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Abstract: The polymer liner of the hydrogen storage cylinder was studied to investigate better
hydrogen storage capacity in Type-IV cylinders. Molecular dynamics methods were used to simulate
the adsorption and diffusion processes of hydrogen in a graphene-filled polyamide 6 (PA6) system.
The solubility and diffusion characteristics of hydrogen in PA6 systems filled with different filler
ratios (3 wt%, 4 wt%, 5 wt%, 6 wt%, and 7 wt%) were studied under working pressures (0.1 MPa,
35 MPa, 52 MPa, and 70 MPa). The effects of filler ratio, temperature, and pressure on hydrogen
diffusion were analyzed. The results show that at atmospheric pressure when the graphene content
reaches 5 wt%, its permeability coefficient is as low as 2.44 × 10−13 cm3·cm/(cm2·s·Pa), which is
a 54.6% reduction compared to PA6. At 358 K and 70 MPa, the diffusion coefficient of the 5 wt%
graphene/PA6 composite system is 138% higher than that at 298 K and 70 MPa. With increasing
pressure, the diffusion coefficients of all materials generally decrease linearly. Among them, pure
PA6 has the largest diffusion coefficient, while the 4 wt% graphene/PA6 composite system has the
smallest diffusion coefficient. Additionally, the impact of FFV (free volume fraction) on the barrier
properties of the material was studied, and the movement trajectory of H2 in the composite system
was analyzed.

Keywords: polyamide 6; graphene; hydrogen diffusion; molecular dynamics; free volume

1. Introduction

Hydrogen is a crucial component of global decarbonization strategies due to its
carbon-free, efficient, and renewable nature. It will play a central role in the ongoing
development and successful transition of traditional energy systems, effectively mitigating
the negative impacts of carbon dioxide emissions, such as global warming [1,2]. In the
transportation sector, hydrogen fuel cell vehicles (HFCVs) have been extensively researched.
Many companies, including Toyota, Honda, and Hyundai, are dedicated to developing
high-performance hydrogen fuel cell vehicles [3].

Hydrogen, as fuel for hydrogen fuel cell vehicles, is typically compressed and stored
in pressure vessels, which is currently the mainstream technology for onboard hydrogen
storage. Among these, Type III and Type IV pressure vessels are the most widely used [4,5].
Compared to Type III hydrogen storage cylinders with metal liners, Type IV hydrogen
storage cylinders use polymer liners [6], including high-density polyethylene (HDPE),
polyamide (PA), polyethylene terephthalate (PET), and various polyether materials. These
Type IV cylinders offer numerous advantages, such as high hydrogen storage density,
lightweight, corrosion resistance, and fatigue resistance [7,8].
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Polyamide (PA6) has gradually become a potential choice for Type IV hydrogen
storage vessel liners due to its strong molecular polarity and hydrogen bonding interac-
tions [9,10]. However, Type IV hydrogen storage vessels face challenges where the polymer
liner directly contacts hydrogen while being bonded to an external fiber-wound layer. In
high-pressure hydrogen environments, hydrogen permeates into the material, diffuses
to the plastic-composite interface, and creates internal pressure. Upon depressurization,
hydrogen escapes from the material to the exterior, creating a pressure differential at the
interface, which leads to liner deformation and bulging [11,12]. Understanding the hy-
drogen transport properties of polymers under harsh operating conditions (233–358 K,
0–87 MPa) is crucial [13,14]. Some researchers have studied polymer permeability to hydro-
gen, focusing on external conditions (including temperature [15,16] and pressure [17,18]),
gas-material interactions [19,20], material properties (including crystallinity [21–23], poly-
mer molecular weight [20,24], filler structure [23,25,26], filler content [23,27,28]), and others.
However, further research is needed to understand the hydrogen permeation characteristics
of PA6 fully.

