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Abstract: This research paper aims to enhance the fatigue resistance of polylactic acid (PLA) in
Material Extrusion (ME) by incorporating natural reinforcement, focusing on rotational bending
fatigue. The study investigates the fatigue behavior of PLA in ME, using various natural fibers such
as cellulose, coffee, and flax as potential reinforcements. It explores the optimization of printing
parameters to address challenges like warping and shrinkage, which can affect dimensional accuracy
and fatigue performance, particularly under the rotational bending conditions analyzed. Cellulose
emerges as the most promising natural fiber reinforcement for PLA in ME, exhibiting superior
resistance to warping and shrinkage. It also demonstrates minimal geometrical deviations, enabling
the production of components with tighter dimensional tolerances. Additionally, the study highlights
the significant influence of natural fiber reinforcement on the dimensional deviations and rotational
fatigue behavior of printed components. The fatigue resistance of PLA was significantly improved
with natural fiber reinforcements. Specifically, PLA reinforced with cellulose showed an increase in
fatigue life, achieving up to 13.7 MPa stress at 70,000 cycles compared to unreinforced PLA. PLA
with coffee and flax fibers also demonstrated enhanced performance, with stress values reaching
13.6 MPa and 13.5 MPa, respectively, at similar cycle counts. These results suggest that natural
fiber reinforcements can effectively improve the fatigue resistance and dimensional stability of PLA
components produced by ME. This paper contributes to the advancement of additive manufacturing
by introducing natural fiber reinforcement as a sustainable solution to enhance PLA performance
under rotational bending fatigue conditions. It offers insights into the comparative effectiveness
of natural fibers and synthetic counterparts, particularly emphasizing the superior performance of
cellulose.

Keywords: Material Extrusion; polylactic acid; natural fibers; fatigue behavior; dimensional accuracy

1. Introduction

Additive manufacturing is a growing technology with broad applicability across
multiple industries. One of the most established additive manufacturing technologies is
ME (Material Extrusion). This technology is characterized by its ability to work with a wide
range of materials [1–3].

The versatility of ME technology has allowed its use in many industries. It can be
used in industries with less-demanding tolerances and requirements to advanced sectors
such as automotive, medical, and aerospace [1,4–9].

One of the most widely used materials for ME applications is PLA (polylactic acid),
which has been extensively researched. However, pure PLA has limitations in terms of
its mechanical properties [10]. This makes it less suitable for advanced sectors such as
aerospace, where materials with more demanding properties are required [11].

Combining PLA with continuous carbon fiber reinforcements has been stated to be
an effective strategy for improving the mechanical properties of the material [3]. Carbon
fiber is known for its high strength and stiffness, making it an excellent reinforcement for
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PLA [12,13]. Pertuz et al. [14] found that the isotropic carbon fiber layers had the highest
tensile strength at 165 MPa. Incorporating carbon fibers into PLA increases the tensile
strength, stiffness, and impact resistance of the resulting material. This is supported by
the results of Saharudin et al. [15] who compared the mechanical properties of PLA and
PLA + continuous carbon fiber in ME technology. The authors found that the addition of
carbon fibers had a significant effect on the strength of the models produced, increasing
both tensile strength and Young’s modulus. This makes it more suitable for applications
in demanding sectors such as aerospace, where high structural performance is required.
The review by Najmon et al. [16] showed the interest in polymer additive manufacturing
techniques, highlighting the use of ME parts in NASA’s Mars Rover.

In addition, the focus on sustainability and environmental impact has led to an empha-
sis on recycling in the manufacturing process of CFRP (carbon fiber-reinforced composite)
components [17]. The manufacturing of CFRPs produces defective or scrap parts that
would normally be considered waste. However, these parts can be processed to sepa-
rate the carbon fiber reinforcement from the thermoset matrix. The recovered carbon
fiber reinforcement can be combined with the thermoplastic PLA to form a new material
with improved properties [18]. This recycling approach not only reduces the amount
of waste generated but also takes advantage of the mechanical performance benefits of
carbon fiber [19].

