Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of fPBA
2.3. Methods
2.3.1. Sample Exposure in the Humidity Chamber
2.3.2. Dry Mass Content Determination
2.3.3. Gravimetric Measurements of Humidity Uptake
2.3.4. Thermogravimetric Measurements: TGA and DSC
2.3.5. Fourier-Transform Infrared Spectroscopic (FT-IR)
2.3.6. Surface Tension Measurements: Contact Angle
2.3.7. Surface Morphology
2.3.8. Visual Detection of Mould Growth
2.3.9. Water Vapour Transmission
2.3.10. Lapshear Strength of Modified fPBA Adhesive
3. Results and Discussion
3.1. Dry Mass Content Determination
3.2. Gravimetric Measurements of Humidity Uptake
3.3. Thermogravimetric Measurements—TGA and DSC
3.4. Fourier-Transform Infrared Spectroscopic Analysis of the Prepared Samples (FTIR)
3.5. Contact Angle Measurements (CA)
3.6. Surface Morphology (SEM)
3.7. Visual Detection of Mould Growth (Non-Quantified, Indicator Test)
3.8. Water Vapour Transmission
3.9. Lapshear Strength of Modified fPBA Adhesive
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wimmers, G. Wood: A construction material for tall buildings. Nat. Rev. Mater. 2017, 2, 17051. [Google Scholar] [CrossRef]
- Vallée, T.; Tannert, T.; Fecht, S. Adhesively bonded connections in the context of timber engineering—A Review. J. Adhes. 2017, 93, 257–287. [Google Scholar] [CrossRef]
- Román, J.K.; Wilker, J.J. Cooking Chemistry Transforms Proteins into High-Strength Adhesives. J. Am. Chem. Soc. 2019, 141, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Messmer, A.; Hellweg, S.; Chaudhary, A. Life Cycle Assessment (LCA) of Adhesives Used in Wood Constructions; Institute of Ecological System Design-ETH Zürich: Zürich, Switzerland; Swiss Federal Institute of Technology Zurich: Zürich, Switzerland, 2015. [Google Scholar]
- Sun, J.; Su, J.J.; Ma, C.; Göstl, R.; Herrmann, A.; Liu, K.; Zhang, H.J. Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers. Adv. Mater. 2020, 32, e1906360. [Google Scholar] [CrossRef] [PubMed]
- Wood Adhesives and Binders Market Report Statistics—2024; Global Market Insights Inc.: Selbyville, DE, USA, 2022.
- Pizzi, A. Natural Adhesives, Binders and Matrices for Wood and Fiber Composites: Chemistry and Technology. In Lignocellulosic Fibers and Wood Handbook: Renewable Materials for Today’s Environment; Belgacem, N., Pizzi, A., Eds.; IGI Global: Hershey, PA, USA, 2014. [Google Scholar]
- Raydan, N.D.; Leroyer, L.; Charrier, B.; Robles, E. Recent Advances on the Development of Protein-Based Adhesives for Wood Composite Materials-A Review. Molecules 2021, 26, 7617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Z.; Cai, L.; Zhang, X.L.; Long, C.; Li, J.C.; Li, J.Z.; Gao, Q. Development of a strong and conductive soy protein adhesive by building a hybrid structure based on multifunctional wood composite materials. J. Clean. Prod. 2023, 412, 137461. [Google Scholar] [CrossRef]
- Cai, L.; Li, Y.; Lin, X.X.; Chen, H.; Gao, Q.; Li, J.Z. High-performance adhesives formulated from soy protein isolate and bio-based material hybrid for plywood production. J. Clean. Prod. 2022, 353, 131587. [Google Scholar] [CrossRef]
- Xi, X.D.; Pizzi, A.; Gerardin, C.; Chen, X.Y.; Amirou, S. Soy protein isolate-based polyamides as wood adhesives. Wood Sci. Technol. 2020, 54, 89–102. [Google Scholar] [CrossRef]
- Rajabimashhadi, Z.; Gallo, N.; Salvatore, L.; Lionetto, F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers 2023, 15, 544. [Google Scholar] [CrossRef] [PubMed]
