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Abstract: Polyacrylonitrile (PAN) nanofibers have specific characteristics such as thermal insulation,
weatherproofing, and sunlight resistance and therefore are appropriate to be applied as insulation
materials for various industries, especially in greenhouse construction. The heat source in greenhouse
buildings that operate independently in the heating network comes from heat storage tanks. In
the present study, employing thermal field numerical simulations, we investigate the heat flux of
a cylindrical heat storage tank with silica aerogel-modified PAN nanofibers as thermal insulation
materials. The geometric scale of the tank body, thermal insulation material thickness, and outdoor
temperature are optimized to improve thermal insulation. The significant discrepancy in heat flux
at different parts of the heat storage tank leads to the extreme heat flux arising at the water–gas
interface on the inner and outer walls. It is indicated that the heat flux distribution can be effectively
ameliorated by modifying the scale of the tank body to retain the overall water temperature. In
particular, effective insulation can merely be acquired when the thermal conductivity of the insulation
material is below 3.3 W·m−1·K−1. Eventually, the heat storage tank is optimized to store 1400 L
water at 100 ◦C with a radius of 0.6 m and a thermal insulation thickness of 50 mm at an outdoor
temperature of −10 ◦C, which can maintain excellent thermal insulation for 8 and 24 h at 87.7 and
69.9 ◦C, respectively.

Keywords: greenhouse building; heat storage tank; heat flux; polyacrylonitrile nanofibers

1. Introduction

Polyacrylonitrile (PAN) nanofibers are macromolecular polymers formed by the free
radical polymerization of monomer acrylonitrile [1]. It has many advantages, mainly
excellent heat retention, due to its porous fiber structure, which allows it to effectively
keep air inside and provide a good insulation effect; good elasticity, meaning that it is
able to maintain a high rebound rate even after stretching; strong weather resistance;
good resistance to UV radiation and climate effects; ability to maintain relatively stable
physical properties even after long-term exposure to outdoor environments; and excellent
chemical resistance, with good resistance to many inorganic acids, bases, and some organic
solvents [2–5]. PAN nanofibers are often used as thermal insulation materials in various
industries such as textiles and construction [6,7].

The concept of zero carbon or low-carbon emissions in greenhouse buildings has the
advantages of low energy consumption and environmental friendliness, which can be
achieved in both large and individual buildings, with good flexibility [8–12]. The main
function of greenhouse buildings is to achieve indoor temperature control, and the heat
source is the core component of temperature control [13–15]. Independently operated
greenhouse buildings rely on clean energy sources such as solar and geothermal energy
for heating, and thermal energy is stored through heat storage thanks to the regulation
of indoor temperature [16–18]. Using PAN nanofibers as thermal insulation material
for heat storage tanks is a reliable choice. However, there is still a significant difference
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in the thermal insulation requirements of PAN nanofibers for heat storage tanks. PAN
nanofibers were improved by using silica aerogel (SA) to reduce the thermal conductivity
of materials [2]. The specific principle is that aerogel is similar to the glue matrix, while
glass fiber is similar to the skeleton to form a composite thermal insulation material with
certain strength and thermal insulation effect [19–22]. The thermal storage tank should be
optimized and designed based on the building scale and environmental temperature, in
order to achieve a good insulation effect at a low cost as much as possible [23,24].

In the present study, we propose silica aerogel (SA)-modified PAN nanofiber as the
thermal insulation material to optimize temperature distribution and reduce heat flux
in the cylindrical heat storage tank of independent operating greenhouses. The study is
conducted on the insulation effect of 1400 L underwater with a storage tank capacity of
1500 L and a storage temperature of 100 ◦C, focusing on the influence of PAN nanofibers
with different modification conditions on the thermal performance of heat storage tanks,
the cylinder radius dependence of surface heat flux in the heat storage tank for optimizing
the overall heat flux, the adjustment of insulation layer thickness in the heat storage tank
to enhance the thermal insulation effect with less thermal insulation material, and the
influence of environmental temperature on refrigeration power to elucidate the relationship
between environmental temperature and the thermal performance of heat storage tanks.