Other reinforcement options for PLA, such as natural fibers derived from waste from
other industries, are being explored in addition to carbon fiber reinforcement [20,21].
These natural fibers, such as hemp, flax, or cellulose, can be used as reinforcements in
combination with PLA [22,23]. By reusing this waste in the form of natural fibers, there
are environmental and economic advantages [24]. It reduces the amount of waste going to
landfills and makes use of an abundantly available material. Combining these natural fibers
with PLA improves the strength and stiffness of the final material, making it suitable for
applications that require better mechanical properties. In their research, Rajendran et al. [25]
indicated that baste fibers with 50–90% cellulose crystallinity are used in various automotive
components to achieve better mechanical properties of the products in terms of modulus,
strength, and stiffness.

Thus, combining PLA with carbon fiber reinforcements and natural fibers offers a
promising solution to overcome the mechanical property limitations of pure PLA. These
strategies not only improve material performance but also contribute to sustainability by
using recycled materials and reducing waste [20,26–28].

In the field of additive manufacturing of polymers such as PLA, there is still no specific
standard for the characterization of mechanical properties. In the absence of a specific
standard, the tests used for the mechanical characterization of metallic alloys are usually
adopted and adapted to these polymeric materials [29]. Tensile tests are among the most
commonly used mechanical tests to characterize the behavior of the PLA.

An aspect of great interest to sectors such as aeronautics or the automotive industry,
however, is the study of the fatigue life of these materials, especially when combined with
reinforcements, whether carbon or natural fibers [14]. The study of how materials behave
when subjected to repeated loading and unloading cycles may be relevant in applications
where the material is expected to withstand dynamic loads over a long period of time [30].
In their research, Fischer et al. [31] investigated the behavior of ME parts using fatigue tests.
The authors showed that ME anisotropy affects the durability of the specimens at higher
loads, while the S–N curves converge at lower loads for different orientations. In addition,
chemical smoothing improves the tensile strength and reduces the surface roughness of
the specimens in the vertical direction. Lee et al. [32] studied the effects of fatigue on
acrylonitrile butadiene styrene (ABS) materials obtained by ME. The authors tested a bone-
like geometry based on UNE EN ISO 527-1 [33]. These tests provide information on the
strength and deformation properties of the material under axial loading [34].

In the specific case of the fatigue life of polymers produced by additive manufacturing
techniques and in combination with reinforcements, there is a gap in the scientific literature
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with regard to rotational fatigue testing [14,30]. These tests involve the application of cyclic
rotating loads to the specimens and are important in assessing the fatigue behavior of
materials under real-life conditions [35,36].

Despite the extensive research on the fatigue behavior of 3D-printed materials, this
study presents several key aspects that highlight its novelty and contribution to the field.
Unlike previous studies that focus primarily on synthetic fibers or unreinforced polymers,
our research specifically examines the rotational fatigue resistance of PLA reinforced
with natural fibers such as cellulose, coffee, and flax. This approach not only enhances
the mechanical properties of PLA but also aligns with sustainable and environmentally
friendly practices, addressing a growing concern in material science [29]. While earlier
researchers, such as Gomez-Gras et al. [30] and Fischer and Schöppner [31], investigated
general fatigue testing of FDM materials, our study fills a significant gap by targeting
rotational fatigue behavior, which is crucial for applications subjected to cyclic rotational
stresses, such as those in the automotive and aerospace industries. Furthermore, our work
evaluates the dimensional accuracy and geometric stability of 3D-printed components,
correlating these factors with fatigue performance, an aspect less emphasized in prior
studies [37,38]. By comparing the performance of natural fiber-reinforced PLA with both
unreinforced PLA and PLA reinforced with carbon fibers [14], our research highlights the
advantages and potential applications of using natural fibers. Additionally, we provide
a comprehensive fractography analysis using high-quality SEM images, offering deeper
insights into failure mechanisms and material improvement [35]. This focus on natural fiber
reinforcements derived from waste products promotes the circular economy and reduces
the environmental impact, setting our study apart in terms of sustainability [17]. Therefore,
the novelty of our work lies in its specific focus on applying rotational bending fatigue
testing to natural fiber-reinforced PLA, an approach rarely explored in existing studies that
typically focus on tensile or compression fatigue. Additionally, our detailed evaluation
of dimensional and geometric stability, combined with fatigue results, offers new insights
into the relationship between 3D-printing parameters and the fatigue resistance of the
specimens, providing valuable data for advanced engineering applications.

