Numerical Study of Melt-Spinning Dynamic Parameters and Microstructure Development with Ongoing Crystallization
Abstract
:1. Introduction
2. Mathematical Model
2.1. Method
2.1.1. Mass Balance
2.1.2. Momentum Balance
2.1.3. Energy Conversion
2.1.4. Tensile Kinematics and Stress Field
2.1.5. Constitutive Model
2.1.6. Definition of Dimensionless Variables
2.1.7. Evolution Methods
- wherein
2.2. Control of Boundaries
3. Numerical Method and Solution Procedure
4. Numerical Simulations and Input Parameters
4.1. The Influence of Different Constitutive Models on Extrusion
4.2. Input Parameters
5. Results and Discussion
5.1. Research on the Paths of Changes in Speed
5.2. Temperature Distribution along the Radial Direction at Different Z Points of the Filament
5.3. The Effects of the Draw-Down Velocities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, Z.; Cheng, L.; Xi, B.; Luo, Y.; Liu, Y. Investigation of fiber trajectory affected by some parameter variables in vortex spun yarn. Text. Res. J. 2015, 85, 180–187. [Google Scholar] [CrossRef]
- Kulichikhin, V.G.; Malkin, A.Y. The Role of Structure in Polymer Rheology: Review. Polymers 2022, 14, 1262. [Google Scholar] [CrossRef] [PubMed]
- Glaskova-Kuzmina, T.; Dejus, D.; Jātnieks, J.; Vīndedze, E.; Bute, I.; Sevcenko, J.; Aniskevich, A.; Stankevich, S.; Boobani, B. The Tensile, Thermal and Flame-Retardant Properties of Polyetherimide and Poly-etherketoneketone Processed via Fused Filament Fabrication. Polymers 2024, 16, 336. [Google Scholar] [CrossRef]
- Hu, Y.; Yuan, H.; Shu, S.; Niu, X.; Li, M. An improved momentum exchanged-based immersed boundary–lattice Boltzmann method by using an iterative technique. Comput. Math. Appl. 2014, 68, 140–155. [Google Scholar] [CrossRef]
- Takarada, W.; Barique, M.A.; Kunimitsu, T.; Kameda, T.; Kikutani, T. Verification of the Influence of Processing History through Comparing High-Speed Melt Spinning Behavior of Virgin and Recycled Polypropylene. Polymers 2022, 14, 3238. [Google Scholar] [CrossRef]
- Zhao, R.; Tan, P.; Han, Y.; Yang, F.; Shi, Y.; Zhu, P.; Tan, L. Preparation and Performance Evaluation of Antibacterial Melt-Spun Polyurethane Fiber Loaded with Berberine Hydrochloride. Polymers 2021, 13, 2336. [Google Scholar] [CrossRef]
- Laun, H.M.; Schmidt, G. Rheotens tests and viscoelastic simulations related to high-speed spinning of Polyamide 6. J. Non-Newton. Fluid Mech. 2015, 22, 45–55. [Google Scholar] [CrossRef]
- Song, B.S.; Lee, J.Y.; Jang, S.H.; Hahm, W.G. Fiber Formation and Structural Development of HBA/HNA Thermotropic Liquid Crystalline Polymer in High-Speed Melt Spinning. Polymers 2021, 13, 1134. [Google Scholar] [CrossRef]
- Park, G.; Yun, J.; Lee, C.; Jung, H.W. Effect of Material Parameter of Viscoelastic Giesekus Fluids on Extensional Properties in Spinline and Draw Resonance Instability in Isothermal Melt Spinning Process. Polymers 2020, 13, 139. [Google Scholar] [CrossRef]
- Keunings, R.; Crochet, M.J.; Denn, M.M. Profile development in continuous drawing of viscoelastic liquids. Ind. Eng. Chem. Fundam. 1983, 22, 347–355. [Google Scholar] [CrossRef]
- Huynh, B.P.; Tanner, R.I. Study of the non-isothermal glass fiber drawing process. Rheol. Acta 1983, 92, 133–151. [Google Scholar]
- Wilkie, A. The status of multi-component fibers. Rev. Ind. Text. 2003, 411, 102–104. [Google Scholar]
- Oh, T.H. Numerical simulation of temperature distribution in melt spinning of PET monofilament. J. Appl. Polym. Sci. 2006, 102, 1045–1051. [Google Scholar]
- Sun, J.; Subbiah, S.; Marchal, J. Numerical analysis of nonisothermal viscoelastic melt spinning with ongoing crystallization. J. Non-Newton. Fluid Mech. 2000, 93, 133–151. [Google Scholar] [CrossRef]
- Wang, R.J. Mechanism and Computer Simulation of Dry Spray Wet Forming of Polyacrylonitrile Based Carbon Fiber Precursor. Master’s Thesis, Donghua University, Shanghai, China, 2005; pp. 45–49. [Google Scholar]
- Bai, H.; Qin, W.; Jia, S.; Ren, L.; An, Y.; Bao, J. A New Type of 3D Printing Molding Equipment: Overall Structural Design and the Numerical Simulation for the Flow Field Characteristics of its Screw Module. Int. J. Precis. Eng. Manuf. 2021, 22, 1–18. [Google Scholar]
- ANSYS. Polyflow User’s Manual, Version 3.7; Fluent Inc.: New York, NY, USA, 1999.