- Vnucec, D.; Kutnar, A.; Gorsek, A. Soy-based adhesives for wood-bonding—A review. J. Adhes. Sci. Technol. 2017, 31, 910–931. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Yang, W.J.; Xu, P.W.; Ma, P.M. A water-resistance soy protein-based adhesive for various substrates application by incorporating tailor-made hydrophobic nanocrystalline cellulose. Compos. Commun. 2022, 32, 101151. [Google Scholar] [CrossRef]
- Lamaming, S.Z.; Lamaming, J.; Rawi, N.F.M.; Hashim, R.; Kassim, M.H.M.; Hussin, M.H.; Bustami, Y.; Sulaiman, O.; Amini, M.H.M.; Hiziroglu, S. Improvements and limitation of soy protein-based adhesive: A review. Polym. Eng. Sci. 2021, 61, 2393–2405. [Google Scholar] [CrossRef]
- Karthäuser, J.; Biziks, V.; Mai, C.; Militz, H. Lignin and Lignin-Derived Compounds for Wood Applications-A Review. Molecules 2021, 26, 2533. [Google Scholar] [CrossRef] [PubMed]
- Hussin, M.H.; Aziz, A.A.; Iqbal, A.; Ibrahim, M.N.M.; Abd Latif, N.H. Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal. Int. J. Biol. Macromol. 2019, 122, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Rahman, F.; Das, A.K.; Hiziroglu, S. An overview of different types and potential of bio-based adhesives used for wood products. Int. J. Adhes. Adhes. 2022, 112, 102992. [Google Scholar] [CrossRef]
- Gadhave, R.; Mahanwar, P.; Gadekar, P. Starch-Based Adhesives for Wood/Wood Composite Bonding: Review. Open J. Polym. Chem. 2017, 7, 19–32. [Google Scholar] [CrossRef]
- Gu, Y.; Cheng, L.; Gu, Z.B.; Hong, Y.; Li, Z.F.; Li, C.M. Preparation, characterization and properties of starch-based adhesive for wood-based panels. Int. J. Biol. Macromol. 2019, 134, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Trosa, A.; Pizzi, A. A no-aldehyde emission hardener for tannin-based wood adhesives for exterior panels. Holz Als Roh-Und Werkst. 2001, 59, 266–271. [Google Scholar] [CrossRef]
- Santos, J.; Antorrena, G.; Freire, M.S.; Pizzi, A.; González-Alvarez, J. Environmentally friendly wood adhesives based on chestnut (Castanea sativa) shell tannins. Eur. J. Wood Wood Prod. 2017, 75, 89–100. [Google Scholar] [CrossRef]
- Kong, X.H.; Liu, G.G.; Curtis, J.M. Characterization of canola oil based polyurethane wood adhesives. Int. J. Adhes. Adhes. 2011, 31, 559–564. [Google Scholar] [CrossRef]
- Santoni, I.; Pizzo, B. Evaluation of alternative vegetable proteins as wood adhesives. Ind. Crops Prod. 2013, 45, 148–154. [Google Scholar] [CrossRef]
- Guo, M.R.; Wang, G.R. Milk Protein Polymer and Its Application in Environmentally Safe Adhesives. Polymers 2016, 8, 324. [Google Scholar] [CrossRef] [PubMed]
- Bachtiar, E.V.; Clerc, G.; Brunner, A.J.; Kaliske, M.; Niemz, P. Static and dynamic tensile shear test of glued lap wooden joint with four different types of adhesives. Holzforschung 2017, 71, 391–396. [Google Scholar] [CrossRef]
- Dunky, M. Wood Adhesives Based on Natural Resources: A Critical Review Part IV. Special Topics. Rev. Adhes. Adhes. 2021, 9, 189–268. [Google Scholar] [CrossRef]
- Xu, Y.T.; Han, Y.F.; Shi, S.Q.; Gao, Q.; Li, J.Z. Preparation of a moderate viscosity, high performance and adequately-stabilized soy protein-based adhesive via recombination of protein molecules. J. Clean. Prod. 2020, 255, 120303. [Google Scholar] [CrossRef]