Using the Einstein relation [29], the molecular dynamics (MD) software Materials
Studio (2019) is employed to simulate the structure-property relationships and study the
diffusion coefficients of small gas molecules in polymer material models. This method
effectively predicts the hydrogen permeability of polymer liners in hydrogen storage
cylinders [20,30]. Wu [31] investigated the adsorption and diffusion processes of hydro-
gen in PA6 systems filled with modified montmorillonite (OMMT) under different filler
contents (3–7%), temperatures (288–328 K), and pressures (0–60 MPa). The results indi-
cated that at a filler content of 5%, the material’s permeability coefficient was less than
2 × 10−13 cm3·cm/(cm2·s·Pa). Additionally, as the pressure increased, the permeability
coefficient of the modified material first decreased and then increased. Su [14] compre-
hensively explored the dissolution and diffusion behavior of H2 in PA6 under service
conditions (233–358 K, 0–87 MPa), finding that the diffusion coefficient and permeability
coefficient were positively correlated with temperature, while the solubility coefficient was
also positively correlated with temperature. MURARU [28] evaluated the gas permeability
of PSF-cnt-g membranes and compared them with three other membranes (PSF, PSF-cnt,
and PSF-g), discovering that the addition of carbon nanotubes and graphene to polysulfone
membranes significantly increased the diffusion coefficients of gases such as CH4, CO2,
H2, N2, and O2. Yi [23] studied the diffusion of gases, including hydrogen and its isotopes,
at room temperature and pressure, noting that the diffusion decreased with increasing
polystyrene molecular weight. Zhang [32] analyzed the diffusion characteristics of hydro-
gen in HDPE under temperature (room temperature to 80 ◦C) and pressure (2.5–10 MPa)
conditions. The results showed that when the temperature increased from 30 ◦C to 80 ◦C,
hydrogen’s solubility, diffusion coefficient, and permeability coefficient in HDPE increased
by 18.7%, 92.9%, and 129.0%, respectively. Fang [12] simulated the diffusion and adsorption
processes of hydrogen molecules in polyethylene (PE) and PA6 at temperatures ranging
from 263 K to 353 K. The results indicated that under the same conditions, the solubility,
diffusion, and permeability coefficients of hydrogen in PE were higher than those in PA6,
suggesting that PA6 has better hydrogen barrier properties than PE. Hu [33] studied the
diffusion characteristics and local structure of a mixed system composed of CH4, CO2, SO2,
and H2O, finding that higher temperatures and lower pressures favored gas diffusion.

Previous studies have shown that the diffusion characteristics of polymers are re-
lated to additives, different temperatures, and pressures. Although the aforementioned
simulations focus on gas diffusion in various polymers under different temperatures and
pressures, the impact of graphene-modified PA6 on H2 diffusion at extreme tempera-
tures (233 K–358 K) and operating pressures of gas cylinders (0.1–70 MPa) has not been
systematically investigated.

Materials Studio (2019) was used in this study to construct a molecular model of a
composite material with PA6 as the polymer liner and graphene as the nanofiller. Analyzing
the permeation behavior of H2 in modified PA6 materials from a microscopic perspective
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to elucidate the characteristics and mechanisms of hydrogen permeation seems to be a very
interesting endeavor. This approach can provide a method for evaluating the performance
of liner materials for Type IV hydrogen storage cylinders. Our research aims to offer more
evidence for the selection of liner materials for hydrogen storage cylinders.

2. Model and Simulation Methods
2.1. Establishment of Modified Liner Models

The MD simulation study utilized amorphous unit cells to construct polymer liners.
Single-chain structures were built using the Builder module, and monomer structures
were constructed using the Sketch toolbar, establishing 60 repeated units to form ran-
dom single-chain molecules of PA6. The AC module was employed to generate models
of five different systems, each containing 20 H2 molecules and identical PA6 chains of
8 repeated units [28,31,34]. Hydrogen positions were randomly distributed to investigate
their diffusion within the liner models.

In the composite model systems, graphene, initially composed of single sheets contain-
ing 48 carbon atoms, was introduced. Subsequently, the graphene mass fraction was varied
by gradually increasing the number of graphene sheets to achieve mass fractions of 3 wt%,
4 wt%, 5 wt%, 6 wt%, and 7 wt%. The unit cell dimensions for different mass fractions
were approximately 44.06 Å, 44.11 Å, 44.06 Å, 44.32 Å, and 44.40 Å, with identical lattice
dimensions in the a, b, and c directions for all unit cells. Figure 1 illustrates the structures
of PA6 chains and graphene. Figure 2 depicts the construction of mixed models of PA6
chains and graphene using the random copolymer option.
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Figure 2. Model of graphene-modified PA6 (yellow atom-graphene sheet).