- Slattery, J.C.; Lee, S. Analysis of melt spinning. J. Non-Newton. Fluid Mech. 2000, 89, 273–286. [Google Scholar]
- Liao, H.; Zhang, Y.; Liu, X.; Zhang, Y.; Gan, X. Diffusion-convection model for interphase formation and process simulation of bicomponent fiber. J. Manuf. Process. 2023, 91, 89–98. [Google Scholar] [CrossRef]
- Liang, J.-Z.; Zhong, L. Elongational properties of low density polyethylene using melt spinning technique. Polym. Test. 2010, 29, 972–976. [Google Scholar]
- Lee, K.; Mackley, M.R. The significance of slip in matching polyethylene processing data with numerical simulation. J. Non-Newton. Fluid Mech. 2000, 94, 159–177. [Google Scholar]
- Denn, M.M.; Pearson, J.R.A.; Richardson, S.M. Computational Analysis of Polymer Processing. Appl. Sci. 1983, 11, 179–182. [Google Scholar]
- Gagon, D.K.; Denn, M.M. Computer simulation of steady polymer melt spinning. Polym. Eng. Sci. 1981, 21, 844–853. [Google Scholar] [CrossRef]
- Papanastasiou, T.C.; Macosko, C.W.; Scriven, L.E.; Chen, Z. Fiber spinning of viscoelastic liquid. AIChE J. 1987, 33, 834–842. [Google Scholar] [CrossRef]
- Ramalingam, S.; Armstrong, R.C. Analysis of isothermal spinning of liquid-crystalline polymers. J. Rheol. 1993, 37, 1141–1169. [Google Scholar] [CrossRef]
- Carreau, P.J.; Daniel, C.R.; Kee, D.; Chhabra, R.P. Rheology of Polymeric Systems: Principles and Applications; Hanser: New York, NY, USA, 1997. [Google Scholar]
- Kawasaki, N.; Nakayama, A.; Yamano, N.; Takeda, S.; Kawata, Y.; Yamamoto, N.; Aiba, S.I. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 2005, 46, 9987–9993. [Google Scholar] [CrossRef]
- Wen-Jing, H.; Tao, C.; Li-Ming, Z.; Jie, W.; Yong-Jun, Q.; Jia-Wei, L. Non-isothermal Crystallization Kinetics of Poly(2-pyrrolidone). J. Funct. Polym. 2017, 30, 314–320. [Google Scholar]
- Evans, U.R. The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans. Faraday Soc. 1945, 41, 365–374. [Google Scholar] [CrossRef]
- Nakamura, K.; Katayama, K.; Amano, T. Some aspects of nonisothermal crystallization of polymers. III. Crystallization during melt spinning. J. Appl. Polym. Sci. 1973, 17, 1031–1041. [Google Scholar] [CrossRef]
- Ziabicki, A. Fundamentals of Fiber Formation; Shanghai Scientific and Technical Publishers: Shanghai, China, 1983. [Google Scholar]
- Kase, S.; Matsuo, T. Studies on melt spinning. II. Steady state and transient solutions of fundamental equations compared with experimental results. J. Appl. Polym. Sci. 1967, 11, 251–287. [Google Scholar] [CrossRef]
- Larson, R.G. Constitutive Equations for Polymers for Polymer Melts and Solutions; Butterworths: Waltham, MA, USA, 1988; pp. 364–369. [Google Scholar]
- Huang, J.; Baird, D.G.; Loos, A.C.; Rangarajan, P.; Powell, A. Filament winding of bicomponent fibers consisting of polypropylene and a liquid crystalline polymer. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1013–1020. [Google Scholar] [CrossRef]
- Chung, B.T.F.; Iyer, V. Heat transfer from moving fibers in melt spinning process. J. Appl. Polym. Sci. 1992, 44, 663–670. [Google Scholar] [CrossRef]