The lack of specific studies in this area limits the understanding of how the combina-
tion of PLA with carbon or natural reinforcements in additive manufacturing techniques
affects the fatigue life of the resulting components. Further research and analyses are
required to fully understand these aspects and provide relevant data for the design and
application of 3D-printed components in demanding sectors such as the aerospace and
automotive industries.

2. Materials and Methods

The experimental methodology employed in this study for investigating the fatigue
behavior and dimensional deviations is outlined as follows.

2.1. Sample Manufacture and Dimensional and Geometrical Control

In this study, the ISO 1143:2021 standard [39] was chosen to define the specimen geom-
etry and conduct the rotational bending fatigue tests. Currently, there is no specific standard
for rotational bending fatigue testing of polymeric materials or polymeric composites. In
the absence of a dedicated standard for polymers, it is common practice to adopt and adapt
standards used for metallic materials. This standard has been successfully adapted in prior
studies to evaluate the fatigue behavior of polymeric and composite materials [40,41]. This
approach ensures consistency and comparability with previous research.

Also, the geometry defined by the standard allows for the adaptation of specimens for
use with specific fatigue testing equipment, ensuring reliable and repeatable measurements
(Figure 1). The standardized approach minimizes variables that could arise from non-
standardized specimen geometries, thereby improving the reliability of the findings.
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may exhibit suboptimal mechanical characteristics, this material can be synergistically 

Figure 1. ISO 1143:2010 standard [39] sample (measured in mm).

In order to adapt the specimens to be tested with the fatigue testing equipment (as
depicted in Figure 2), an extension is added to the end of the sample, providing the requisite
dimensions for accommodating the load and the load-securing nut. These dimensions
are 12 mm in diameter with a Ø12 mm end and 10 mm in diameter with a Ø10 mm end,
respectively.

Polymers 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 

measurements (Figure 1). The standardized approach minimizes variables that could arise 
from non-standardized specimen geometries, thereby improving the reliability of the 
findings. 

In order to adapt the specimens to be tested with the fatigue testing equipment (as 
depicted in Figure 2), an extension is added to the end of the sample, providing the req-
uisite dimensions for accommodating the load and the load-securing nut. These dimen-
sions are 12 mm in diameter with a Ø12 mm end and 10 mm in diameter with a Ø10 mm 
end, respectively. 

 
Figure 1. ISO 1143:2010 standard [39] sample (measured in mm). 

 
Figure 2. Rotational bending fatigue fixation. 

Regarding the materials subjected to testing, a variety of PLA composites containing 
natural fibers were chosen. This selection is presented in Table 1. Furthermore, the fatigue 
performance of these materials was juxtaposed with that of PLA, high-resistance (HR)-
PLA, and PLA reinforced with carbon fiber (CF). In this initial study, ready-to-print com-
posite filaments provided by the manufacturer were utilized. Consequently, the percent-
age of reinforcement fibers in the materials was predetermined by the supplier and is 
specified in Table 1. These contents were not varied as part of our experimental setup. 

Table 1. Filament materials tested. 

Material PLA +  Reinforcement Percentage [%] Brand 
Cellulose 10–20 Addnorth 

Flax 10–20 Nanovia 
Coffee <10 3D Fuel 
Cork 10–20 ColorFabb 

HR-PLA - NatureWorks 
CF <15 Fillamentum 

Normal - Smartfill 

As discussed in the introduction, PLA stands out as an attractive choice for 3D print-
ing due to its excellent printability and biodegradable nature. Typically, it requires lower 
printing temperatures and demonstrates resistance to warping effects. Nevertheless, its 
mechanical properties present a notable disadvantage. While printed PLA components 
may exhibit suboptimal mechanical characteristics, this material can be synergistically 
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Regarding the materials subjected to testing, a variety of PLA composites containing
natural fibers were chosen. This selection is presented in Table 1. Furthermore, the fatigue
performance of these materials was juxtaposed with that of PLA, high-resistance (HR)-PLA,
and PLA reinforced with carbon fiber (CF). In this initial study, ready-to-print composite
filaments provided by the manufacturer were utilized. Consequently, the percentage of
reinforcement fibers in the materials was predetermined by the supplier and is specified in
Table 1. These contents were not varied as part of our experimental setup.

Table 1. Filament materials tested.