In the composite model systems, graphene, initially composed of single sheets contain-
ing 48 carbon atoms, was introduced. Subsequently, the graphene mass fraction was varied
by gradually increasing the number of graphene sheets to achieve mass fractions of 3 wt%,
4 wt%, 5 wt%, 6 wt%, and 7 wt%. The unit cell dimensions for different mass fractions
were approximately 44.06 Å, 44.11 Å, 44.06 Å, 44.32 Å, and 44.40 Å, with identical lattice
dimensions in the a, b, and c directions for all unit cells. Figure 1 illustrates the structures
of PA6 chains and graphene. Figure 2 depicts the construction of mixed models of PA6
chains and graphene using the random copolymer option.
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2.2. Simulation Method

The initial models underwent geometric optimization using the Smart method with en-
ergy minimization applied to all monomers and models to eliminate local non-equilibrium
states. The maximum iteration step was set to 5 × 104 to achieve stability across all models.
Subsequently, a cyclic annealing process was applied to the polymer material models to
obtain more realistic polymer structures. According to the simulated annealing method,
starting from 300 K and ramping up to a midpoint temperature of 600 K, a total of 30 an-
nealing cycles were conducted. This thermal annealing reduced internal stresses in the
modified liner models and nearly eliminated any structurally unreasonable configurations
generated during optimization.

The optimized models were subjected to molecular dynamics (MD) simulations using
the COMPASS II force field [35]. The simulations were conducted in the NVT [12,14,20]
ensemble at an initial temperature of 298 K for a relaxation period of 1 ns. The MD
simulations aimed to stabilize the energy and density of the entire system. During MD
simulations, the Andersen temperature control method and Berendsen pressure control
were applied to maintain the models’ constant temperature [36–38]. The Group-Based [39]
method was utilized to calculate non-bonded interactions and Coulomb forces. Integration
of the equations of motion was performed with a time step of 1 fs for all simulations [38–41].

Figure 3 illustrates the change in total energy during the dynamic processing. Over
time, the total energy of the system stabilizes, oscillating within a narrow range around
a fixed value. This indicates that the models have achieved full relaxation and obtained
stable structures.
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2.3. Model Reliability Verification

Taking PA6 as an example, it exhibits a fully amorphous structure. Figure 4 depicts the
density variations observed throughout the relaxation process. It can be observed that the
final density of PA6 is 1.095 g/cm³. Comparing this with the actual density of 1.13 g/cm³
for PA6 in an amorphous state, the relative error is calculated to be 3.1%, indicating the
validity of the models proposed in this study.
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The solubility coefficients of H2 in the six systems were obtained using adsorption
isotherms within the pressure range of 0.01 kPa to 10,000 kPa. According to the Chinese
National Standard (GB/T 42612-2023) [42], Type IV hydrogen storage cylinders operate
at a maximum working pressure of 70 MPa, with a working temperature range not lower
than −40 ◦C and not higher than 85 ◦C. Exceeding this temperature range can cause
irreversible damage to the carbon fibers in the gas cylinder. Therefore, diffusion analysis
was conducted at three temperatures: 233 K, 298 K, and 358 K. Therefore, to determine the
diffusion coefficients under different conditions, pressures of half the maximum working
pressure of Type IV hydrogen storage cylinders (35 MPa) and an intermediate value of
52.5 MPa (between 35 MPa and 70 MPa) were selected. The model was subjected to
four different pressures (0.1 MPa, 35 MPa, 52.5 MPa, and 70 MPa). One ns molecular
dynamics simulations were performed under the NPT ensemble for six different systems.
The mean square displacement (MSD) curves of hydrogen molecules were calculated, and
the diffusion coefficients of H2 were obtained.