- Watcharakitti, J.; Win, E.E.; Nimnuan, J.; Smith, S.M. Modified Starch-Based Adhesives: A Review. Polymers 2022, 14, 2023. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, J.; Guo, X.; Deng, X.R.; Kang, S.H.; Zhu, X.R.; Guo, X.B. Effect of Phosphorylation on the Structure and Emulsification Properties of Different Fish Scale Gelatins. Foods 2022, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.L.; Wang, F.; Xu, Z.; Feng, C.; Fang, Y.; Tang, X.Z.; Shen, X.C. Characterization and performance of soybean protein modified by tyrosinase. Int. J. Adhes. Adhes. 2019, 92, 111–118. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.B.; Montazer, M.; Rad, M.M. Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications. J. Clean. Prod. 2018, 204, 425–436. [Google Scholar] [CrossRef]
- Montero, D.A.; Arellano, C.; Pardo, M.; Vera, R.; Gálvez, R.; Cifuentes, M.; Berasain, M.A.; Gómez, M.; Ramírez, C.; Vidal, R.M. Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrob. Resist. Infect. Control 2019, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Mohan, P.; Mala, R. Comparative antibacterial activity of magnetic iron oxide nanoparticles synthesized by biological and chemical methods against poultry feed pathogens. Mater. Res. Express 2019, 6, 115077. [Google Scholar] [CrossRef]
- Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; de Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics 2018, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Naseem, T.; Farrukh, M.A. Antibacterial Activity of Green Synthesis of Iron Nanoparticles Using Lawsonia inermis and Gardenia jasminoides Leaves Extract. J. Chem. 2015, 2015, 912342. [Google Scholar] [CrossRef]
- Armbruster, T. Dehydration mechanism of clinoptilolite and heulandite: Single-crystal X-ray study of Na-pooro Ca-, K-, Mg-rich clinoptilolite at 100 K. Am. Mineral. 1993, 78, 260–264. [Google Scholar]
- ISO 291:2008; Plastics-Standard Atmospheres for Conditioning and Testing. International Organization for Standardization: Geneva, Switzerland, 2008.
- SIST EN ISO 7783:2018; Paints and Varnishes-Determination of Water-Vapour Transmission Properties-Cup Method. International Organization for Standardization: Geneva, Switzerland, 2018.
- EN 205:2016; Adhesives-Wood Adhesives for Non-Structural Applications-Determination of Tensile Shear Strength of Lap Joints, for Determination of the Tensile Shear Strength of Lap Joints. iTeh Standards: Etobicoke, ON, Canada, 2016.
- Bieganska, B.; Zubielewicz, M.; Smieszek, E. Influence of barrier pigments on the performance of protective organic coatings. Prog. Org. Coat. 1988, 16, 219–229. [Google Scholar] [CrossRef]
- Alipanah, N.; Yari, H.; Mahdavian, M.; Ramezanzadeh, B.; Bahlakeh, G. Fabrication of MIL-88A sandwiched in graphene oxide nanocomposites using a green approach to induce active/barrier protective functioning in epoxy coatings. J. Clean. Prod. 2021, 321, 128928. [Google Scholar] [CrossRef]
- Hudaverdyan, T.; Kachalova, G.; Bartunik, H. Estimation of the effect of relative humidity on protein crystallization. Crystallogr. Rep. 2006, 51, 519–524. [Google Scholar] [CrossRef]
- Negoro, T.; Thodsaratpreeyakul, W.; Takada, Y.; Thumsorn, S.; Inoya, H.; Hamada, H. Role of crystallinity on moisture absorption and mechanical performance of recycled PET compounds. Energy Procedia 2016, 89, 323–327. [Google Scholar] [CrossRef]
