Bio-Inspired Photosynthesis Platform for Enhanced NADH Conversion and L-Glutamate Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Layered Vaterite and Deposition of AuNPs
2.3. Preparation of [M]+
2.4. Characterization
2.5. NADH Conversion and L-Glutamate Synthesis
2.6. Stability and Reusability Tests
3. Results and Discussion
3.1. Morphology and Structure of Vaterite-Au
3.2. Composition and Structural of Vaterite-Au-EY
3.3. Photocatalytic Performance of the Vaterite-Au-EY Composite
3.4. Biocatalytic Performance and Stability of Vaterite-Au-EY Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Ward-Bond, J.; Li, D.; Zhang, S.; Shi, J.; Jiang, Z. g-C3N4@α-Fe2O3/C photocatalysts: Synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catal. 2018, 8, 5664–5674. [Google Scholar] [CrossRef]
- Cai, Z.; Shi, J.; Wu, Y.; Zhang, Y.; Zhang, S.; Jiang, Z. Chloroplast-inspired artificial photosynthetic capsules for efficient and sustainable enzymatic hydrogenation. ACS Sustain. Chem. Eng. 2018, 6, 17114–17123. [Google Scholar] [CrossRef]
- Ji, X.; Liu, C.; Wang, J.; Su, Z.; Ma, G.; Zhang, S. Integration of functionalized two-dimensional TaS2 nanosheets and an electron mediator for more efficient biocatalyzed artificial photosynthesis. J. Mater. Chem. A 2017, 5, 5511–5522. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef] [PubMed]
- Iakimova, E.T.; Woltering, E.J. Xylogenesis in zinnia (Zinnia elegans) cell cultures: Unravelling the regulatory steps in a complex developmental programmed cell death event. Planta 2017, 245, 681–705. [Google Scholar] [CrossRef]
- Hornberger, L.S.; Adams, F. Photocatalytic CO2 conversion using metal-containing coordination polymers and networks: Recent developments in material design and mechanistic details. Polymers 2022, 14, 2778. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chi, W.; Zou, Z.; Zhang, P.; Wang, K.; Zou, J.; Ping, H.; Xie, J.; Wang, W.; Fu, Z. Bio-inspired high-efficiency photosystem by synergistic effects of core-shell structured Au@CdS nanoparticles and their engineered location on {001} facets of SrTiO3 nanocrystals. J. Mater. Sci. Technol. 2023, 136, 159–168. [Google Scholar] [CrossRef]
- Wan, S.; Xu, J.; Cao, S.; Yu, J. Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor modulation for visible-light photocatalytic H2 evolution. Interdiscip. Mater. 2022, 1, 294–308. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, S.H.; Kim, J.H.; Park, C.B. Artificial photosynthesis on a chip: Microfluidic cofactor regeneration and photoenzymatic synthesis under visible light. Lab Chip 2011, 11, 2309–2311. [Google Scholar] [CrossRef]
- Wang, L.; Bao, H.; Lin, H.; Yang, C.; Song, J.; Huang, X. An easy fabricated biomimetic leaf microreactor for photocatalytic nicotinamide adenine dinucleotide (NADH) regeneration. Appl. Catal. A Gen. 2022, 641, 118685. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choi, D.S.; Kuk, S.K.; Park, C.B. Photobiocatalysis: Activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 2018, 57, 7958–7985. [Google Scholar] [CrossRef] [PubMed]
- Schmermund, L.; Jurkaš, V.; Özgen, F.F.; Barone, G.D.; Büchsenschütz, H.C.; Winkler, C.K.; Schmidt, S.; Kourist, R.; Kroutil, W. Photo-biocatalysis: Biotransformations in the presence of light. ACS Catal. 2019, 9, 4115–4144. [Google Scholar] [CrossRef]
- Xue, B.; Li, Y.; Yang, F.; Zhang, C.; Qin, M.; Cao, Y.; Wang, W. An integrated artificial photosynthesis system based on peptide nanotubes. Nanoscale 2014, 6, 7832–7837. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.; Roychoudhury, R.; Schwarz, B.; Jordan, P.; Lisher, J.; Uchida, M.; Douglas, T. Co-localization of catalysts within a protein cage leads to efficient photochemical NADH and/or hydrogen production. J. Mater. Chem. B 2016, 4, 5375–5384. [Google Scholar] [CrossRef]