3. Theoretical Basis of Permeability
3.1. Adsorption Concentration

The determination of the solubility coefficient (S) of gas molecules in polymers can be
achieved through the application of adsorption isotherms. Under constant temperature
conditions, adsorption isotherms are derived based on the concentration corresponding
to different solubilities. Henry’s law applies to systems with the smallest solubility and
can be used to explain the dissolution process of small gas molecules such as hydrogen in
polymers [41,43]. This relationship is expressed in Equation (1). It is noteworthy that when
the fugacity approaches zero, the solubility coefficient can be determined as the limiting
slope of the adsorption isotherm, as shown in Equation (2).

C = KDP + CH
bP

1 + bP
(1)

S = lim
P→0

C
P

= KD + CH P (2)
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where KD is the Henry constant, CH is the Langmuir capacity parameter, b is the Langmuir
parameter, P is the pressure, and C is the adsorption of gas molecules.

3.2. Diffusion Coefficient

The diffusion coefficient (D) describes the Brownian motion of particles under concen-
tration gradient conditions. It represents the dynamic characteristics of interaction between
permeable gas molecules and polymers. The diffusion coefficient D can be determined by
analyzing the MSD of molecular motion. In MD simulations, the correlation between MSD
and molecular motion time is established by tracking the motion trajectory of permeating
molecule centers. Subsequently, the diffusion coefficient is calculated using the Einstein
formula [24], as shown in Equation (3):

D =
1

6N
lim
t→∞

d
dt

〈
N

∑
i
[ri(t)− ri(0)]

2

〉
=

a
6

(3)

where D is the diffusion coefficient, ri(t) and ri(0) are the position vectors of molecule
i at times t and 0, respectively. N represents the total number of gas particles, and〈
[ri(t)− ri(0)]

2
〉

denotes the ensemble average of the MSD of gas molecules. Gas molecules
collide within a small pocket of free volume, jumping from one confined region to another;
the repeated jumps of molecules constitute diffusion, which is characterized by the MSD,
and a represents the gradient of the MSD curve obtained from molecular simulations.

3.3. Permeability Coefficient

The “dissolution-diffusion” theory can describe the permeation process of gas molecules
in polymers. Gas molecules dissolve from the surface into the polymer and diffuse from
one side of the polymer to the other. Finally, gas molecules desorb and escape from the
polymer [44]. Therefore, the permeation process of H2 in polymers can be divided into
dissolution and diffusion processes. The permeability coefficient [45] is the product of the
solubility and diffusion coefficients, as shown in Equation (4).

P = S × D (4)

where P is permeability coefficient, cm3·cm/(cm2·s·Pa), S is the solubility coefficient,
cm3·cm−3·Pa−1, and D is the diffusion coefficient, cm2/s.

3.4. Free Volume

To obtain the free fraction volume (FFV) of the polymer [12,31,46], an analysis of the
five models was conducted using the Atom V volume and Surface tools. The Connolly
surface of the system was calculated based on the known van der Waals radius of hydrogen
atoms, with a Connolly radius of 1.4 Å, to determine the system’s FFV.

4. Results and Discussion
4.1. Effect of Filler Ratio on Permeation Coefficient

Figures 5 and 6 illustrate the isothermal adsorption curves and MSD curves of H2 in
various graphene/PA6 systems under conditions of 298 K and 0.1 MPa. The simulated
data were fitted, and solubility coefficient S and diffusion coefficient D were calculated
using Equations (2) and (3), respectively. Permeability coefficient P was then derived using
Equation (4), and the calculated results are presented in Table 1.
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Table 1. Dissolution, diffusion coefficients, and permeability coefficients of H2 in different mate-
rial systems.

Material System Solubility
(cm3·cm−3·Pa−1)

Diffusion Coefficient
(cm2/s)

Permeation
Coefficient

(cm3·cm/(cm2·s·Pa))