2. Numerical Simulation Methodology

The numerical simulations of temperature and heat flux distributions in the heat
storage tank, as schematically shown in Figure 1, were carried out by the heat transfer
module of COMSOL 6.0 software. There are two ways for a water medium and an air
medium to control the indoor temperature. Regulating indoor temperature through an
air medium typically occurs under conditions of intense solar radiation and long daylight
hours, such as during the sunny afternoons of summer. Conversely, regulating indoor
temperature through a water medium is more suitable under conditions where solar
radiation is relatively insufficient or limited, such as on cloudy or overcast days, or during
the early mornings and late evenings of winter. The external environment of the heat
storage tank, such as temperature and atmospheric pressure, was set up. During the
process of adding materials, water with an initial temperature of 100 ◦C was added. The
area containing water was configured as an isothermal domain. In this work, the total
volume and the water volume in the heat storage tank were specified to be 1500 L and
1400 L, respectively. The temperature change for 24 h and the cooling power of the top
and side of the heat storage tank were analyzed. Under the condition that the volume
(V) of the heat storage tank remained constant, the geometric structure was optimized by
changing the radius (r) and height (h) coordinately to further enhance the temperature
and heat flux distribution. The heat storage tank was made of stainless steel (Steel AISI
4340) with a double-layer structure, and the middle of a double-layer shell was made of
thermal insulation material, as shown in Figure 1b. In the numerical simulations of heat
transfer in the heat storage tank, the heat capacity of thermal insulation materials was
set to 200 J·m−3·K−1, which was almost equal for both PAN and SA, while the thermal
conductivities of thermal insulation materials were specified according to Table 1 [2].
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Figure 1. Schematic diagram of model structures: (a) temperature control system in greenhouse
independent of the heat network; (b) internal structure of cylinder heat storage tank.

Table 1. Thermal conductivities specified for thermal insulation materials in heat transfer numerical
simulations of a heat storage tank.

Thermal Insulation Material Thermal Conductivity
(W·m−1·K−1)

PAN 15.8
PAN-SA10 10.6
PAN-SA20 3.5
PAN-SA30 3.3
PAN-SA40 1.5
PAN-SA50 0.4

SA 0.037

3. Results and Discussion
3.1. Modification of Polyacrylonitrile Nanofiber

When setting the thickness of the thermal insulation material to 50 mm and the radius
of the heat storage tank to 0.6 m, the thermal performance of heat storage tanks with differ-
ent thermal insulation materials was evaluated by temperature evolution and distribution
in water and walls, as shown in Figure 2. Within the range of 0 to 0.1 h, the temperature of
water decreased rapidly. Over time, the temperature evolution shows a linear downward
trend. The rate of temperature reduction varied for different insulation materials. As the
mix concentration increased, the thermal conductivity gradually decreased, and the rate
of temperature decrease also slowed down. When the thermal conductivity of thermal
insulation material was higher than 3.3 W·m−1·K−1, the decrease in water temperature
was almost the same for different thermal conductivities, implying poor heat insulation.
When the thermal conductivity was below 3.3 W·m−1·K−1, the rate of water temperature
decrease gradually slowed down, indicating the enhancement of heat insulation from the
thermal insulation layer. The thermal conductivity of PAN-SA50 was 0.4 W·m−1·K−1, and
the water temperature could still be maintained at 87.7 ◦C at the 8th hour and 69.9 ◦C
at the 24th hour. The thermal conductivity of PAN was 15.8 W·m−1·K−1, and the water
temperature could still be maintained at 79.1 ◦C at the 8th hour and 52.4 ◦C at the 24th hour.
The water temperature of doped PAN was significantly higher than that of undoped PAN.
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Figure 2. The thermal performance of the heat storage tank varies with different insulation materials:
(a) water temperature evolution in heat storage tank over time within 24 h; (b) water temperatures in-
side heat storage tanks with different insulation materials at the 8th hour; (c) temperature distribution
of water and wall in heat storage tank with PAN-SA50 at the 1st hour; (d) temperature distribution at
arrow 4 in tank wall at the 1st hour.

As shown in Figure 2b for the dependence of water temperature on thermal insulation
materials at the 8th hour, the water temperature approached the lowest value when using
PAN, which was increased, however, by increasing the concentration of SA in the PAN
thermal insulation layer. In comparison, PAN-SA50 had the highest water temperature
compared with other SA mix concentrations. In order to have a clearer understanding of
the impact of different materials on the thermal performance of heat storage tanks, the
temperature distribution of the tank at the first hour and the temperature gradient of the
tank wall were calculated. Three positions are marked on the side of the heat storage tank
for a clear representation of the thermal properties of the tank walls. Figure 2c shows that
the temperature of the air in the heat storage tank is relatively lower, and the temperature
at the top of the tank wall is much lower than that on the side and ground. In comparison,
the temperature change on the side of the heat storage tank wall was more significant at the
junction of water and air, while the temperature in direct contact with water was relatively
higher. Overall, the temperature at the bottom of the heat storage tank wall was much
higher than other parts, verifying that the bottom and sides were the dominant areas for
heat release.

