Hot Embossing to Fabricate Parylene-Based Microstructures and Its Impact on the Material Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shim Fabrication
- (a)
- This was followed by the application of an AZ Barli II-200 antireflection layer (manufactured: Merck Performance Materials GmbH, Wiesbaden, Germany; filled: MicroChemicals GmbH, Ulm, Germany). The layer was spin coated at 3000 rpm for 30 s and subsequently tempered on a hotplate at 200 °C for 60 s. A similar process was applied for a 10 µm photoresist layer of mr-X 10 (micro resist technology GmbH, Berlin, Germany) by spin coating at 2000 rpm for 60 s and tempering at 95 °C for 10 min to remove the solvent.
- (b)
- The next step involved patterning a 10.2 mm × 10.2 mm area of the photoresist layer with pillar structures with a diameter of 10 µm and 20 µm, as well as depths of 10 µm, 20 µm, and 30 µm. The pitch between the individual pillars was 20 µm, 50 µm and 80 µm for different shims, respectively. The patterning was achieved at a power setting of 185 mW using a maskless Laserwriter DWL66fs (Heidelberg Instruments Mikrotechnik GmbH, Heidelberg, Germany) equipped with a ND:Yag laser (λ = 365 nm) and by use of a 10 mm write head. After exposure, a post-exposure bake in the oven UT 5050 LAF (Kendro Laboratory Products GmbH, Langenselbold, Germany) was carried out. The oven was ramped up to 75 °C in 15 min and returned to RT in 4 h without an additional holding time. During this process, the photoresist crosslinked at the exposed areas. Afterwards, uncrosslinked photoresist was dissolved with a developer like q-methoxy-2-propanol acetate (PGMEA) and isopropanol for 12 min and 15 min, respectively.
- (c)
- Prior to electroplating, a thin metallic seed layer consisting of 7 nm chromium and 45 nm to 50 nm gold was deposited onto the structured master substrate by the use of PVD. Doing so, the UNIVEX 450 vapor deposition system (Leybold GmbH, Cologne, Germany) was used, with chromium being coated at 5–6 Å/s and gold at 7–9 Å/s in a high-vacuum environment (≤10−6 mbar).
- (d)
- Nickel electroforming followed, utilizing a boric acid containing nickel sulphamate electrolyte and current densities ranging from 0.1 A/dm2 to 1.5 A/dm2 to deposit an 800 µm to 1000 µm thick nickel layer on top of the master substrate.
- (e)
- The removal of the master substrate was carried out either by mechanically lifting off the silicon wafer or by etching in KOH, in the cases where mechanical lifting posed a risk of structural deformation or was unfeasible due to geometrical constraints.
- (f)
- Subsequently, the remaining antireflection and photoresist mask was also removed, requiring two etching steps: first with oxygen plasma at 100 W for 2 min using the RIE plasma etcher Etchlab 200 (SENTECH Instruments GmbH, Berlin, Germany), and then at 1200 W at 22 °C for 15 min using an R3T (Muegge GmbH, Reichelsheim (Odenwald), Germany).
- (g)
- The structure quality of the shim was assessed using SEM.
- (h)
- Finally, the remaining nickel block was then wire eroded to the desired height and final outer dimensions with a 200 µm brass wire at a tensile force of 900 J/mm2 using a Mitsubishi DWC 90 SZ (Mitsubishi Electric Corporation, Tokyo, Japan), before transferring it for use in the hot embossing process.