PA6 1.32 × 10−6 1.785 × 10−6 2.356 × 10−12

3%graphene/PA6 3.33 × 10−7 9.34 × 10−7 3.11 × 10−13

4%graphene/PA6 3.22 × 10−7 9.19 × 10−7 2.95 × 10−13

5%graphene/PA6 3.02 × 10−7 8.09 × 10−7 2.44 × 10−13

6%graphene/PA6 3.02 × 10−7 8.56 × 10−7 2.58 × 10−13

7%graphene/PA6 3.28 × 10−7 8.99 × 10−7 2.95 × 10−13
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Based on Figure 5, it is evident that the adsorption concentration of H2 in the polymer
shows an approximately linear relationship with pressure. Additionally, PA6 exhibits
the highest adsorption concentration. Combined with Table 2, it is observed that the
solubility coefficient varies with the addition of graphene in different graphene/PA6
composite systems. When the graphene content reaches 6 wt%, the adsorption of H2
decreases to its minimum, with a solubility coefficient of 3.01 × 10−7 cm3·cm−3·Pa−1,
representing a reduction of 77.2% compared to pure PA6. The solubility coefficient reflects
the thermodynamic interactions between gas molecules and polymer chains. According
to the free volume theory, permeating gas molecules generally occupy less dense regions
within the polymer, known as free volume, through physical adsorption. With the addition
of graphene filler, interactions between the filler and PA6 chains restrict the mobility
of polymer chains, thereby reducing the formation of free volume within the system.
Consequently, the available area for gas adsorption within the material decreases, impacting
its permeability to leaking gases.

Table 2. Diffusion coefficients D (cm2/s) of six systems at different test temperatures under 70 MPa.

Material System PA6 3 wt% 4 wt% 5 wt% 6 wt% 7 wt%

233 K 3.14 × 10−7 2.89 × 10−7 1.97 × 10−7 3.05 × 10−7 3.33 × 10−7 3.35 × 10−7

298 K 7.35 × 10−7 6.9 × 10−7 6.09 × 10−7 5.28 × 10−7 6.32 × 10−7 7.10 × 10−7

358 K 2.28 × 10−6 1.02 × 10−6 1.08 × 10−6 1.26 × 10−6 1.36 × 10−6 1.34 × 10−6

At a content of 3 wt%, the solubility coefficient reaches its maximum at
3.33 × 10−7 cm3·cm−3·Pa−1, which is not significantly different from the solubility co-
efficient of the 6 wt% graphene/PA6 composite system. This suggests that when the
graphene mass fraction exceeds 3 wt%, the solubility coefficient is not the primary factor
influencing the permeation performance of H2 in the composite system. This finding is
consistent with the results reported by Zheng [47].

Figure 6 shows that the MSD curve exhibits a linear relationship with time. Before
Einstein diffusion, anomalous diffusion may occur due to structural reasons within the
system. It is essential to characterize the system diffusion properties to verify if the system
has undergone normal diffusion.

The verification can be conducted by examining the slope of the logarithmic plot of
MSD against time [48,49]. Figure 7 depicts the logarithmic plot log(MSD) vs. log(t) for
determining diffusion coefficients using the Einstein relationship. Here, the log(MSD) vs.
log(t) curve primarily assesses whether H2 molecules in the graphene/PA6 composite
systems transition from anomalous diffusion (K < 1) to normal diffusion (K > 1). It is
observed that H2 undergoes this transition in various graphene/PA6 composite systems
with different filler ratios, allowing for the calculation of diffusion coefficients using the
Einstein relationship.

The diffusion coefficient reflects the dynamic interactions between gas molecules
and polymer chains. Figure 6 and Table 1 demonstrate that the introduction of graphene
reduces the diffusion coefficients of H2 in all systems. As the proportion of graphene
increases, the diffusion coefficients initially decrease and then increase, which affects the
permeability of the materials. Specifically, when graphene reaches 5 wt%, the composite
system exhibits the lowest diffusion coefficient, leading to the minimum permeability. At
this composition, the permeability of the 5 wt% graphene/PA6 composite for H2 is as
low as 2.44 × 10−13 cm3·cm/(cm2·s·Pa), indicating optimal barrier properties under these
conditions. Compared to pure PA6, the permeability of the 5 wt% graphene/PA6 composite
is reduced by 54.6%. The reasons behind these results may be attributed to several factors.
Firstly, the introduction of a small amount of filler disrupts the continuity of “pores” within
the system to some extent, forming barriers (or “walls”). When H2 molecules move within
the polymer matrix, they encounter these graphene filler barriers, increasing the energy
required for diffusion and complicating the diffusion pathways. This restriction limits the
diffusion of H2 molecules. Secondly, the presence of graphene reduces the free volume