As indicated by Figure 2d for the temperature change in the tank wall from the inside
out at the position of arrow 4, labeled in Figure 2c, the temperatures of the tank walls with
PAN and the thermal insulation materials with lower mix concentrations remained almost
unchanged, implying poor thermal insulation performance. As the mix concentration
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increased, the temperature on the interior side was lower than that on the exterior side
of the tank wall, implying that the thermal insulation material acquired a higher surface
thermal insulation.

In order to provide more detailed proof of the influence of different thermal insulation
materials on the thermal performance of the heat storage tank, the heat fluxes of the inner
and outer walls of the heat storage tank were calculated separately, as shown in Figure 3.
The horizontal axis in the figure represents the arc length, starting from the center of the
bottom surface of the heat storage tank and passing through the side, reaching the center
of the top edge. The entire arc length is illustrated on the right in Figure 2c. As shown in
Figure 3a for the heat flux on the inner wall of the heat storage tank, PAN with the highest
thermal conductivity yielded the highest heat flux on the inner wall. After mixing with
SA, the heat flux of the inner wall gradually decreased due to a decrease in the thermal
conductivity of PAN with an increase in the SA concentration, which was also verified
by the smallest heat flux on the inner wall using pure SA as the thermal insulation layer.
The heat flux of the inner wall increased at the junction of the bottom and the side. At
the junction of water and air, the heat flux of the surface was the highest, and there was a
certain temperature change, while the heat flux at the top of the heat storage tank was the
lowest. As indicated in Figure 3b, the heat flux outside the walls of the heat storage tank
was directly determined by the thermal conductivity of the thermal insulation material.
The heat flux of the outer wall was the smallest at the junction of the bottom and side edges,
and the insulation material here was thicker compared to other positions. Meanwhile, a
higher heat transfer coefficient of thermal insulation material led to a higher heat flux at
the water–air interface. Therefore, it was also required that the upper limit of the thermal
conductivity of the thermal insulation material used in the heat storage tank adequately
maintain a small heat flux at the water–air interface.
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Figure 3. The heat flux (a) inside and (b) outside the walls of the heat storage tank at the 0.1th hour,
where the arc length represents the length from the bottom center point through the bottom, side,
and top edges to the top center point.

There was a sudden temperature change at the interface between water and air in
the heat storage tank, as shown in Figure 3a. Thereby, PAN-SA50 was chosen as the
thermal insulation material to improve the temperature distribution at different times at
this location, as shown in Figure 4. At the 0th hour, there was a significant difference
in temperature between water, air, and the walls of the heat storage tank. This occurred
during the initial trial period when the heat had not yet been exchanged. At the 0.1th hour,
a temperature gradient appeared at the interface between water and air, and heat was
exchanged between water and air. The farther the temperature in the air was from that of
the water surface, the lower the temperature. This also indicated that the top of the heat
storage tank wall was separated by air, resulting in a lower heat flux. On the side wall of
the heat storage tank, there was a significant temperature change at the junction of water
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and air. The side wall temperature of the heat storage tank in contact with air was lower,
while the side wall temperature of the heat storage tank in contact with water was higher.
Over time, the isotherm in this region shifted upwards, and the flow of heat also caused
the temperature of water to continue to decrease. It should be noted that although SA has
relatively the highest heat resistance, its poor mechanical properties, such as brittleness
and easy breakage or crushing, make it unsuitable for use as a thermal insulation material
for heat storage tanks. Therefore, PAN-SA50 is preferred for use as a thermal insulation
material for improving the thermal performance of heat storage tanks.
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Figure 4. Temperature distribution from 0 ◦C to 100 ◦C in the heat storage tank for different heat
release times.