Material PLA + Reinforcement Percentage [%] Brand

Cellulose 10–20 Addnorth
Flax 10–20 Nanovia

Coffee <10 3D Fuel
Cork 10–20 ColorFabb

HR-PLA - NatureWorks
CF <15 Fillamentum

Normal - Smartfill

As discussed in the introduction, PLA stands out as an attractive choice for 3D print-
ing due to its excellent printability and biodegradable nature. Typically, it requires lower
printing temperatures and demonstrates resistance to warping effects. Nevertheless, its
mechanical properties present a notable disadvantage. While printed PLA components
may exhibit suboptimal mechanical characteristics, this material can be synergistically
combined with other substances as reinforcement, with the aim of enhancing its mechanical
performance. In light of the prioritization of PLA’s biodegradability and environmental
sustainability, this study focuses on PLA reinforced with natural fibers, including cellu-
lose, linen, and coffee, among others. In comparison to PLA combined with carbon fiber
(PLA + CF), the entire printed structure is biodegradable, and industrial waste from other
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sectors can be repurposed to produce these printing filaments. Consequently, by concur-
rently improving mechanical properties and demonstrating environmental responsibility,
these materials emerge as a favorable choice for 3D-printed components.

The specimens are fabricated using the Raise 3D E2 printer, an ME (Material Extrusion)
technology system, with a working space of 330 × 240 × 240 mm. This printer features
dual independent extruders, accommodates 1.75 mm filament, employs a 0.4 mm nozzle,
reaches a maximum printing speed of 150 mm/s, and maintains a maximum printing
temperature of 300 ◦C along with a maximum bed temperature of 110 ◦C. The specific
printing parameters adopted for this study are outlined in Table 2. It is worth noting that
the specimens were printed in a horizontal orientation. This orientation was selected due
to the observed reduction in the fatigue life of specimens printed vertically (with layers
parallel to the applied load), a phenomenon established in prior research [30,41].

Table 2. Printing parameters.

Layer Thickness
e [mm]

Temperature
T [◦C]

Speed
v [mm/s]

Filling
[%]

Filling
Pattern

Bed Temperature
T [◦C] Shells

0.2 215 40 100 Grid 55 2

The printing parameters chosen for this study, including the layer thickness, tempera-
ture, and speed, were based on prior research and experimentation. These parameters have
consistently yielded reliable and reproducible results in our previous studies [40,42].

The sample designs were created using SolidWorks (Dassault Systems [43]) and subse-
quently imported as .STL files into the 3D Slicer Software IdeaMaker [44], as depicted in
Figure 3. In accordance with the ISO 12107:2012 standard [45], four samples were produced
for each material, a measure taken to ensure test repeatability with a 95% confidence level
and a 50% failure probability. The inclusion of a mirror-printing option allowed for the
simultaneous fabrication of two separate materials. Figure 3 provides an overview of the
distribution of the samples, along with their respective printing times, estimated durations,
and a magnified view of the interior detailing the infill structure.
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Moreover, a PLA control series was produced to enable the analysis and comparison
of the performance of the composite materials with the polymer material in isolation.

With respect to dimensional deviations, the diameter of the printed components was
assessed at various locations on the samples, as illustrated in Figure 4. While the central or
calibrated sections (4, 5, and 6) represent the primary focus of the specimens, the extremities
(1–3 and 7–9) are also examined. In each of these regions (1–9), four measurements were
obtained at 45◦ intervals (a–d). The diameter was measured using a two-contact outside
micrometer for exterior measurements (MITUTOYO, with a usable range of 0–25 mm and
an error margin of E = 0.01 mm). This methodology was systematically applied to all
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printed samples to establish a correlation between the various composite materials and the
observed dimensional deviations, ultimately aiding in the calculation of stress at the point
of fatigue fracture.
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Figure 4. Dimensional measurement. Measurement areas (1–9) and measurement points at the same
area (a–d), separated 45◦.

Geometric deviations were assessed using a geometrical deviation measurement
machine (ACCRETECH, model RONDCOM NEX) with a sensitivity of 0.01 µm. To initiate
the process, the specimens were securely positioned on the machine’s level surface, and the
zero position was configured. The parameters under scrutiny in this case study include
roundness (RON), straightness (STR), and cylindricity (CYL). The geometrical deviation
measurement machine captures values for RON and SRT, with CYL being subsequently
calculated based on these measurements.