2.2. Sample Preparation
2.3. Hot Embossing Process
2.4. Material and Structure Characterization Methods
3. Results and Discussion
3.1. Optimization of the Hot Embossing Shim Quality
3.2. Surface Treatments and Release-Agent Effects on the Delamination of Parylene C and Its Material Properties during Hot Embossing
3.3. Optimization of the Process Parameters to Establish a Reproducible Hot Embossing Process
3.4. Investigation of Structure Dimension Limits and Quality Possible by the Hot Embossing of Parylene C
3.5. Impact of Hot Embossing on Silicon Chips with Buried Metal Layers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortin, J.B.; Lu, T.-M. Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films; Kluwer Academic Publishers: Boston, MA, USA, 2004; ISBN 9781402076886. [Google Scholar]
- Hofmann, L.; Fischer, T.; Werner, T.; Selbmann, F.; Rennau, M.; Ecke, R.; Schulz, S.E.; Geßner, T. Study on TSV isolation liners for a Via Last approach with the use in 3D-WLP for MEMS. Microsyst. Technol. 2016, 22, 1665–1677. [Google Scholar] [CrossRef]
- Kim, B.J.; Meng, E. Review of polymer MEMS micromachining. J. Micromech. Microeng. 2016, 26, 13001. [Google Scholar] [CrossRef]
- von Metzen, R.P.; Stieglitz, T. The effects of annealing on mechanical, chemical, and physical properties and structural stability of Parylene C. Biomed. Microdevices 2013, 15, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Selbmann, F.; Baum, M.; Wiemer, M.; Gessner, T. Deposition of Parylene C and characterization of its hermeticity for the encapsulation of MEMS and medical devices. In Proceedings of the 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 17–20 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 427–432, ISBN 978-1-5090-1947-2. [Google Scholar]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
- Selbmann, F.; Baum, M.; Bobinger, M.; Gottwald, M.; Wiemer, M.; Kuhn, H. Investigation of biocompatible Parylene as triboelectric layer for wearable energy harvesting. Curr. Dir. Biomed. Eng. 2021, 7, 771–774. [Google Scholar] [CrossRef]
- Selbmann, F.; Baum, M.; Meinecke, C.; Wiemer, M.; Kuhn, H.; Joseph, Y. Low-Temperature Parylene-Based Adhesive Bonding Technology for 150 and 200 mm Wafers for Fully Biocompatible and Highly Reliable Microsystems. ECS J. Solid State Sci. Technol. 2021, 10, 74010. [Google Scholar] [CrossRef]
- Selbmann, F.; Paul, S.D.; Satwara, M.; Roscher, F.; Wiemer, M.; Kuhn, H.; Joseph, Y. Paradigm Changing Integration Technology for the Production of Flexible Electronics by Transferring Structures, Dies and Electrical Components from Rigid to Flexible Substrates. Micromachines 2023, 14, 415. [Google Scholar] [CrossRef] [PubMed]
- Selbmann, F.; Roscher, F.; de Souza Tortato, F.; Wiemer, M.; Otto, T.; Joseph, Y. An ultra-thin and highly flexible multilayer Printed Circuit Board based on Parylene. In Proceedings of the 2021 Smart Systems Integration (SSI), Grenoble, France, 27–29 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4, ISBN 978-1-6654-4092-9. [Google Scholar]
- Selbmann, F.; Roscher, F.; Wiemer, M.; Kuhn, H.; Joseph, Y. Advances in Parylene Adhesive Bonding for the Realization of Biocompatible Microsystems. In Proceedings of the 24th IEEE European Microelectronics Packaging Conference (EMPC), Hinxton, UK, 11–14 September 2023. [Google Scholar]
- Ortigoza-Diaz, J.; Scholten, K.; Larson, C.; Cobo, A.; Hudson, T.; Yoo, J.; Baldwin, A.; Weltman Hirschberg, A.; Meng, E. Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems. Micromachines 2018, 9, 422. [Google Scholar] [CrossRef] [PubMed]
- Standaert, T.E.F.M.; Matsuo, P.J.; Li, X.; Oehrlein, G.S.; Lu, T.-M.; Gutmann, R.; Rosenmayer, C.T.; Bartz, J.W.; Langan, J.G.; Entley, W.R. High-density plasma patterning of low dielectric constant polymers: A comparison between polytetrafluoroethylene, parylene-N, and poly(arylene ether). J. Vac. Sci. Technol. A Vac. Surf. Film. 2001, 19, 435–446. [Google Scholar] [CrossRef]
