Study on Basic Pavement Performance of High-Elasticity Asphalt Concrete
Abstract
:1. Introduction
2. Experimental Preparation
2.1. Materials
2.2. Test Method
2.3. Determine the Optimal Asphalt Content
3. Results and Discussion
3.1. Compressive Performance
3.2. High Temperature Stability
3.3. Deformation Recovery Performance
3.4. Low-Temperature Crack Resistance Performance
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, P.; Zhou, C.; Huang, S.; Shen, Y.; Pan, Y. Experimental study on mix ratio design and road performance of medium and small deformation seamless expansion joints of bridges. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 48–59. [Google Scholar] [CrossRef]
- Ziari, M.; Hajikarimi, P.; Kazerooni, A.K.; Nejad, F.M.; Fini, E.H. Effect of polyphosphoric acid on fracture properties of asphalt binder and asphalt mixtures. Constr. Build. Mater. 2021, 310, 125240. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Shu, X.; Ye, P. Laboratory investigation of biochar-modified asphalt mixture. Transp. Res. Rec. J. Transp. Res. Board 2014, 2445, 56–63. [Google Scholar] [CrossRef]
- Taherkhani, H.; Tajdini, M. Comparing the effects of nano-silica and hydrated lime on the properties of asphalt concrete. Constr. Build. Mater. 2019, 218, 308–315. [Google Scholar] [CrossRef]
- Ameri, M.; Nowbakht, S.; Molayem, M.; Aliha, M.R.M. Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 896–906. [Google Scholar] [CrossRef]
- Mahani, A.G.; Bazoobandi, P.; Hosseinian, S.M.; Ziari, H. Experimental investigation and multi-objective optimization of fracture properties of asphalt mixtures containing nano-calcium carbonate. Constr. Build. Mater. 2021, 285, 122876. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Majd-Shokorlou, Y.; Amani, B. Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes. Road Mater. Pavement Des. 2019, 21, 2321–2343. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Shi, C.; Cai, X.; Yang, J.; Yu, Y. Evaluation of the fractures of asphalt concrete added with rubber particles based on the fine aggregate mixtures. Constr. Build. Mater. 2022, 332, 127365. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, N.; Lv, S. Experimental Study on Dynamic Modulus of High Content Rubber Asphalt Mixture. Buildings 2024, 14, 434. [Google Scholar] [CrossRef]
- Vishnu, T.; Lakshman, S. Experimental Investigation on Fatigue Characteristics of Asphalt Mixes with Different Automobile Waste Tyres as Modifiers. Iran. J. Sci. Technol.-Trans. Civ. Eng. 2022, 46, 497–506. [Google Scholar] [CrossRef]
- Wang, X.; Tian, G.; Wang, R.; Gong, X. Research on the influence of doped rubber powder to the properties of asphalt mixture. J. Funct. Mater. 2018, 49, 6129–6134. [Google Scholar]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Influence of the long-term oven aging on the performance of the reinforced asphalt mixtures. Coatings 2020, 10, 953. [Google Scholar] [CrossRef]
- Zarei, M.; Abdi, K.; Ghamarimajd, Z.; Khajehzadeh, M.; Khanjari, M.; Zahedi, M. Evaluation of fracture resistance of asphalt concrete involving calcium lignosulfonate and polyester fiber under freeze-thaw damage. Theor. Appl. Fract. Mech. 2022, 117, 103168. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.; Yoo, D.; Shin, H. Enhancing mechanical properties of asphalt concrete using synthetic fibers. Constr. Build. Mater. 2018, 178, 233–243. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, B.; Yan, Y.; Chen, H.; Xiong, R.; Geng, J. Effects of phosphorus slag powder and polyester fiber on performance characteristics of asphalt binders and resultant mixtures. Constr. Build. Mater. 2017, 141, 289–295. [Google Scholar] [CrossRef]
- Xie, Y.; Mo, L.; Su, D.; Woldekidan, M.F.; Wu, S. Investigation into fundamental properties of bituminous plug expansion joint filling mixtures containing rubber granules. Constr. Build. Mater. 2013, 47, 984–989. [Google Scholar] [CrossRef]
- Yu, T.; Tang, T.; Wu, S. Research on low temperature performance of modified asphalt and mixture of bridge expansion joints. China J. Highw. Transp. 2005, 18, 18–23. [Google Scholar]
- Shu, D. Research on Preparation and Properties of Bridge Seamless Expansion Joints Material. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2012. [Google Scholar]
- Xie, Y. Research on Preparation and Properties of Asphalt plug Joint Materials. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2014. [Google Scholar]
- Zhan, C.; Pan, Y. Research on preparation and properties of high elastic modified asphalt and its mixture for seamless expansion joints. Pet. Asph. 2023, 37, 13–18, 59. (In Chinese) [Google Scholar]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transportation: Beijing, China, 2011.