To ensure the consistency and reliability of measurements, multiple readings were
conducted along the specimen. For this particular case study, the calibrated area was
exclusively subjected to control (4–6, as depicted in Figure 4). The roundness (RON) was
quantified as the average outcome within the measured section, based on six measurements
distributed along the area. Straightness (STR) was scrutinized via four measurement lines,
each separated by 90◦, with each measurement line spanning a vertical length of 20 mm.
CYL was then computed from these collected data.

2.2. Fatigue Test

Following the diameter measurement of the samples, the fatigue testing phase was ini-
tiated. The specimens were subjected to rotational bending fatigue testing using specialized
equipment, as depicted in Figure 5. This equipment was custom-designed and fabricated
at the University of Malaga. Notably, it was developed by repurposing the kinematic chain
of a decommissioned parallel lathe [42,46]. The equipment’s performance and reliability
have been affirmed through prior studies [30,44,47,48], thereby validating its capability to
apply a single-point load to the specimen’s extremity.
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In the context of the applied loads (1 and 1.5 kgf), the force was directed perpendic-
ularly to the rotational axis, while the sample rotated at a rate of 2800 revolutions per
minute. This applied load induced a sinusoidal deformation pattern within the fibers of
the specimen. When the samples ultimately failed, typically occurring in the critical section
subjected to the greatest bending moment, they dropped, activating a stop sensor. At this
point, data regarding the number of cycles and the distance from the breaking point to the
location of the load were recorded. Cycle counts were electronically tallied, while distance
measurements from the breaking point were taken using a Vernier caliper with an error
margin of e = 0.01 mm. This method accounts for variations in the stress experienced
by different samples tested under the same weight conditions [30,38]. It is important to
note that the presence of printing imperfections can accelerate crack propagation and is
considered an anomalous behavior in the testing process, yet it is also acknowledged that a
degree of uncertainty is inherent in fatigue studies.

Taking into consideration the specimen’s geometry and the applied load, the equations
required for calculating the bending stress applied to the expected fracture section are
as follows:

S =
32·F·(L − x)

π·d3 (1)

where the variables correspond to:

• S: stress at the fracture section (MPa).
• L: distance between the load applied section and the fixed point (mm).
• x: distance between the fixed point and the maximum stress point (mm).
• d: calibrated area diameter (mm).
• F: Load applied (N).

Figure 6 provides a visual representation of the variables essential for calculating the
stress in the fracture section. It is important to note that the fatigue fracture is anticipated
to manifest at the termination of the calibrated zone, which aligns with the point of
maximum stress.
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3. Results

Following the completion of fatigue testing and the measurement of the tested samples,
the obtained results were subjected to comprehensive analysis to discern the impact of the
various selected reinforcements.

3.1. Dimensional and Geometrical Results

All the samples were printed under the same printing parameters (Table 2) and condi-
tions. Figure 7 shows the deviations obtained for the samples reinforced with natural fibers.
It can be seen how samples with flax, coffee, and cork tend to offer smaller dimensions,
as the deviations are negative. The center of the specimens, where the breakage occurs,
is closer to the nominal measurements, with the deviations being more evident in the
extreme parts of the specimen (measurement points 1–3 and 7–9). The PLA + Cellulose
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samples present dimensions larger than nominal, with this being more obvious for the
center area (measurement points 4, 5, and 6). However, all the materials tested have
similar dimensional deviations. There is higher shrinkage at the ends of the specimens
(measurement points 1–3 and 7–9), corresponding to a larger diameter and therefore more
material deposited.
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Figure 7. Dimensional deviations PLA + natural fibers samples.

A similar behavior can be seen in Figure 8, where the dimensional deviations for PLA,
HR-PLA, and PLA + FC are shown. It can be established that the dimensional accuracy of
the printed samples depends on the type of reinforcement and the diameter selected. The
closest to the PLA behavior is the PLA + Cellulose. This behavior can be explained because
the specimens that show a higher dimensional deviation compared to PLA specimens
are composed of fibers with higher density. These fibers hold the temperature more, so
cooling takes longer and therefore the material has more time to shrink. On the other hand,
cellulose fibers, being less dense, hold less heat and cooling takes place in a shorter time,
similar to the cooling of PLA-only specimens.
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This behavior is complemented by the amount of material being extruded. Therefore,
in the center of the part (measuring points 4–6), as there is less material, cooling occurs
earlier than at the ends of the part (measuring points 1–3 and 7–9), with fewer deviations
due to the lower shrinkage produced.
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Furthermore, it must be taken into consideration that the additive manufacturing
process using ME presents high deviations compared to other conventional manufacturing
processes like machining [49–51].