- Ghodssi, R.; Lin, P. MEMS Materials and Processes Handbook; Springer: New York, NY, USA; Heidelberg, Germany, 2011; ISBN 978-0-387-47316-1. [Google Scholar]
- Meng, E.; Li, P.-Y.; Tai, Y.-C. Plasma removal of Parylene C. J. Micromech. Microeng. 2008, 18, 45004. [Google Scholar] [CrossRef]
- Loeb, G.E.; Peck, R.A.; Martyniuk, J. Toward the ultimate metal microelectrode. J. Neurosci. Methods 1995, 63, 175–183. [Google Scholar] [CrossRef]
- Jungmeier, A.; Drummer, D. Microthermoforming Integrated in the Injection Molding Process for Fabrication of Film-Based Microstructured Parts. Int. Polym. Process. 2015, 30, 381–389. [Google Scholar] [CrossRef]
- Xiong, H.; Wang, L.; Wang, Z. Chalcogenide microlens arrays fabricated using hot embossing with soft PDMS stamps. J. Non-Cryst. Solids 2019, 521, 119542. [Google Scholar] [CrossRef]
- Chien, R.-D. Hot embossing of microfluidic platform. Int. Commun. Heat Mass Transf. 2006, 33, 645–653. [Google Scholar] [CrossRef]
- Shan, X.C.; Ikehara, T.; Murakoshi, Y.; Maeda, R. Applications of micro hot embossing for optical switch formation. Sens. Actuators A Phys. 2005, 119, 433–440. [Google Scholar] [CrossRef]
- Chen, S.C.; Lin, M.C.; Chien, R.D.; Liaw, W.L. Hot embossing of micro-featured devices. In Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan, 10–12 July 2005; IEEE Operations Center: Piscataway, NJ, USA, 2005; pp. 777–782, ISBN 0-7803-8998-0. [Google Scholar]
- Choi, C.-G. Fabrication of optical waveguides in thermosetting polymers using hot embossing. J. Micromech. Microeng. 2004, 14, 945–949. [Google Scholar] [CrossRef]
- Youn, S.-W.; Goto, H.; Takahashi, M.; Oyama, S.; Oshinomi, Y.; Matsutani, K.; Maeda, R. A replication process of metallic micro-mold by using parylene embossing and electroplating. Microelectron. Eng. 2008, 85, 161–167. [Google Scholar] [CrossRef]
- Gorham, W.F. A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. J. Polym. Sci. A-1 Polym. Chem. 1966, 4, 3027–3039. [Google Scholar] [CrossRef]
- Selbmann, F.; Scherf, C.; Langenickel, J.; Roscher, F.; Wiemer, M.; Kuhn, H.; Joseph, Y. Impact of Non-Accelerated Aging on the Properties of Parylene C. Polymers 2022, 14, 5246. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.; Street, M.G.; Sharma, R.; Takmakov, P.; Baker, B.; Rieth, L. Characterization of Parylene-C degradation mechanisms: In vitro reactive accelerated aging model compared to multiyear in vivo implantation. Biomaterials 2020, 232, 119731. [Google Scholar] [CrossRef]
- Kahouli, A.; Sylvestre, A.; Laithier, J.-F.; Lutsen, L.; Pairis, S.; André, E.; Garden, J.-L. Structural and dielectric properties of parylene-VT4 thin films. Mater. Chem. Phys. 2014, 143, 908–914. [Google Scholar] [CrossRef]
- Sazavska, V.; Balastikova, R.; Krcma, F.; Radkova, L.; Fojtikova, P.; Prikryl, R.; Prochazka, M. Plasmachemical Conservation of Corroded Metallic Objects. J. Phys. Conf. Ser. 2016, 715, 12012. [Google Scholar] [CrossRef]
- Von Metzen, R. Parylene C as a Substrate Material for Micro Implants; Der Andere Verlag: Uelvesbüll, Germany, 2013. [Google Scholar]
- Nowlin, T.E.; Smith, D.F., Jr.; Cieloszyk, G.S. Thermal oxidative stability of poly-p-xylylenes. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 2103–2119. [Google Scholar] [CrossRef]
- Hsu, J.-M.; Rieth, L.; Kammer, S.; Orthner, M.; Solzbacher, F. Effect of Thermal and Deposition Processes on Surface Morphology, Crystallinity, and Adhesion of Parylene-C. Sens. Mater. 2008, 20, 87–102. [Google Scholar] [CrossRef]
Hot-Embossed Material | Hot Embossing Parameters | Realized Structures | Application | Reference |
---|---|---|---|---|