- Yi, L.; Zou, B.; Xie, L.; Zhang, R. A novel bifunctional protein PNU7 in CaCO3 polymorph formation: Vaterite stabilization and surface energy minimization. Int. J. Biol. Macromol. 2022, 222, 2796–2807. [Google Scholar] [CrossRef] [PubMed]
- Sviben, S.; Gal, A.; Hood, M.A.; Bertinetti, L.; Politi, Y.; Bennet, M.; Krishnamoorthy, P.; Schertel, A.; Wirth, R.; Sorrentino, A. A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga. Nat. Commun. 2016, 7, 11228. [Google Scholar] [CrossRef]
- Ševčík, R.; Šašek, P.; Viani, A. Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: Vaterite, aragonite and calcite. J. Mater. Sci. 2018, 53, 4022–4033. [Google Scholar] [CrossRef]
- Dai, Y.; Zou, H.; Zhu, H.; Zhou, X.; Song, Y.; Shi, Z.; Sheng, Y. Controlled synthesis of calcite/vaterite/aragonite and their applications as red phosphors doped with Eu3+ ions. CrystEngComm 2017, 19, 2758–2767. [Google Scholar] [CrossRef]
- Zafar, B.; Campbell, J.; Cooke, J.; Skirtach, A.G.; Volodkin, D. Modification of surfaces with vaterite CaCO3 particles. Micromachines 2022, 13, 473. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yao, Q.Z.; Li, H.; Zhou, G.T.; Sheng, Y.M. Formation of vaterite mesocrystals in biomineral-like structures and implication for biomineralization. Cryst. Growth Des. 2015, 15, 1714–1725. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, C.; Xiao, B.; Bai, Z.; Jiang, C.; Yang, C.; Wu, Y.; Wang, X. Hierarchical CaCO3 particles self-assembled from metastable vaterite and stable calcite during the decomposition of Ca(HCO3)2. CrystEngComm 2017, 19, 7332–7338. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, J.; Liu, X.; Zhang, H.; Wang, D.; Chen, Z.; Zhang, D.; Fan, T. Bio-inspired photonic materials: Prototypes and structural effect designs for applications in solar energy manipulation. Adv. Funct. Mater. 2018, 28, 1705309. [Google Scholar] [CrossRef]
- Wang, D.; Kim, J.; Park, C.B. Lignin-induced CaCO3 vaterite structure for biocatalytic artificial photosynthesis. ACS Appl. Mater. Interfaces 2021, 13, 58522–58531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-C.; Sun, D.; Zhang, R.; Lin, W.-F.; Macias-Montero, M.; Patel, J.; Askari, S.; McDonald, C.; Mariotti, D.; Maguire, P. Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application. Sci. Rep. 2017, 7, 46682. [Google Scholar] [CrossRef]
- Roy, S.; Jain, V.; Kashyap, R.K.; Rao, A.; Pillai, P.P. Electrostatically driven multielectron transfer for the photocatalytic regeneration of nicotinamide cofactor. ACS Catal. 2020, 10, 5522–5528. [Google Scholar] [CrossRef]
- Amirjani, A.; Shokrani, P.; Sharif, S.A.; Moheb, H.; Ahmadi, H.; Ahmadiani, Z.S.; Paroushi, M.S. Plasmon-enhanced nano-photosensitizers: Game-changers in photodynamic therapy of cancers. J. Mater. Chem. B 2023, 11, 3537–3566. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.-Q.; Liu, J.-H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C.-H. Calcium carbonate: Controlled synthesis, surface functionalization, and nanostructured materials. Chem. Soc. Rev. 2022, 51, 7883–7943. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Zhou, Z.; Xie, J.; Lee, J.Y. Hydrophilic mineral coating of membrane substrate for reducing internal concentration polarization (ICP) in forward osmosis. Sci. Rep. 2016, 6, 19593. [Google Scholar] [CrossRef] [PubMed]
- Vitale, F.; Fratoddi, I.; Battocchio, C.; Piscopiello, E.; Tapfer, L.; Russo, M.V.; Polzonetti, G.; Giannini, C. Mono-and bi-functional arenethiols as surfactants for gold nanoparticles: Synthesis and characterization. Nanoscale Res. Lett. 2011, 6, 103. [Google Scholar] [CrossRef]