It is clear that the manufacturing process alone makes it difficult to maintain good
dimensional control. The different layers or sections of the part are cooled in different ways
and at different speeds, which means that the internal stresses cause each layer to distort,
giving rise to what is known as warping or shrinkage. When an area or layer cools, it
shrinks. This contraction pulls on the surrounding material, which causes the phenomenon
of warping or shrinkage, due to the internal tension [52]. Parts with large flat surfaces or
smaller thicknesses have greater deformation.

The dimensional and geometrical deviations observed in this study can be attributed
to several specific characteristics of the natural fibers used as reinforcements in PLA. The
density and thermal properties of the fibers significantly affect the cooling rate during
the printing process. For example, cellulose fibers, having a lower density, result in faster
cooling and greater dimensional expansion, as seen with deviations up to +0.247 mm. In
contrast, denser fibers like flax exhibit negative deviations up to −0.250 mm due to slower
cooling and shrinkage. Additionally, the hygroscopic nature of fibers such as flax and
coffee leads to moisture absorption, causing expansions or contractions during printing
and cooling, further contributing to dimensional changes.

Moreover, fiber–matrix adhesion plays a crucial role in dimensional stability. Stronger
interfacial bonding, as observed in cellulose-reinforced PLA, results in less warping and
shrinkage, with roundness deviations around 0.01 mm compared to 0.1 mm for flax and
0.08 mm for coffee. The superior dimensional stability of cellulose-reinforced PLA is also
reflected in its lower cylindricity deviation (approximately 0.05 mm), compared to higher
values for flax (0.15 mm) and coffee (0.12 mm). These findings highlight the importance of
fiber characteristics in determining the dimensional and geometrical outcomes of printed
PLA composites.

As for the geometrical deviations, the results for the RON, STL, and CYL are shown in
Figures 9–11, respectively. Each point represents the mean straightness of the corresponding
material. The vertical lines represent the standard deviations. The shaded areas represent
the confidence intervals.
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It can be seen that PLA and PLA + CF are the samples with the higher RON deviation,
versus the PLA + Cellulose samples, which present lower RON deviation. The same
behavior is shown for the CYL deviations. As for STR, PLA + Cellulose overcomes the
other samples with natural reinforcement and the HR-PLA but is still lower than the PLA
and PLA + CF.
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With the analysis of these results, it can be concluded that natural fiber reinforcement
tends to improve the geometrical deviations of the samples printed. A closer analysis of nat-
ural reinforcement could be interesting for a particular part, depending on its dimensions,
geometry, and tolerances. However, it is clear that the addition of natural reinforcement
will offer printed parts with fewer deviations than working with PLA or PLA + CF.

3.2. Fatigue Results

Loads of 1 and 1.5 kgf were tested, due to the endurance shown by several
PLA + reinforcements. The natural reinforcement samples showed an infinite fatigue life
for the first samples tested with 1 kgf (Figure 12), establishing the infinite fatigue life > one
million cycles [42,53]. Thus, in order to determine the behavior with natural fibers, the
load is increased to 1.5 kgf (Figure 13). According to this, the results showed that the
implementation of natural fiber increases the load-bearing capacity of the printed material
(Figures 12 and 13). The PLA + Cellulose samples, for example, present a similar number
of cycles as the PLA samples but with 0.5 kgf more. Figure 13 shows the behavior of
the samples with natural fiber. It can be seen that the samples with PLA + CF offer the
worst results. It can be appreciated that this contradicts the established general trend that
carbon fiber improves the mechanical properties of a material. Correspondingly, it could be
considered that as the loading is perpendicular to the direction of deposition of the material,
the effect that short carbon fiber shows is less relevant in improving fatigue behavior.
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The cyclic loading conditions used in this study were chosen to represent the moderate-
to high-stress conditions that PLA composites might encounter in various practical applica-
tions. While the exact load levels and cycle counts were based on previous research and the
available literature, different applications may experience a range of stress conditions. Our
goal was to provide a preliminary understanding of the fatigue behavior of PLA composites
reinforced with natural fibers under these conditions.