- Mihranyan, A.; Llagostera, A.; Karmhag, R.; Stromme, M.; Ek, R. Moisture sorption by cellulose powders of varying crystallinity. Int. J. Pharm. 2004, 269, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Perkasa, D.P.; Erizal, E.; Abbas, B. Polymeric biomaterials film based on poly (vinyl alcohol) and fish scale collagen by repetitive freeze-thaw cycles followed by gamma irradiation. Indones. J. Chem. 2013, 13, 221–228. [Google Scholar] [CrossRef]
- Valcarcel, J.; Hermida-Merino, C.; Piñeiro, M.M.; Hermida-Merino, D.; Vázquez, J.A. Extraction and Characterization of Gelatin from Skin By-Products of Seabream, Seabass and Rainbow Trout Reared in Aquaculture. Int. J. Mol. Sci. 2021, 22, 12104. [Google Scholar] [CrossRef] [PubMed]
- Mozgawa, W.; Król, M.; Mikuła, A.; Pichór, W. Study of zeolite-like sorption materials obtained from expanded perlite waste. In Proceedings of the 5th International Conference on Engineering for Waste and Biomass Valorisation, Rio de Janeiro, Brazil, 25–28 August 2014; pp. 25–28. [Google Scholar]
- Correia, D.M.; Padrao, J.; Rodrigues, L.R.; Dourado, F.; Lanceros-Méndez, S.; Sencadas, V. Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polym. Test. 2013, 32, 995–1000. [Google Scholar] [CrossRef]
- Barczewski, M.; Hejna, A.; Anisko, J.; Andrzejewski, J.; Piasecki, A.; Mysiukiewicz, O.; Bak, M.; Gapinski, B.; Ortega, Z. Rotational molding of polylactide (PLA) composites filled with copper slag as a waste filler from metallurgical industry. Polym. Test. 2022, 106, 107449. [Google Scholar] [CrossRef]
- Martins, M.E.O.; Sousa, J.R.; Claudino, R.L.; Lino, S.C.O.; do Vale, D.A.; Silva, A.L.C.; Morais, J.P.S.; de Souza, M.D.M.; De Souza, B.W.S. Thermal and Chemical Properties of Gelatin from Tilapia (Oreochromis niloticus) Scale. J. Aquat. Food Prod. Technol. 2018, 27, 1120–1133. [Google Scholar] [CrossRef]
- Pan, L.; Li, P.; Tao, Y.B. Preparation and Properties of Microcrystalline Cellulose/Fish Gelatin Composite Film. Materials 2020, 13, 4370. [Google Scholar] [CrossRef] [PubMed]
- Sripriya, R.; Kumar, R. A Novel Enzymatic Method forPreparationand Characterization of Collagen Film from Swim Bladder of Fish Rohu (Labeo rohita). Food Nutr. Sci. 2015, 6, 1468–1478. [Google Scholar] [CrossRef]
- McKenna, G.B. Ten (or more) years of dynamics in confinement: Perspectives for 2010. Eur. Phys. J.-Spec. Top. 2010, 189, 285–302. [Google Scholar] [CrossRef]
- Li, X.M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.S.; Fang, K.J.; Song, Y.W.; Fu, R.R.; Li, H.Y.; Zhang, C.M. Optimizing a fabricating program for wearable super-hydrophobic cotton by clean production technology of plasma and reducing chemical consumption. J. Clean. Prod. 2020, 276, 124233. [Google Scholar] [CrossRef]
- Polat, E.; Karaca, M.; Demir, H.; Onus, N. Use of natural zeolite (clinoptilolite) in agriculture. J. Fruit Ornam. Plant Res. 2004, 12, 183–189. [Google Scholar]
- Pelliccione, M.; Toh-Ming, L. Evolution of Thin Film Morphology; Springer: New York, NY, USA, 2008. [Google Scholar]
- Zhang, Y.H.; Cao, B.Y.; Yin, H.L.; Meng, L.T.; Jin, W.; Wang, F.; Xu, J.; Al-Tabbaa, A. Application of zeolites in permeable reactive barriers (PRBs) for in-situ groundwater remediation: A critical review. Chemosphere 2022, 308, 136290. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. A Brief Guide to Mold, Moisture and Your Home. Available online: https://www.epa.gov/mold/brief-guide-mold-moisture-and-your-home (accessed on 8 January 2024).
