRef] [PubMed]
- Arizzi, A.; Gomez-Villalba, L.S.; Lopez-Arce, P.; Cultrone, G.; Fort, R. Lime mortar consolidation with nanostructured calcium hydroxide dispersions: The efficacy of different consolidating products for heritage conservation. Eur. J. Mineral. 2015, 27, 311–323. [Google Scholar] [CrossRef]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage—An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Gkrava, E.; Tsiridis, V.; Manoudis, P.; Zorba, T.; Pavlidou, E.; Konstantinidis, A.; Karapantsios, T.D.; Spathis, P.K.; Karapanagiotis, I. A robust superhydrophobic coating of siloxane resin and hydrophobic calcium carbonate nanoparticles for limestone protection. Mater. Today Commun. 2024, 38, 108393. [Google Scholar] [CrossRef]
- Andreotti, S.; Franzoni, E.; Degli Esposti, M.; Fabbri, P. Poly(hydroxyalkanoate)s-Based Hydrophobic Coatings for the Protection of Stone in Cultural Heritage. Materials 2018, 11, 165. [Google Scholar] [CrossRef]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef]
- Fistos, T.; Fierascu, I.; Doni, M.; Chican, I.E.; Fierascu, R.C. A Short Overview of Recent Developments in the Application of Polymeric Materials for the Conservation of Stone Cultural Heritage Elements. Materials 2022, 15, 6294. [Google Scholar] [CrossRef] [PubMed]
- Sassoni, E. Phosphate-based treatments for conservation of calcareous stones. RILEM Tech. Lett. 2017, 2, 14–19. [Google Scholar] [CrossRef]
- Sassoni, E.; Graziani, G.; Franzoni, E. An innovative phosphate-based consolidant for limestone. Part 1: Effectiveness and compatibility in comparison with ethyl silicate. Constr. Build. Mat. 2016, 102, 918–930. [Google Scholar] [CrossRef]
- Molina, E.; Arizzi, A.; Benavente, D.; Cultrone, G. Influence of Surface Finishes and a Calcium Phosphate-Based Consolidant on the Decay of Sedimentary Building Stones Due to Acid Attack. Front. Mater. 2020, 7, 581979. [Google Scholar] [CrossRef]
- Sassoni, E. Hydroxyapatite and Other Calcium Phosphates for the Conservation of Cultural Heritage: A Review. Materials 2018, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Fistos, T.; Fierascu, I.; Fierascu, R.C. Recent Developments in the Application of Inorganic Nanomaterials and Nanosystems for the Protection of Cultural Heritage Organic Artifacts. Nanomaterials 2022, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Gîfu, I.C.; Ianchiș, R.; Nistor, C.L.; Petcu, C.; Fierascu, I.; Fierascu, R.C. Polyelectrolyte Coatings—A Viable Approach for Cultural Heritage Protection. Materials 2023, 16, 2873. [Google Scholar] [CrossRef] [PubMed]
- Donescu, D.; Somoghi, R.; Spataru, C.I.; Manaila-Maximean, D.; Panaitescu, D.M.; Vasile, E.; Nistor, C.L. Hybrid polymeric latexes containing magnetite. Colloid Polym. Sci. 2013, 291, 2345–2358. [Google Scholar] [CrossRef]
- Ganea, C.P.; Manaila-Maximean, D. Liquid crystal/copolymer-clay nanostructured systems: Contribution to the conductivity of the electrode polarization. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2011, 73, 209–216. [Google Scholar]
- Manaila-Maximean, D.; Rosu, C.; Frunza, L.; Ganea, P.; Donescu, D.; Ghiurea, M. Investigations of electrical and electro-optical properties of liquid crystal/copolymer-clay nanostructured systems. Mol. Cryst. Liq. Cryst. 2011, 546, 143–1613. [Google Scholar]
- Zhao, H.; Liu, P.; Huang, Y.; Zhang, H.B. Nanocomposites composed of modified natural polymer and inorganic nanomaterial for safe, high-efficiency, multifunctional protection of paper-based relics. Sci. China Technol. Sci. 2023, 66, 2225–2236. [Google Scholar] [CrossRef]
- Rodrigues, A.; da Fonseca, B.S.; Pinto, A.F.; Piçarra, S.; Montemor, M. Synthesis and application of hydroxyapatite nanorods for improving properties of stone consolidants. Ceram. Int. 2022, 48, 14606–14617. [Google Scholar] [CrossRef]
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef] [PubMed]
- Karbowniczek, J.E.; Ura, D.P.; Stachewicz, U. Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for desired mechanical performance of poly(3)-hydroxybuty-rate-co-3-hydroxyvalerate (PHBV) scaffolds with hydroxyapatite (HA) and titanium dioxide (TiO2) towards medical applications. Compos. Part B Eng. 2022, 241, 110011. [Google Scholar] [CrossRef]
- Hafez, I.T.; Biskos, G. New method for the protection and restoration of calcareous cultural heritage stones by polyelectrolytes and hydroxyapatite nanocrystals. J. Colloid Interfac. Sci. 2021, 604, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, S.; Franzoni, E.; Ruiz-Agudo, E.; Scherer, G.W.; Fabbri, P.; Sassoni, E.; Rodriguez-Navarro, C. New polymer-based treatments for the prevention of damage by salt crystallization in stone. Mat. Struct. 2019, 52, 17. [Google Scholar] [CrossRef]