Polymers 2024, 16, 2185 9 of 17

within the system. However, when the filler content is too high (e.g., 6 wt%), the randomly
arranged graphene interacts with the polymer to form new “pores,” increasing the internal
free volume and consequently increasing the diffusion coefficient of H2 molecules.
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4.2. Impact of Temperature Diffusion Coefficients

Figure 8 and Table 2 present the diffusion coefficients of six systems at three different
temperatures (233 K, 298 K, and 358 K). The results indicate that at 358 K and 70 MPa
pressure, PA6 exhibits the highest diffusion coefficient of 2.28 × 10−6 cm2/s. As shown in
Figure 8, the diffusion coefficient of PA6 increases correspondingly with temperature. This
phenomenon can be attributed to the energy required for hydrogen molecules to overcome
inter-molecular interactions within the polymer matrix during their diffusion. At higher
temperatures, the kinetic energy of polymer chains increases, facilitating greater mobility
of hydrogen molecules within the polymer structure [10,50]. Therefore, the diffusion
coefficient increases with temperature.

It is important to emphasize that Dong [8] experimentally measured the diffusion coef-
ficient of PA6 at 358 K and 87.5 MPa to be 2.36 × 10−6 cm2/s. Therefore, we specifically ana-
lyzed the diffusion coefficient of PA6 under these conditions, resulting in 2.11 × 10−6 cm2/s.
By comparing these two values, we found the error within 10.6%. In the context of gas
diffusion coefficients at the small magnitude of 10−7, errors within 20% are generally
considered reasonable. Considering the crystallinity of PA6, these findings demonstrate
that molecular dynamics simulations can effectively approximate the hydrogen barrier
properties of the material. This also validates the reliability of the research methods and
molecular dynamics simulation techniques used in this study.

Figure 8 and Table 2 show that the diffusion coefficients of all systems increase with
temperature at 358 K compared to 233 K and 298 K. Specifically, the diffusion coefficient
of 3 wt% graphene/PA6 at 358 K is 1.02 × 10−6 cm2/s, which is 48% higher than at
298 K. Similarly, the diffusion coefficients of 4 wt% to 7 wt% graphene/PA6 increase
by approximately 77%, 138%, 115%, and 89%, respectively, at 358 K compared to 298 K.
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This illustrates the significant influence of temperature on the diffusion coefficients of the
materials, a phenomenon supported by previous studies [41,42].
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4.3. Effect of Pressure on Diffusion Coefficients

Figure 5 demonstrates that at constant temperature, the adsorption of H2 in the
materials is approximately proportional to pressure. The solubility of H2 in the materials
shows almost no change with pressure; thus, pressure variations have minimal impact
on the materials’ solubility coefficient. Gas solubility is considered constant at different
pressures because pressure does not affect the thermodynamic properties of gas molecules
and polymers. Dong [8] analyzed the influence of different test temperatures and pressures
on the solubility coefficient of PA6, noting a complex interaction between temperature
and gas activity capacity affecting H2 solubility in PA6. This results in limited effects
of test temperature and pressure on the solubility coefficient. Fujiwara [50] conducted
permeability coefficient experiments on HDPE under pressures ranging from 10 to 90 MPa,
indicating that solubility coefficients do not significantly depend on pressure; changes in
permeability coefficients are primarily diffusion-controlled.

Figure 9 illustrates the MSD curves of six material systems at 298 K under different
pressures. It can be observed that as the pressure increases, the slope of the curves gradually
decreases, indicating a significant influence of pressure on the diffusion characteristics
of the materials. Figure 10 shows the calculated diffusion coefficients under different
pressures, demonstrating a substantial impact of pressure on the diffusion of H2 within the
systems. As pressure increases, the diffusion coefficients of all materials generally decrease
linearly. Specifically, pure PA6 exhibits the highest diffusion coefficient, while the 4 wt%
graphene/PA6 composite system shows the lowest diffusion coefficient.