- Olson, D.D. The crystal structure of the zeolite hydrogen faujasite. J. Catal. 1969, 13, 221–231. [Google Scholar] [CrossRef]
- Papa, E.; Medri, V.; Amari, S.; Manaud, J.; Benito, P.; Vaccari, A.; Landi, E. Zeolite-geopolymer composite materials: Production and characterization. J. Clean. Prod. 2018, 171, 76–84. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. J. Clean. Prod. 2021, 311, 127461. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Mumpton, F. Using zeolites in agriculture. In Inovative Biological Technologies for Lesser Developed Countries—Workshop Proceedings; Office of Technology Assessment, OTA: Washington, DC, USA, 1985; pp. 127–158. [Google Scholar]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of various fillers in adhesives applications: A review. Polym. Bull. 2022, 79, 10491–10553. [Google Scholar] [CrossRef]
- Ataberk, N. The effect of Cu nanoparticle adding on to epoxy-based adhesive and adhesion properties. Sci. Rep. 2020, 10, 11038. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Halder, S.; Goyat, M.S.; Karthik, G. Study on Thermal and Lap Shear Characteristics of Epoxy Adhesive Loaded with Metallic and Non-Metallic Particles. J. Adhes. 2013, 89, 55–75. [Google Scholar] [CrossRef]
- Ciardiello, R.; Belingardi, G.; Martorana, B.; Brunella, V. Physical and mechanical properties of a reversible adhesive for automotive applications. Int. J. Adhes. Adhes. 2019, 89, 117–128. [Google Scholar] [CrossRef]
Samples | Wet Sample Mass (g) | Dry Sample Mass (g) | Dry Content (%) |
---|---|---|---|
fPBA | 0.385 ± 0.07 | 0.075 ± 0.01 | 19.398 ± 0.06 |
fPBA-Cu | 0.415 ± 0.07 | 0.089 ± 0.01 | 21.316 ± 0.07 |
fPBA-Fe | 0.374 ± 0.05 | 0.081 ± 0.01 | 21.730 ± 0.01 |
fPBA-Z | 0.367 ± 0.02 | 0.078 ± 0.00 | 21.377 ± 0.04 |
Samples | m175°C (%) | T1 (°C) | T2 (°C) | T3 (°C) | m600°C (%) | mresidue (%) |
---|---|---|---|---|---|---|
fPBA | 14.0 | 272.4 | 305.7 | 363.9 | 76.8 | 18.4 |
fPBA-Z | 11.1 | 274.4 | 308.1 | 369.6 | 71.8 | 25.7 |
fPBA-Cu | 13.0 | 273.7 | 316.2 | 368.2 | 70.7 | 27.2 |
fPBA-Fe | 12.8 | 274.9 | 306.7 | 374.2 | 68.7 | 27.6 |
Samples | Tg (°C) | Tm (°C) | Td (°C) |
---|---|---|---|
fPBA | 82.7 | 145.3 | 196.5 |
fPBA-Fe | 83.7 | 149.9 | 206.7 |
fPBA-Cu | 84.9 | 147.3 | 207.0 |
fPBA-Z | 79.0 | 145.6 | 195.4 |
sd_3 h [m] | sd_6 h [m] | sd_24 h [m] | sd_48 h [m] | [m] | |
---|---|---|---|---|---|
fPBA | 0.058 | 0.056 | 0.056 | 0.056 | 0.056 |
fPBA-Cu | 0.056 | 0.050 | 0.054 | 0.049 | 0.052 |
fPBA-Fe | 0.053 | 0.051 | 0.056 | 0.054 | 0.054 |
fPBA-Z | 0.057 | 0.058 | 0.063 | 0.057 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mušič, B.; Pečnik, J.G.; Pondelak, A. Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers 2024, 16, 2195. https://doi.org/10.3390/polym16152195
Mušič B, Pečnik JG, Pondelak A. Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers. 2024; 16(15):2195. https://doi.org/10.3390/polym16152195
Chicago/Turabian StyleMušič, Branka, Jaka Gašper Pečnik, and Andreja Pondelak. 2024. "Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity" Polymers 16, no. 15: 2195. https://doi.org/10.3390/polym16152195
APA StyleMušič, B., Pečnik, J. G., & Pondelak, A. (2024). Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers, 16(15), 2195. https://doi.org/10.3390/polym16152195