- Bassi, M.; Sassoni, E.; Franzoni, E. Experimental study on an innovative biopolymeric treatment against salt deterioration of materials in cultural heritage. Front. Mater. 2021, 8, 583112. [Google Scholar] [CrossRef]
Composite Formation Approach | Inorganic Phase Properties | Polymeric Phase Properties | Composite Characteristics | Main Findings | Ref. |
---|---|---|---|---|---|
Ex-situ | HAP synthesized in the polymer matrix from calcium chloride and dipotassium phosphate 20 mM, crystal size < 30 nm | Branched polyethylenimine (PEI, 40 mM, MW750,000, pH = 9.5) | Mass to solvent ratio for application 1:10, pH for water solvent = 6.2, no pH correction for ethanol. Treated stones—acid resistivity, quasi-static contact angle, water adsorption and color alteration | At a concentration of 300 mg/L PEI, HAP is the major phase, with round-shaped crystals; the polyelectrolyte pre-treatment provided increased acid-resistance properties and a reduction of the water adsorption capacity, while the composite treatment (using water as solvent) formed an uniform coating, and reduced the color variation of the polyelectrolyte pre-treatment | [46] |
Commercial sodium tripolyphosphate, used at 0.25%, 0.50% and 0.75% | Chitosan, medium molecular weight grade (190,000–310,000 Da), 75–85% deacetylated, cross-linked with citric acid, 1% | 6 mL TPP solution added dropwise into 15 mL polymer solution, thoroughly mixed; characterized using FTIR, swelling in water, wettability, thickness and water vapour transmission rate and antimicrobial properties | The appropriate solution for stone treatment—0.25%TPP, following in vitro tests; lowest color variation observed on application by brushing; composite partially polymerized on the surface of the stone; decreased wettability for coating granite and limestone; negative effect on the wettability of marble | [11] | |
In-situ | Solution 0.1 M DAP (commercial) + 1 mM CaCl2 + 10% ethanol in water | Poly(acrylic acid), sodium salt (PAA, Mw = 2100), alginic acid, sodium salt (from brown algae, low density, low viscosity, ALA), tannic acid (TA), chitosan (from shrimp shells, low viscosity) | The tested limestone was subjected to pre-treatment with DAP solution, followed by the treatment with 0.5%PAA, 0.2%ALA, 0.01%TA, respectively 0.05%chitosan by partial immersion. Stone samples were subjected to salt crystallization tests | TA led to significant color variations and was not used in further tests; DAP pre-treatment led to an increase in salt resistance; Multiple cycles salt resistance: dry scaling observed at cycle 1 for PAA, cycle 2 for untreated sample and DAP, cycle 3 for samples DAP/PAA, ALA and chitosan treatments, cycle 4 for samples DAP/ALA and DAP/chitosan. | [47] |
Solution 0.1 M DAP (commercial) + 1 mM CaCl2 + 10% ethanol in water | Chitosan | The tested limestone was subjected to pre-treatment with DAP solution, followed by the treatment with 0.05% chitosan by partial immersion. Stone samples were subjected to water adsorption tests, tensile splitting tests, and salt crystallization tests | Limited (insignificant) weight increase after treatment; systematic increase of dynamic elastic modulus; treatments promoted formation of efflorescence, and improved the stone resistance (best results obtained for HAP/chitosan treatment–weight loss decrease 84%—Lecce stone, 69%—Globigerina limestone); no negative influence on tensile strength after salt crystallization cycles. | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fistos, T.; Fierascu, I.; Manaila-Maximean, D.; Fierascu, R.C. Advancements in Stone Object Restoration Using Polymer-Inorganic Phosphate Composites for Cultural Heritage Preservation. Polymers 2024, 16, 2085. https://doi.org/10.3390/polym16142085
Fistos T, Fierascu I, Manaila-Maximean D, Fierascu RC. Advancements in Stone Object Restoration Using Polymer-Inorganic Phosphate Composites for Cultural Heritage Preservation. Polymers. 2024; 16(14):2085. https://doi.org/10.3390/polym16142085
Chicago/Turabian StyleFistos, Toma, Irina Fierascu, Doina Manaila-Maximean, and Radu Claudiu Fierascu. 2024. "Advancements in Stone Object Restoration Using Polymer-Inorganic Phosphate Composites for Cultural Heritage Preservation" Polymers 16, no. 14: 2085. https://doi.org/10.3390/polym16142085
APA StyleFistos, T., Fierascu, I., Manaila-Maximean, D., & Fierascu, R. C. (2024). Advancements in Stone Object Restoration Using Polymer-Inorganic Phosphate Composites for Cultural Heritage Preservation. Polymers, 16(14), 2085. https://doi.org/10.3390/polym16142085