- JT/T 798-2019; Crumb Rubber Asphalt for Highway Engineering. Ministry of Transportation: Beijing, China, 2019.
- AASHTO TP 105-2020; Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semicircular Bend Geometry (SCB). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2020.
- Tuya, H. The road performance of lignin and rubber powder composite modified asphalt mixture. Highw. Eng. 2014, 39, 170–174. [Google Scholar]
Property | Standard | Value |
---|---|---|
Softening point, °C | JTG E20-2011 [21] | 93.8 |
Ductility (5 °C), cm | 14.5 | |
Penetration (25 °C), mm | 2.5 | |
Elastic recovery rate, % | 75 | |
Viscosity (190 °C), Pa s | JT/T 798-2019 [22] | 4.5 |
Property | Combustion Residue, % | Ash, % | Rubber Content, % | Fiber Content, % | Moisture Content, % |
---|---|---|---|---|---|
Value | 37.5 | 4.5 | 51 | 0.5 | 0.6 |
Property | Specific Gravity | Elastic Modulus, MPa | Ultimate Elongation, % | Tensile Strength, MPa | Melting Point, °C | Ignition Point, °C |
---|---|---|---|---|---|---|
Value | 0.91 | 13.5 | 9 ± 3 | 550 | 259 | 554 |
Name | Oil–Stone Ratio | Bitumen | Aggregates | Rubber Particles | Polyester Fiber |
---|---|---|---|---|---|
kg/m3 | kg/m3 | kg/m3 | % | ||
NC | 1:5 | 388 | 1938 | 0 | 0 |
F0.6 | 1:5 | 388 | 1938 | 0 | 0.6 |
F1.2 | 1:4 | 451 | 1803 | 0 | 1.2 |
F1.8 | 1:4 | 451 | 1803 | 0 | 1.8 |
R2 | 1:5 | 388 | 1899 | 39 | 0 |
R3 | 1:5 | 388 | 1880 | 58 | 0 |
R4 | 1:5 | 388 | 1860 | 78 | 0 |
R2F0.6 | 1:5 | 388 | 1899 | 39 | 0.6 |
R2F1.2 | 1:4 | 451 | 1767 | 36 | 1.2 |
R2F1.8 | 1:4 | 451 | 1767 | 36 | 1.8 |
R3F0.6 | 1:5 | 388 | 1880 | 58 | 0.6 |
R3F1.2 | 1:4 | 451 | 1749 | 54 | 1.2 |
R3F1.8 | 1:4 | 451 | 1749 | 54 | 1.8 |
R4F0.6 | 1:5 | 388 | 1860 | 78 | 0.6 |
R4F1.2 | 1:4 | 451 | 1731 | 72 | 1.2 |
R4F1.8 | 1:4 | 451 | 1731 | 72 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huo, T.; Wang, D.; Zhang, P. Study on Basic Pavement Performance of High-Elasticity Asphalt Concrete. Polymers 2024, 16, 2156. https://doi.org/10.3390/polym16152156
Wang J, Huo T, Wang D, Zhang P. Study on Basic Pavement Performance of High-Elasticity Asphalt Concrete. Polymers. 2024; 16(15):2156. https://doi.org/10.3390/polym16152156
Chicago/Turabian StyleWang, Juan, Taixu Huo, Dahui Wang, and Peng Zhang. 2024. "Study on Basic Pavement Performance of High-Elasticity Asphalt Concrete" Polymers 16, no. 15: 2156. https://doi.org/10.3390/polym16152156
APA StyleWang, J., Huo, T., Wang, D., & Zhang, P. (2024). Study on Basic Pavement Performance of High-Elasticity Asphalt Concrete. Polymers, 16(15), 2156. https://doi.org/10.3390/polym16152156