- Bansal, A.; Kumar, A.; Kumar, P.; Bojja, S.; Chatterjee, A.K.; Ray, S.S.; Jain, S.L. Visible light-induced surface initiated atom transfer radical polymerization of methyl methacrylate on titania/reduced graphene oxide nanocomposite. RSC Adv. 2015, 5, 21189–21196. [Google Scholar] [CrossRef]
- Harada, T.; Matsuzaki, H.; Oyama, R.; Takeuchi, T.; Takei, T.; Ninomiya, T.; Takami, K.; Inoue, T.; Nishiguchi, H.; Hifumi, E. Decomposition of amyloid fibrils by NIR-active upconversion nanoparticles. Photochem. Photobiol. Sci. 2020, 19, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 2014, 43, 7188–7216. [Google Scholar] [CrossRef] [PubMed]
- Nossier, A.I.; Mohammed, O.S.; El-Deen, R.R.F.; Zaghloul, A.S.; Eissa, S. Gelatin-modified gold nanoparticles for direct detection of urinary total gelatinase activity: Diagnostic value in bladder cancer. Talanta 2016, 161, 511–519. [Google Scholar] [CrossRef]
- Greeneltch, N.G.; Davis, A.S.; Valley, N.A.; Casadio, F.; Schatz, G.C.; Van Duyne, R.P.; Shah, N.C. Near-infrared surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: Theoretical calculations and evaluation of two different nanoplasmonic substrates. J. Phys. Chem. A 2012, 116, 11863–11869. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, F.C.; Purcell-Milton, F.; Framont, V.; Cleary, O.; Dunne, P.W.; Gun’ko, Y.K. Synthesis of CaCO3 nano-and micro-particles by dry ice carbonation. Chem. Commun. 2017, 53, 6657–6660. [Google Scholar] [CrossRef] [PubMed]
- Balabushevich, N.; De Guerenu, A.L.; Feoktistova, N.; Volodkin, D. Protein loading into porous CaCO3 microspheres: Adsorption equilibrium and bioactivity retention. Phys. Chem. Chem. Phys. 2015, 17, 2523–2530. [Google Scholar] [CrossRef] [PubMed]
- Vikulina, A.; Feoktistova, N.; Balabushevich, N.; Skirtach, A.; Volodkin, D. The mechanism of catalase loading into porous vaterite CaCO3 crystals by co-synthesis. Phys. Chem. Chem. Phys. 2018, 20, 8822–8831. [Google Scholar] [CrossRef] [PubMed]
- Netto, C.G.; da Silva, D.G.; Toma, S.H.; Andrade, L.H.; Nakamura, M.; Araki, K.; Toma, H.E. Bovine glutamate dehydrogenase immobilization on magnetic nanoparticles: Conformational changes and catalysis. RSC Adv. 2016, 6, 12977–12992. [Google Scholar] [CrossRef]
- Pesaran, M.; Amoabediny, G. Study on the stability and reusability of glutamate dehydrogenase immobilized on bacterial cellulose nanofiber. Fibers Polym. 2017, 18, 240–245. [Google Scholar] [CrossRef]
- Krajewska, C.J.; Kavanagh, S.R.; Zhang, L.; Kubicki, D.J.; Dey, K.; Gałkowski, K.; Grey, C.P.; Stranks, S.D.; Walsh, A.; Scanlon, D.O. Enhanced visible light absorption in layered Cs3Bi2Br9 through mixed-valence Sn (ii)/Sn (iv) doping. Chem. Sci. 2021, 12, 14686–14699. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Liu, Z.; Wang, R.; Wang, Y.; Zou, Z.; Xie, J.; Zhang, P.; Fu, Z. Bio-Inspired Photosynthesis Platform for Enhanced NADH Conversion and L-Glutamate Synthesis. Polymers 2024, 16, 2198. https://doi.org/10.3390/polym16152198
Tang J, Liu Z, Wang R, Wang Y, Zou Z, Xie J, Zhang P, Fu Z. Bio-Inspired Photosynthesis Platform for Enhanced NADH Conversion and L-Glutamate Synthesis. Polymers. 2024; 16(15):2198. https://doi.org/10.3390/polym16152198
Chicago/Turabian StyleTang, Junxiao, Zhenyu Liu, Rongjie Wang, Yanze Wang, Zhaoyong Zou, Jingjing Xie, Pengchao Zhang, and Zhengyi Fu. 2024. "Bio-Inspired Photosynthesis Platform for Enhanced NADH Conversion and L-Glutamate Synthesis" Polymers 16, no. 15: 2198. https://doi.org/10.3390/polym16152198
APA StyleTang, J., Liu, Z., Wang, R., Wang, Y., Zou, Z., Xie, J., Zhang, P., & Fu, Z. (2024). Bio-Inspired Photosynthesis Platform for Enhanced NADH Conversion and L-Glutamate Synthesis. Polymers, 16(15), 2198. https://doi.org/10.3390/polym16152198