The fatigue tests demonstrated significant improvements in fatigue life for the rein-
forced PLA composites, suggesting their potential suitability for demanding environments.
However, further studies are needed to fully correlate these findings with specific real-world
applications. These insights provide a basis for future research to explore the performance
of these materials under various stress conditions.

The first fractography that can be appreciated is that of the PLA samples (Figure 14).
The fracture area presents a brittle and ductile zone (Figure 14a), which can be observed in
all the specimens tested. Also, good adherence between the layers and crack propagation
can be appreciated (Figure 14b).
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The main problem that was found with the PLA + CF specimens, compared with the
PLA samples, is the lack of layer adherence and the lack of adherence between the short
carbon fibers and the PLA matrix (Figure 15a). This lack of adhesion results in gaps within
the specimen, which act as a stress concentrator and promote the appearance of the crack.
In a comparison between the specimens with CF and PLA alone (Figures 14 and 15), it
can be seen that there are no gaps in the PLA specimens, presenting a more homogeneous
interior. Also, the CF samples present discontinuity in the adhesion between the fiber itself
and the PLA matrix, which also acts as a stress concentrator (Figure 15b).
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areas) in the fracture section. However, the cellulose reinforcement blends so well with 
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ness. Therefore, by improving the printing process and eliminating these pores, the po-
tential of this material could be much greater. 
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Figure 15. Fractography (a) and detail (b) of PLA + CF samples.

The fracture behavior of the materials tested is similar, presenting brittle and ductile
fracture zones. Therefore, the PLA base has the same behavior, with the reinforcement
selection providing the difference in the number of cycles.

It can be seen that the specimens with cellulose (Figure 16) also present gaps (darker
areas) in the fracture section. However, the cellulose reinforcement blends so well with the
PLA matrix that it overcomes this presence of pores and offers a higher fracture toughness.
Therefore, by improving the printing process and eliminating these pores, the potential of
this material could be much greater.
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Even in the coffee specimens, where some trapped air bubbles can be seen (Figure 
17), there is good interlayer adhesion and good adhesion between the coffee fibers and 
PLA, which also outperforms carbon fiber reinforcement and improves PLA performance. 
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Figure 16. Fractography (a), SEM (b), and details (c,d) of PLA + Cellulose samples.

Even in the coffee specimens, where some trapped air bubbles can be seen (Figure 17),
there is good interlayer adhesion and good adhesion between the coffee fibers and PLA,
which also outperforms carbon fiber reinforcement and improves PLA performance.
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Also, correlating the fatigue results with the geometrical deviations, it can be appreci-
ated that the materials that offer higher fatigue resistance are also the ones that presented
less geometrical deviation. So, in this case study, it can be highlighted that the natural fiber
helps with the adhesion of the printed layers and also provides printed samples with fewer
geometrical deviations, characteristics that improve the fatigue life of the tested samples.

In addition, it is important to highlight that the sustainability of natural fibers is a key
focus of this study, as these materials offer significant environmental benefits compared
to synthetic fibers. Natural fibers such as cellulose, flax, and coffee are biodegradable,
reducing the environmental impact at the end of their life cycle. Studies have shown
that natural fiber composites, such as those made with jute, flax, and hemp, have a lower
environmental impact and carbon footprint compared to glass and carbon fiber composites.
Natural fibers are renewable and have lower embodied energy compared to synthetic
fibers [53,54].

Specifically, incorporating 30% by weight of natural fibers into the polypropylene (PP)
matrix can reduce its carbon footprint by 3% to 18% compared to unmodified PP and PP
composites with glass fibers. Moreover, life cycle assessments indicate that natural fiber
composites are likely environmentally superior due to lower environmental impacts during
fiber production, higher fiber content reducing more polluting base polymer content, and
improved fuel efficiency during the use phase, especially in automotive applications [55].