Table 3 presents the permeability coefficients of different systems at 298 K under
various pressures. It can be observed that within the same system, permeability decreases
with increasing pressure. At 0.1 MPa pressure, the permeability of 5 wt% graphene/PA6 is
the lowest, at 2.44 × 10−13 cm3·cm/(cm2·s·Pa). At pressures above 35 MPa, the permeability
of the 4 wt% graphene/PA6 is the lowest, with values of 2.15 × 10−13 cm3·cm/(cm2·s·Pa),
2.00 × 10−13 cm3·cm/(cm2·s·Pa), and 1.96 × 10−13 cm3·cm/(cm2·s·Pa), respectively. This is
consistent with Dong et al.’s analysis of PA6 hydrogen permeation behavior under different
pressures [8], which indicated a decreasing trend in permeability coefficient with increasing
experimental pressure.
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Table 3. Permeability Coefficients of 6 Systems at 298 K under Different Pressures (cm3·cm/(cm2·s·Pa)).

PA6 3 wt% 4 wt% 5 wt% 6 wt% 7 wt%

0.1 MPa 2.35 × 10−12 3.11 × 10−13 2.74 × 10−13 2.44 × 10−13 2.58 × 10−13 2.95 × 10−13

35 MPa 1.44 × 10−12 2.54 × 10−13 2.15 × 10−13 2.34 × 10−13 2.41 × 10−13 2.88 × 10−13

52.5 MPa 1.39 × 10−12 2.56 × 10−13 2.00 × 10−13 2.05 × 10−13 2.15 × 10−13 2.42 × 10−13

70 MPa 9.70 × 10−13 2.29 × 10−13 1.96 × 10−13 2.04 × 10−13 1.90 × 10−13 2.33 × 10−13
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For non-soluble gases like H2, the permeability coefficient decreases with increasing
test pressure [51]. This phenomenon is attributed to the compression of the polymer and
the compaction of voids as the test pressure rises [20,51]. Consequently, the reduction in
free volume within the material more significantly hinders the diffusion of H2 molecules,
decreasing the hydrogen permeability coefficient. Fumitoshi et al. [52] observed that
under high-pressure hydrogen environments, the crystallinity of polymer materials is
further enhanced, which impedes hydrogen diffusion. Therefore, as experimental pressure
increases, the diffusion coefficient of the material decreases.

4.4. Analysis of H2 Diffusion Mechanism in Graphene/PA6 Composite Systems

Distribution of Free Volume:
The formula is as follows (5):

FFV =
V − Vo

V
=

Vf

V
(5)

In the equation, V represents the volume of the polymer unit cell, Vo denotes the
volume occupied by the polymer within the unit cell, and Vf signifies the free volume
within the polymer unit cell.

According to Fox and Flory’s [53] free volume theory, the volume of a polymer can be
divided into the occupied volume by polymer chains and the free volume not occupied
by polymer chains. Hydrogen molecules (H2) can only diffuse within the free volume of
the polymer. Changes in the free volume provide more space for H2 diffusion within the
polymer, thereby affecting the diffusion coefficient. This study employed the hard probe
method to investigate the free volume of graphene/PA6 composite systems at different
proportions. The probe radius corresponds to the van der Waals radius of H2 (1.40 Å),
representing the spatial extent of H2 diffusion within the polymer. The distribution of free
volume for various graphene/PA6 composite systems at 298 K and 0.1 MPa is illustrated
in Figure 11, where the blue regions indicate the distribution of free volume within the
composite materials.
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It can be observed that the blue area representing the FFV is the largest for pure
PA6. Upon adding the 3 wt% graphene, the blue area decreases and then fluctuates with
increasing graphene content. The FFV initially decreases and then increases, reaching a
minimum when the graphene content is 4 wt%. However, when graphene content exceeds
5%, the blue area begins to increase again. These results indicate that the addition of
graphene restricts the movement of polymer chains within PA6, thereby disrupting the
continuity of “voids” within PA6 to some extent and reducing the polymer’s FFV. This
limitation consequently restricts H2 diffusion within the polymer matrix, enhancing the gas
barrier properties of the polymer. As graphene content continues to increase, new “voids”
form between the filler and PA6, resulting in an increase in free volume. This provides
additional channels for gas diffusion, deteriorating the barrier properties and consequently
increasing the diffusion coefficient while reducing the barrier performance.