3.2. Geometry Optimization of the Heat Storage Tank

It is indicated from Figure 3 that different positions on the wall of the heat storage tank
have different heat loss rates, which results in different degrees of thermal performance
of the heat storage tank with different geometric parameters. With a constant volume
of 1500 L, PAN-SA50 was selected as the thermal insulation material with a thickness of
50 mm, and the outdoor temperature was set to −10 ◦C. Figure 5a shows the relationship
between the water temperature and the radius of the heat storage tank after 8 h when
storing 1400 L at a temperature of 100 ◦C. As the radius increased, the water temperature
first increased and then decreased. At a radius of 0.6 to 1.0 m, the peak temperature was
reached, indicating that the overall heat flux was the smallest at that radius. Figure 5b
shows the relationship between the water temperature and time at radii of 0.1 m, 0.6 m, and
1.6 m, respectively. At all radii, the water temperature decreased rapidly at the beginning
and then gradually decreased, indicating that the overall heat dissipation power of the heat
storage tank at different times is related to the temperature of the water. In all time periods,
with the increase in radius, the water temperature also showed a law of first increasing and
then decreasing. Therefore, the optimal radius was 0.6 to 1.0 m.

The heat fluxes on the surfaces of the heat storage tank considerably rely on its
geometry, as indicated by Figure 5c,d, which show the heat flux distributions on the bottom,
side, and top edges of the inner and outer walls of the heat storage tanks with various
radii at 0.1 h. When the radius was 0.1 m, the side area of the heat storage tank was the
largest, the heat was mainly lost through the bottom and side edges, and the heat flux
inside the heat storage tank wall was the highest at all positions. When the radius was
0.6, the side area and bottom area of the heat storage tank were relatively average, and the
internal heat flux of the heat storage tank wall was relatively high, most of which occurred
below the radius of 0.1 m. When the radius increased to 1.6 m, although the top area of the
heat storage tank became larger, and the heat flux at the top was smaller, the area at the
bottom was also very large, and the heat loss was greater. The maximum heat flux was at
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the junction of the side and bottom, and at the water–air interface; the larger the radius,
the greater the heat flux at the interface between water and air. The heat flux outside the
heat storage tank wall was different from that of the inside. The heat flux at the bottom and
side edges of the heat storage tank was almost the same, and the heat flux at the contact
between the bottom and side edges was the smallest. When the radius was 0.1, the heat
flux was smaller than that of the other two radii. However, its side area was the largest,
and the total heat loss was greater than the other two cases. When the radii were 0.6 and
1.6 m, the difference in the heat flux was not significant. However, due to different radii,
the positions of the junction of the bottom and side surfaces and the contact between water
and air surfaces are at different positions of the arc length, so the positions of the minimum
heat flux are different. In summary, if the radius was too small, more heat was lost from
the side, and the thermal performance of the heat storage tank was reduced. When the
radius of the heat storage tank increased to 0.6 m, the heat storage tank had better thermal
performance.
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Figure 5. Thermal performance of the heat storage tanks varying with tank radius when using
PAN-SA50 as the thermal insulation material: (a) water temperatures in the heat storage tank as
a function of tank radius at the 8th hour; (b) temperature evolution starts at 100 ◦C with time for
different tank radii; the heat flux (c) inside and (d) outside the walls of the heat storage tank at the
0.1th hour, where the arc length represents the length from the bottom center point through the
bottom, side, and top edges to the top center point.

3.3. Optimization of Thermal Insulation Thickness

The thickness of thermal insulation material has a great influence on the heat flux and
ultimately affects the thermal insulation effect. Here, the relationship between thermal
insulation thickness and heat flux of the heat storage tank made of PAN, PAN-SA50, SA
with a radius of 0.6 m and an outdoor temperature of −10 ◦C was studied. Figure 6a shows
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the change in water temperature in the heat storage tank with the thickness of thermal
insulation material at the 8th hour. When the insulation materials were SA and PAN-SA50,
the water temperature increased rapidly at first and then slowly with the increase in the
thermal insulation thickness. When the thickness of PAN-SA50 thermal insulation material
was 50 mm, the water temperature at the 8th hour was 87.7 ◦C, which was considered to be
the temperature that allowed for better thermal insulation. In the beginning, radial heat
conduction was the deciding factor; however, as the size of the object increased, radial heat
conduction was no longer the main factor. The surface area became the key factor that
determined the speed of heat dissipation. However, due to the higher thermal conductivity
of PAN compared with PAN-SA50 and SA, the water temperature continued to decrease
with the increase in thermal insulation thickness, indicating the poor thermal insulation
effect of using PAN. Figure 6b shows the changing trend of water temperature in the heat
storage tank under different thermal insulation thicknesses as a function of heat release
time when using PAN-SA50 as the insulation material. With the increase in the thickness of
the thermal insulation layer, the overall temperature increased, and the increased amplitude
gradually weakened. At the 8th hour, the water temperatures at thicknesses of 50 mm,
100 mm, and 150 mm showed slight differences.
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Figure 6. Thermal performance of heat storage tank in dependence on insulation layer thickness and
thermal insulation material: (a) water temperature varying with insulation layer thickness at the 8th
hour; t is the thickness of insulation materials; (b) water temperature changing with time when using
PAN-SA50 material; the heat flux (c) inside and (d) outside the tank wall at the 0.1th hour, where the
arc length represents the length from the bottom center point through bottom, side, and top edges to
the top center point.