Finally, to address the presence of significant internal gaps and voids observed in
the printed specimens, which could potentially affect the reliability of the fatigue test
results, we recognize the need for improved quality control measures in the fabrication
process. These voids are likely the result of suboptimal printing parameters, such as an
insufficient extrusion temperature or incorrect layer adhesion. Future work will focus on
optimizing these parameters, including increasing the extrusion temperature and adjusting
the printing speed to enhance layer bonding and reduce internal defects. Additionally,
implementing a post-processing technique such as chemical smoothing or annealing could
further minimize voids and improve the overall structural integrity of the printed parts.

4. Conclusions

In this particular case study, the enhancement of PLA through the incorporation of
diverse natural reinforcements under rotational fatigue testing has been examined. The
results gathered from this investigation yield several conclusions:

1. By analyzing the dimensional deviations prior to the fatigue tests, it can be seen that
these deviations not only depend on the size or diameter of the part. The reinforcement
introduced also has a great influence, due to its density, its capacity to dissipate heat,
or its own shrinkage capacity. In this respect, the most similar behavior to the PLA
specimens is those reinforced with cellulose fibers.

2. The geometrical deviations of the natural fiber reinforcement samples are lower than
the samples without reinforcement or with carbon fiber. This can help when working
with parts with tighter tolerances and dimensions. Also, lower geometrical deviations
also improve fatigue resistance.

3. In terms of the behavior under rotational fatigue conditions, natural fibers have a
much higher potential compared to carbon fibers, improving the performance of
PLA by 50%, with a similar breakage mechanism, presenting brittle and ductile
breakage zones.

4. Among the fibers tested, coffee and cellulose fibers performed best, with the cellulose
fibers showing the best resistance. However, reduced homogeneity is observed in
the cellulose specimens, with many gaps in the interior. This leads us to consider
the potential of the material, improving the printing of the pieces by eliminating
these voids.

5. Cork and lax fibers do not present the same improvement for the higher load (1.5 kgf),
but they overcome the carbon fibers under the same load (1 kgf), improving the
PLA behavior.
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Practical applications: The enhanced fatigue resistance and dimensional stability of
PLA composites reinforced with natural fibers, as demonstrated in this study, can have
significant practical applications across various industries. For example, the aerospace
and automotive sectors can benefit from these composites for non-structural and semi-
structural applications, such as interior panels, trim components, and brackets, where
weight reduction and sustainability are crucial. Furthermore, the use of natural fiber-
reinforced PLA in consumer goods can improve the durability and lifespan of products such
as sports equipment, furniture, and household items, ensuring they can withstand repeated
use without significant degradation in performance. In the context of environmental
sustainability, these composites offer eco-friendly packaging solutions that reduce the
reliance on non-biodegradable synthetic fibers, minimizing environmental pollution and
promoting the use of renewable resources.

The sustainability of natural fiber-reinforced PLA extends beyond its mechanical
performance. In real-world applications, these composites offer significant environmen-
tal advantages due to their biodegradability and lower carbon footprint compared to
traditional synthetic fiber composites. By reducing the reliance on non-biodegradable
materials, these natural fiber composites contribute to a circular economy, particularly in
industries like the automotive and aerospace sectors, where reducing the environmental
impact is becoming increasingly critical. Future studies should also consider conducting
life cycle assessments (LCAs) to quantify the environmental benefits of these materials in
specific applications.

Limitations and Future Work: One limitation of our study is the reliance on a specific
3D-printer model (Raise 3D E2) and a set of printing parameters, which may affect the
generalizability of the results. Future research should explore the impact of different
printing technologies and parameter variations on the fatigue behavior of PLA composites.
Additionally, the presence of internal gaps in the reinforced samples suggests the need for
further optimization of the printing process to enhance material homogeneity. Investigating
the long-term environmental effects and biodegradability of natural fiber-reinforced PLA
in real-world applications is also recommended.

Implications for Researchers: Our findings indicate that natural fiber reinforcements
can significantly enhance the mechanical properties and fatigue resistance of PLA compo-
nents, making them suitable for more demanding applications in industries such as the
aerospace and automotive sectors. Researchers are encouraged to explore the use of other
natural fibers and hybrid composites to further improve the performance and sustainability
of 3D-printed materials. The relationship between printing parameters, material properties,
and fatigue performance should be a focus of future studies to develop optimized solutions
for additive manufacturing.
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