Chalcogenide glass of 1.5 mm thickness | 0.4–0.8 MPa 250 °C | Diameter of 20 µm and pitch of 30 µm | Microlens arrays | [18] |
PMMA sheet of 1mm thickness | 20 kN 180 °C | Depth of 27 µm and width of 110 µm | Microchannels for biomedical applications | [19] |
Polycarbonate of 0.3 mm thickness | 17.2 MPa 180–200 °C | Dimensions of >100 µm | Micromirrors for micro-optical switches | [20] |
PMMA sheet of 1 mm thickness | 20 kN 180 °C | Depth of 30 µm, width of 50 µm, and pitch of 50 µm | Microfeature slots for DNA/RNA tests | [21] |
Thermal curable polymer (ZP2145M) | 10 MPa 250–280 °C | Area of 6.8 × 7.5 µm2 | Optical waveguides | [22] |
Parylene C of 60 µm thickness | 2 kN 270 °C | Depth of 25 µm, length of 1 mm, width of 10 µm, and pitch of 10 µm | Micromold replication | [23] |
Wave Number k [cm−1] | Mode | Reference |
---|---|---|
826 | H–C–H two neighboring hydrogen atoms bonded to the ring, C–C aliphatic stretching, C–H out-of-plane wagging | [27,28,29,30] |
878, 906, 985 | C–H single hydrogen to the ring, out-of-plane wagging | [28,29,30] |
1051 | C–H in-plane bending, C–Cl bonding to the ring | [28] |
1110, 1265 | CH2 wagging | [29,30] |
1282 | Parylene C Oxidation (C=O stretching) | [30] |
1340, 1401 | C=C semicircle stretching | [29,30] |
1452 | CH2 on the benzene ring, CH2 deformation | [27] |
1494 | C–C aromatic stretching | [27] |
1558, 1606 | C=C ring stretching | [29,30] |
1700, 1726 | Parylene C Oxidation (C=O stretching) | [26,29,30] |
1895 | Summation bands due to out-of-plane C–H wagging modes | [29,30] |
2341, 2360 | CO2 absorption | [26] |
2861, 2928, 3020 | C–H aliphatic stretching | [27,28,29,30] |
3020, 3058 | C–H aromatic stretching | [27,28] |
Heating Temperature [°C] | Hot Embossing Force [kN] | Demolding Speed [mm/s] | Demolding Temperature [°C] | Structure Quality |
---|---|---|---|---|
295 | 25 | 0.2 | 40 | Blurred edges, release-agent residues |
305 | 25 | 0.2 | 40 | Release-agent residues |
315 | 25 | 0.2 | 40 | Good |
325 | 25 | 0.2 | 40 | Good |
350 | 25 | 0.2 | 40 | Good |
305 | 15 | 0.2 | 40 | Blurred edges, incomplete structures |
305 | 20 | 0.2 | 40 | Blurred edges, incomplete structures |
305 | 25 | 1.0 | 40 | Partial delamination |
305 | 25 | 0.5 | 40 | Partial delamination |
305 | 25 | 0.2 | 100 | Partial delamination |
305 | 25 | 0.2 | 60 | Partial delamination |
305 | 25 | 0.2 | 30 | Good |
Heating Temperature [°C] | Hot Embossing Force [kN] | Demolding Speed [mm/s] | Demolding Temperature [°C] | Release Agent Usage |
---|---|---|---|---|
305 | 25 | 0.2 | 40 | Yes |
Structure Height [µm] | Structure Diameter [µm] | Aspect Ratio [a.u.] | SEM Image |
---|---|---|---|
10 | 10 | 1.0 | |
10 | 20 | 0.5 | |
20 | 20 | 1.0 | |
30 | 20 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glauche, F.; Selbmann, F.; Guttmann, M.; Schneider, M.; Hengsbach, S.; Joseph, Y.; Kuhn, H. Hot Embossing to Fabricate Parylene-Based Microstructures and Its Impact on the Material Properties. Polymers 2024, 16, 2218. https://doi.org/10.3390/polym16152218
Glauche F, Selbmann F, Guttmann M, Schneider M, Hengsbach S, Joseph Y, Kuhn H. Hot Embossing to Fabricate Parylene-Based Microstructures and Its Impact on the Material Properties. Polymers. 2024; 16(15):2218. https://doi.org/10.3390/polym16152218
Chicago/Turabian StyleGlauche, Florian, Franz Selbmann, Markus Guttmann, Marc Schneider, Stefan Hengsbach, Yvonne Joseph, and Harald Kuhn. 2024. "Hot Embossing to Fabricate Parylene-Based Microstructures and Its Impact on the Material Properties" Polymers 16, no. 15: 2218. https://doi.org/10.3390/polym16152218
APA StyleGlauche, F., Selbmann, F., Guttmann, M., Schneider, M., Hengsbach, S., Joseph, Y., & Kuhn, H. (2024). Hot Embossing to Fabricate Parylene-Based Microstructures and Its Impact on the Material Properties. Polymers, 16(15), 2218. https://doi.org/10.3390/polym16152218