Figure 6c,d, respectively, show the heat flux of the inner and outer walls of the heat
storage tank under different insulation thicknesses. With the increase in the thickness of
the insulation material, the heat flux of the inner wall changed little, while the heat flux
of the outer wall decreased gradually, and the decreasing range gradually slowed down,
consistent with the previous temperature change law. Here, the temperature of the inner
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and outer walls of the heat storage tank was calculated after 8 h when the thickness of the
thermal insulation material was 50 mm, as shown in Figure 2c. The temperature of the
heat storage tank wall with different thermal insulation thicknesses at the location marked
as arrow 4 in Figure 2c was calculated, as shown in Figure 2d. It was found that with the
increase in the thickness, the temperature of the thermal insulation layer inside the double-
layer wall of the heat storage tank was the same and increased with the increase in the
thickness. This shows that with the increase in the thickness of the insulation layer, heat is
more difficult to transfer to the external environment. Finally, it should be highlighted that
when the thickness of the thermal insulation layer was 50 mm, a better effect was achieved.
The effect of increasing the thickness of the thermal insulation layer is not significant, and
it is not conducive to controlling the cost.

3.4. The Influence of Outdoor Temperature on Thermal Performance

After optimizing the geometric scale and the thermal insulation thickness, the influence
of outdoor (environmental) temperature on the refrigeration power was further studied,
especially for the optimized heat storage tank with a tank radius of 0.6 m and a thermal
insulation thickness of 50 mm. The water temperature in the heat storage tanks using three
kinds of thermal insulation materials was calculated, with the results shown in Figure 7. It
is demonstrated that the water temperature and environmental temperature exhibit a linear
relationship. In comparison, the outdoor temperature had the minimum and maximum
impact on the thermal performance of the heat storage tanks with SA and PAN thermal
insulation layers, respectively, as shown in Figure 7b. Considering the water temperature
evolution of the heat storage tank over time using PAN-SA50 as thermal insulation under
various environmental temperatures, as shown in Figure 7b, it was verified that a reduction
in environmental temperature evidently exacerbated heat release and therefore the water
temperature retention of the heat storage tank.
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Figure 7. Water temperature in the heat storage tanks; T is the environmental temperature (a) varying
with environmental temperature for various thermal insulation materials at the 8th hour and (b) as
a function of heat release time for PAN-SA50 thermal insulation material at various environmental
temperatures.

4. Conclusions

Considering independently operated greenhouses and heat supply networks, we
proposed utilizing SA-modified PAN nanofibers (SA-PAN) as thermal insulation materials
for heat storage tanks and accordingly optimizing the structure of heat storage tanks. The
effects of radius, thermal insulation material thickness, and environmental temperature on
the thermal performance of a cylindrical heat storage tank with a capacity of 1500 L were
analyzed for maximizing thermal insulation from SA-PAN. It was found that PAN-SA50
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basically meets the short-term heat storage requirements of the heat storage tank. The
geometric structure of the heat storage tank changed the heat transfer, resulting in different
heat fluxes on the side and top. The 100 L volume of air above the heat storage tank
caused the heat flux on the top surface to be lower than that on the bottom surface. After
optimizing the heat flux of the top and the side, the overall heat flux was low, and the
thermal insulation effect was significantly improved when the tank radius approached
0.6 mm. With the increase in the insulation layer thickness, the overall insulation effect
showed a rapid upward trend. When the thickness was greater than 50 mm, the change
in the thermal insulation effect gradually decreased. After optimization, the heat storage
tank could maintain the temperature at 87.7 ◦C after 8 h and 69.9 ◦C after 24 h when it
stored 1400 L of 100 ◦C water, the tank radius approached 0.6 m, and the thermal insulation
thickness was specified as 50 mm at the outdoor temperature of −10 ◦C.
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