Figure 12 shows the FFV calculated from simulation results to further analyze the
impact of free volume fraction (FFV). Figure 12a depicts the FFV of different composite
systems at 298 K and 0.1 MPa. The trend aligns with the distribution of the blue regions in
Figure 11.
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four different pressure conditions.

Figure 12b illustrates the FFV of 4% graphene/PA6 under four different pressure
conditions. It is evident from the figure that the FFV decreases gradually with increasing
pressure. This phenomenon arises because pressure reduces the distance between molecules
in the composite material, thereby slightly diminishing the size and number of pores within
the system.

The trajectories of H2 in various graphene/PA6 systems were studied at 298 K and
0.1 MPa to investigate the motion of H2 molecules within polymers. Figure 13a illus-
trates that H2 diffusion in the PA6 system follows a “hop and jump” mechanism, where
H2 molecules move between adjacent pores in a relatively short time. Over time, H2
molecules move from their initial positions, increasing overall displacement. Upon adding
3% graphene, Figure 13b shows that H2 molecules in the graphene/PA6 composite exhibit
a distinct “hop and vibration” motion, indicating that the presence of graphene effectively
hinders gas molecules. When hydrogen molecules encounter graphene during their motion,
they cannot pass through directly, thus deviating from their original diffusion path; instead,
they hop back and forth within the free volume. In Figure 13b, blue ellipse represent
hopping, while red circle indicate vibration.
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With the increase of graphene content, the vibration of H2 molecules within the
polymer decreases, and there is a noticeable increase in hopping frequency, as shown in
Figure 13d. Moreover, as the graphene content reaches 6 wt% and 7 wt%, the movement
trajectory of H2 exhibits a pattern of “forward hopping” + “backward hopping”, with the
backward hopping displacements being larger.

The movement trajectories of H2 in the 4 wt% graphene/PA6 system under different
pressures are shown in Figure 14. When the pressure reaches 35 MPa, a distinct pattern of
forward “hopping” + backward “hopping” trajectories is observed, indicating that pressure
enhances molecular motion while also affecting the distribution of free volume. As the
pressure further increases to 70 MPa, the available space for hydrogen molecule movement
decreases. Although pressure promotes molecular motion, the polymer chains become
more distorted during movement. The more intense the local segment movements, the
greater the probability of molecular transitions. Consequently, H2 molecules exhibit longer
and more frequent hopping displacements.
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5. Conclusions

Using molecular dynamics (MD) simulations, the dissolution, diffusion, and permeability
characteristics of H2 in PA6 were studied across varying graphene contents (3 wt%–7 wt%),
temperatures (233 K–358 K), and pressures ranging from 0.1 to 70 MPa. The following
conclusions were drawn from this study.

(1) The addition of graphene restricts the movement of polymer chains and disrupts the
continuity of “pores” within the polymer. When H2 moves within the polymer composite
system, it influences the formation of free volume to a certain extent. Compared to pure
PA6, under conditions of 0.1 MPa and 298 K, the permeability coefficient of the 5 wt%
graphene/PA6 composite system decreases by 54.6%.

(2) Temperature has no significant effect on the solubility coefficient of graphene-
added composite systems. The diffusion coefficients of materials in each system increase
with rising temperature, and the increase in diffusion coefficient becomes more pronounced
at higher temperatures. The permeability coefficients of each system decrease with in-
creasing pressure, and within the same system, the permeability coefficient decreases as
pressure increases.

(3) Additionally, the FFV and movement trajectories of H2 in each system were studied.
FFV directly influences the diffusion coefficients of materials: the larger the FFV, the larger
the diffusion coefficient. H2 diffusion in graphene/PA6 composite systems follows a
“vibration + leap” mechanism. In the 3 wt% graphene/PA6 composite system, H2 exhibits
noticeable vibration. In the 7 wt% graphene/PA6 composite system, H2 displays both
significant “forward leaps” and “backward leaps”. With increasing pressure, H2 in the 4
wt% graphene/PA6 system shows longer leap distances and higher frequencies.
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