- Bansal, V.; Shambaugh, R.L. On-line density and crystallinity of polyethylene terephthalate during melt spinning. J. Appl. Polym. Sci. 1998, 38, 1959–1968. [Google Scholar] [CrossRef]
- Cao, J.Y. Simulation Study of Multi-Component Composite Spinning Melt Flow and Fiber Forming Process. Master’s Thesis, Donghua University, Shanghai, China, 2010; pp. 76–82. [Google Scholar]
- Bheda, J.H.; Spruiell, J.E. Dynamics and structure development during high speed melt spinning of nylon 6. I. On-line experimental measurements. J. Appl. Polym. Sci. 1990, 39, 449–455. [Google Scholar] [CrossRef]
Processing Parameter | Value |
---|---|
Diameter of entrance channel, D0 (mm) | 0.76 |
Lenth of exit channel, L0 (mm) | 2.42 |
Distance from spinneret, L (mm) | 2 × 103 |
Extrusion temperature, T0 (k) | 533 |
Molten temperature, Tm (k) | 503 |
Maximum rate temperature, Tmax (k) | 419 |
Cooling temperature, Tc (k) | 298 |
Blowing speed, Vair (m/s) | 0.4 |
Properties | Parameters | References |
---|---|---|
Viscosity, (Pa·s) | 750 | [14] |
Relaxation time, (s) | 0.015 | [31] |
Elongational parameter, | 0.2 | [31] |
Mobility factor, | 0.001 | [31] |
Additional viscosity, (Pa·s) | 0.25 | [31] |
Density, (kg/m3) | 973 | [15] |
Thermal conductivity, k (w/m/k) | 0.2 | [31] |
Heat capacity, C (J/kg/k) | 1.3497 × T + 1982.76 | [31] |
Arrhenius, (k) | 4470 | [31] |
Ultimate crystallinity, | 0.45 | [31] |
Maximum crystallization rate at Tmax, Kmax (s−1) | 0.14 | [31] |
Crystallization half width, | 46 | [15] |
Stress induced coefficient, c | 225 | [15] |
Stress-optical coefficient, (m2N−1) | 1.25 × 10−9 | [15] |
Amorphous intrinsic birefringence, | 8.25 × 10−2 | [31] |
Heat of fusion, Hf (Jkg−1) | 1.884 × 105 | [15] |
Number | Volume Flow Rate (mm3/s Hole) | Spinning Temperature (k) | Circular Air Temperature (k) | Spinning Speed (m/min) |
---|---|---|---|---|
1 | 30 | 533 | 293 | 3000 |
2 | 45 | 533 | 293 | 3000 |
3 | 60 | 533 | 293 | 3000 |
4 | 75 | 533 | 293 | 3000 |
5 | 60 | 533 | 293 | 1800 |
6 | 60 | 533 | 293 | 2400 |
7 | 60 | 533 | 293 | 3600 |
8 | 60 | 533 | 293 | 4200 |
9 | 60 | 535 | 293 | 3000 |
10 | 60 | 538 | 293 | 3000 |
11 | 60 | 542 | 293 | 3000 |
12 | 60 | 545 | 293 | 3000 |
13 | 60 | 533 | 298 | 3000 |
14 | 60 | 533 | 300 | 3000 |
15 | 60 | 533 | 304 | 3000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Feng, P.; Yang, C.; Hu, Z. Numerical Study of Melt-Spinning Dynamic Parameters and Microstructure Development with Ongoing Crystallization. Polymers 2024, 16, 2398. https://doi.org/10.3390/polym16172398
Liu X, Feng P, Yang C, Hu Z. Numerical Study of Melt-Spinning Dynamic Parameters and Microstructure Development with Ongoing Crystallization. Polymers. 2024; 16(17):2398. https://doi.org/10.3390/polym16172398
Chicago/Turabian StyleLiu, Xiangqian, Pei Feng, Chongchang Yang, and Zexu Hu. 2024. "Numerical Study of Melt-Spinning Dynamic Parameters and Microstructure Development with Ongoing Crystallization" Polymers 16, no. 17: 2398. https://doi.org/10.3390/polym16172398
APA StyleLiu, X., Feng, P., Yang, C., & Hu, Z. (2024). Numerical Study of Melt-Spinning Dynamic Parameters and Microstructure Development with Ongoing Crystallization. Polymers, 16(17), 2398. https://doi.org/10.3390/polym16172398